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Abstract The OB stars are concentrated near the Galac-
tic plane and should permit a determination of the distance
to the Galactic center. van Leeuwen’s new reduction of the
Hipparcos catalog provides, after 824 Gould belt stars have
been excluded, 6288 OB stars out to 1 kpc and Westin’s
compilation an additional 112 stars between 1 kpc and 3 kpc.
The reduction model involves 14 unknowns: the Oort A and
B constants, the distance to the Galactic center R0, 2 second-
order partial derivatives, the 3 components of solar motion,
a K term, a first order partial derivative for motion perpen-
dicular to the Galactic plane, a second-order partial for ac-
celeration perpendicular to the plane, two terms for a pos-
sible expansion of the OB stars, and a C constant. The
model is nonlinear, and the unknowns are calculated by use
the simplex algorithm for nonlinear adjustment applied to
14313 equations of condition, 12694 in proper motion and
1619 in radial velocity. Various solutions were tried: an L1

solution, a least squares solution with modest (2.7 %) trim
of the data, and two robust least squares solutions (biweight
and Welsch weighting) with more extreme trimming. The
Welsch solution seems to give the best results and calculates
a distance to the Galactic center 6.72 ± 0.39 kpc. Statistical
tests show that the data are homogeneous, that the reduc-
tion model seems adequate and conforms with the assump-
tions used in its derivation, and that the post-fit residuals are
random. Inclusion of more terms, such as streaming motion
induced by Galactic density waves, degrades the solution.
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1 Introduction

The distance to the Galactic center R0 represents the most
fundamental parameter for the study of Galactic structure,
kinematics, and dynamics. It is also a difficult quantity to
evaluate. Francis and Anderson (2013) list 135 determina-
tions made between 1918 and 2013 with values ranging
from 5.5 kpc to 16.4 kpc, with less scatter for the post-
1980 values. Kerr and Lynden-Bell’s classic paper (1986)
lists determinations from a low of 6.7 kpc for RR Lyrae stars
to a high of 10.5 kpc for HII regions. Perryman’s (2009)
Table 9.1, more recent than Kerr and Lynden-Bell, shows
values ranging from the pre-Hipparcos 7.1 kpc from H2O
masers in Sgr B2 to 9.3 kpc for RR Lyrae stars calibrated
from Hipparcos results.

R0 must be determined by methods other than line of
sight distance, and one should query: which method is best?
Reid’s paper (1993), somewhat dated but still useful, sum-
marizes various methods used to determine R0. Assump-
tions of some sort enter into nearly all methods. One could,
for example, use Galactic dynamics, but Galactic forces
are complex and complicate a dynamical study of stellar
motion. Any determination of the distance depends on as-
sumptions as to the nature of the forces. Aumer and Binney
(2009), for example, using parallaxes, proper motions, and
line-of-sight velocities of 18 masers, find values for vari-
ous Galactic models in the range 6.7–8.9 kpc. Three other
recent determinations all represent more indirect methods.
Gillessen et al. (2009) fit 32 stellar orbits to a point-mass
potential for the black hole near the Galactic center and
find R0 = 8.33 ± 0.35 kpc. Shen and Zhang (2010) use
Hipparcos observations of classical Cepheids to fit radial
velocity and proper motion kinematical equations and an
axisymmetric model for the Galaxy to find a distance of
8.0 ± 0.8 kpc. Sofue et al. (2011) employ kinematical re-
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lations on objects near the Galactic solar circle to determine
R0 = 7.54 ± 0.77 kpc.

Galactic or stellar kinematics, which studies the move-
ments of stars without examining the dynamics that induce
the movements, obviates the need for such assumptions.
Milne (1935), among others, has shown that the structure
of the kinematical equations depends not on any particular
dynamical theory, but merely on the hypothesis that a space-
velocity frequency function exists continuous with respect to
the coordinate system used. Ogorodnikov (1965, p. 73), in
fact, states that one may determine R0 without any assump-
tions by use of second-order kinematical equations of differ-
ential Galactic rotation. The “without any assumptions”, of
course, is predicated upon there being no significant modifi-
cations to the kinematics induced by differential rotation.

My analysis depends heavily on statistics. Observational
astronomers may find such use excessive and feel that a min-
imum of mathematics plus astronomical intuition becomes
preferable. But I agree with Kurth when he asserts (1967,
p. vii) that application of proper statistical tests could over-
turn a number of accepted hypotheses and what seem to be
established facts. Trumpler and Weaver, in their classic text
Statistical Astronomy (1962, p. 184), echo this sentiment and
state that errors in more than one variable, what is known
today as the total least squares problem and used by as-
tronomers, had been insufficiently studied at the time, which
may have compromised many important and fundamental
investigations. One’s visceral instinct as to what a result
should be can become compromised when confronted with
solid statistics. As an example Sherill (1999) analyzes how
at the beginning of the 20th century double star astronomer
T.J.J. See’s overreliance on instinct lead him to careless-
ness and mischaracterization of results. Eichhorn and Cole
(1985), moreover, maintain, by studying the compilation of
star catalogs, that the very name “systematic error” is a mis-
nomer and arises from incomplete modelization that leads to
systematic trends in the residuals. Statistical tests determine
whether or not the residuals are random; if they are random,
there is no systematic error.

2 The reduction model

Consider a Cartesian coordinate system with x-axis directed
towards the Galactic center, y perpendicular to x in the di-
rection of increasing galactic longitude l, z perpendicular to
the x–y plane and positive for positive Galactic latitude b.
Let ṙ denote radial velocity in km sec−1, μl proper mo-
tion in Galactic longitude in milli-arc-sec (mas) per year, μb

proper motion in latitude in the same units, κ a constant with
value 4.74047 km sec−1 yr, and π the parallax in mas. The
components of the solar motion are denoted by −X, −Y ,
−Z. Thus, X, Y , Z themselves are a reflex solar motion.

Edmondson (1937) shows that ṙ ,μl , and μb may be repre-
sented by Fourier expansions involving the 21 coefficients
a1:3,0:3, b1:3,1:3:

ṙ =
4∑

j=0

a1j cos j l +
3∑

j=1

b1j sin j l + X cos l cosb

+ Y sin l cosb + Z sinb;

κμb =
4∑

j=0

a3j cos j l +
3∑

j=1

b3j sin j l − X cos l sinb

− Y sin l sinb + Z cosb;

κμl =
4∑

j=0

a2j cos j l +
3∑

j=1

b2j sin j l − X sin l + Y cos l;

(1)

If U,V,W are components of the velocity in rectangular
coordinates x, y, z at a given point, U = ẋ, V = ẏ,W = ż,
the Fourier coefficients a, b are functions of π,b, and the
first and second partial derivatives of U,V,W with respect
to x, y, z. If we use rectangular coordinates Eq. (1) be-
comes a linear system for 30 unknowns: 9 first order partial
derivatives, ux = ∂U/∂x,uy = ∂U/∂y, . . . ,wz = ∂W/∂z,
18 second order partial derivatives, uxx = ∂2U/∂x2, uxy =
∂2U/∂x∂y, . . . ,wzz = ∂2W/∂z2, and the three components
of the reflex solar motion. No assumptions other than the ex-
istence of the derivatives and the validity of the Fourier se-
ries enter into Eq. (2). Whittaker and Watson (1927, p. 161)
discuss the conditions for a Fourier series to converge, one of
which stipulates that only a finite number of discontinuities
are present. This becomes important because density waves,
associated with spiral arms, could induce discontinuities in
the kinematical parameters. Because O and B stars are asso-
ciated with spiral arms, density waves could affect the kine-
matics of these stars. As for the existence of the first and
second-order derivatives, Branham (2002) has shown that
they exist for the O and B stars by actually calculating their
values.

The unknowns, however, do not involve R, the distance
of the specified point from the Galactic center. If the speci-
fied point is the Sun, then R = R0. For R to enter the equa-
tions of condition one must change to cylindrical or spher-
ical coordinates, which permit a direct determination of the
distance. Edmondson (1937) uses a cylindrical system with
a total of 18 first and second order partial derivatives that
include R and R2 in the denominator. Certain symmetry as-
sumptions bring about the reduction from 27 to 18. It thus
appears as if we have a nonlinear system with 21 unknowns
once the reflex solar motion is included. But such is not
the situation because not all of the unknowns are indepen-
dent. A singular value decomposition (SVD) demonstrates
that only 10 of the unknowns are in fact independent. Ed-
mondson may have been unaware of this defect because he
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nowhere employs this set of unknowns, but rather a subset of
six unknowns. But it is important to realize that the genuine
reduction in unknowns with cylindrical coordinates is not
from 27 to 18, as one might feel upon reading Edmondson’s
article, but from 27 to 10.

Consider now spherical coordinates. If O is the center
of the Galaxy spherical coordinates with respect to O be-
come x = R cos l cosb, y = R sin l cosb, z = R sinb with 9
first order partial derivatives, ∂U/∂R, ∂U/∂l, ∂U/∂B, . . . ,

∂W/∂b and 18 second order partials, ∂2U/∂R2, ∂2U/∂R∂l,

. . . , ∂2W/∂b2. One might feel that we can once again em-
ploy 27 partial derivatives, but this is an illusion. It is true
that one can express the spherical coordinate partials in
terms of the rectangular coordinate partials and vice versa.
I will not show the partials because they become compli-
cated, especially those of second order. But in theory we
have a 27×27 matrix linking the spherical partials with their
rectangular counterparts and its inverse going the other way.
If we consider the 27 rectangular partial derivatives a math-
ematical group, their representation is irreducible. But the
spherical coordinates form a 27 × 27 block diagonal matrix
with three 9 × 9 submatrices. The 3 × 3 unsymmetric sub-
matrices in each 9 × 9 submatrix represent first order par-
tials and the symmetric 6 × 6 submatrices second order par-
tials. Even though these three 9 × 9 submatrices have differ-
ing elements, their structure is identical and their traces the
same. Thus the 27 × 27 matrix is reducible and only 9 of
the 27 variables are independent. We therefore have a total
of 13 independent unknowns, 9 partial derivatives, 3 reflex
solar motion, and R0, not 31. To determine R, therefore,
specifically when evaluated at the solar distance and hence
R0, one must look for a different reduction model.

Smart (1968, pp. 288–289) provides such a model. Ed-
mondson (1937) uses equations that are basically the same
in slightly different notation, which means he most likely
never employed Eq. (1) reduced to cylindrical coordinates.
The assumptions entering into Smart’s model are: a group
of stars S is located at mean distance r from the Sun and
at mean distance z from the Galactic plane; the system-
atic motion of S is a circular velocity V about the vertical
axis through the Galactic center and parallel to the Galac-
tic plane. If R is the distance of S from the Galactic cen-
ter, c1 = 1/2∂2V/∂R2, c2 = 1/2∂2V/∂z2, and A and B de-
note the Oort constants. If W denotes velocity perpendicular
to the plane then to allow for coupled motion in the plane
and perpendicular to it we add two more unknowns, ∂W/∂z

and ∂2W/∂z2. It would be possible to add other derivatives
involving W , such as ∂W/∂y, ∂2W/∂y∂z, and others, but
Branham (2002) shows that these other terms are negligi-
ble compared with the first two. To obtain residuals that are
highly random it is also necessary to introduce three fur-
ther terms. To allow for a possible expansion of the Galaxy,
which also relaxes the assumption of circular motion of S

about the Galactic center, Smart (1968, pp. 303–305) in-
troduces the terms e0 = Ṙ0/R0 and ė0 = de0/dR0. These
two terms allow for bulk motion towards or away from the
Galactic center, and affect the equations of condition in ra-
dial velocity and Galactic longitude. Let A1 = R0ė0/2 and
A2 = A1 + e0. Finally, a further term, which can also be
called an Oort constant, C may be added that indicates a
displacement of the system of longitudes from the direction
to the Galactic center. Ogorodnikov (1965, p. 73) introduces
this term. With the C term we use in lieu of A

√
A2 + C2,

and the longitude offset l1 from the direction to the center of
the Galaxy becomes l1 = 1/2 tan−1(−C/

√
A2 + C2).

Then in lieu of Eq. (1) we have:

π2ṙ = πA sin 2l cos2 b

+ cos3 b sin l
(−A/R0 + c1 + 4c2 tan2 b

)
/4

+ cos3 b sin 3l(3A/R0 + c1)/4

+ π2(X cos l cosb + Y sin l cosb + Z sinb)

+ π2K + π2 sin2 b∂W/∂z + sin2 b∂2W/∂z2/2

+ πA1 cos 2l cos2 b + πA2 cos2 b

− C cos3 b sin l cos2 l;
kπμl = πA cos 2l + πB

+ cosb cos l
(−3A/R0 + 3c1 + 4c2 tan2 b

)
/4

+ cosb cos 3l(3A/R0 + c1)/4

+ π2(−X sin l + Y cos l) − πA1 sin 2l

− C cos2 b cos3 l;
κπμb = − tanb

[
πA sin 2l cos2 b

+ cos3 b sin l
(−A/R0 + c1 + 4c2 tan2 b

)
/4

+ cos3 b sin 3l(3A/R0 + c1)/4
]

+ π2(−X cos l sinb − Y sin l sinb + Z cosb)

− π sinb cosb∂W/∂z + cosb sin2 b∂2W/∂z2/2

+ C sinb cos2 b sin l cos2 l.

(2)

An unknown K has been added to the first of Eq. (2) to
represent a K term, putatively significant for the early stars.
There is a total of 14 unknowns in Eq. (2): the Oort con-
stants A,B,C; the K term K ; the four partial derivatives
c1, c2, ∂W/∂Z, ∂2W/∂z2; the components of the reflex so-
lar motion X,Y,Z; the terms A1 and A2; and the distance
to the Galactic center R0. In deriving these equations Smart
makes use of symmetry considerations such as both ∂V/∂Z

and ∂2V/∂R∂Z are zero. Because the distance enters in the
denominator, the equations become nonlinear. Notice that
because of the units of π, ṙ,μl,μb, and κ , the dimensions
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of the residuals from Eq. (2), defined as the right-hand-side
minus the left-hand-side, will be mas2 km s−1.

One should multiply both sides of Eq. (2) by R0, which
if left in the denominator exacerbates the calculated mean
error for this quantity although the equations themselves re-
main algebraically equivalent. To see why look at the first
Eq. (2), although the same line of reasoning applies if we
use either of the proper motion equations. If drT · r repre-
sents the error in the sum of the squares of the residuals and
R0 remains in the denominator, then dR0 ∝ R3

0drT · r ; the
error in the sum of the squares of the residuals is multiplied
by the large number R3

0 and implies a larger value for this
quantity in the covariance matrix. Removal of R0 from the
denominator ameliorates its calculated mean error by mak-
ing it less sensitive to the value for R0. Upon multiplying
the equations by R0 the dimensions of the residuals become
mas km s−1.

3 The observational data

Having the reduction model, several questions must be ad-
dressed. What data should I use and where can they be ob-
tained? What are the errors in the data? How do the errors af-
fect the results and in particular is there evidence for system-
atic error? Regarding the first question–the next two ques-
tions will be treated later– various catalogs are available with
the necessary data. The proper motions and parallaxes up to
1 mas used in this study were taken from van Leeuwen’s
version of the Hipparcos catalog (2007), henceforth called
simply the Hipparcos catalog, the radial velocities from the
Wilson (Nagy 1991) and Strasbourg Data center (Barbier-
Brossat et al. 2000) catalogs. van Leeuwen’s catalog omits a
few stars contained in the original catalog (ESA 1997). For
those few stars the relevant data were taken directly from the
original catalog. Any star flagged in the Hipparcos catalog
as of substandard quality was omitted from consideration.
The data must be consistent with the hypotheses inherent
in Eq. (2). OB stars are ideal candidates because they are
concentrated near the Galactic plane and hence high cou-
pling between x–y motion and z motion becomes unlikely.
Few, less than 0.4 %, of OB stars are high velocity, and
these will be eliminated by the statistical filter used or, of
one uses the L1 criterion their residuals will not unduly in-
fluence the solution. By confining oneself to the early stars a
kinematical break between the early and the late stars, called
Parenago’s discontinuity, is avoided. Some OB stars, how-
ever, are distributed about a plane different from the Galac-
tic plane. These OB stars, called Gould belt stars, must be
eliminated to enhance kinematical homogeneity. See Bran-
ham (2002) for a technique to detect and eliminate Gould
belt OB stars. To extend the study beyond 1 kpc OB stars
out to 3 kpc were taken from Westin’s (1985) compilation,

Fig. 1 Space distribution of OB stars

112 stars altogether. Proper motions for the Westin OB stars
were taken from the SKYMAP catalog (Slater and Hashmall
1992), based on the Hipparcos proper motions, and the ra-
dial velocities from the two catalog already mentioned. Al-
together 6347 proper motions and parallaxes and 1619 radial
velocities were extracted from the various sources.

One may feel that it might be preferable to use Tycho
(Høg et al. 2000) rather than Hipparcos proper motions be-
cause of their long base line, over 100 years versus a few
years. van Leeuwen (2007, pp. 95–100) points out that the
longer base line can actually introduce more scatter, caused
by orbital motion of various years duration of binary stars,
into the proper motions. I looked at 96591 Hipparcos proper
motions, with bad data flagged by goodness-of-fit indica-
tors, and 2406970 Tycho proper motions, with again bad
data flagged. The former have a median error in right as-
cension (α) of 0.98 mas yr−1, 0.82 mas yr−1 in declina-
tion (δ), and for the total proper motion, if we assume inde-
pendence of error in the two coordinates, of 1.06 mas yr−1;
for the later the corresponding number are: 2.5 mas yr−1 in
α, 2.3 mas yr−1 in δ, and 2.96 mas yr−1 for the total proper
motion. The Hipparcos proper motions, therefore, carry over
seven times more weight than the Tycho proper motions.

Smith and Eichhorn (1996) have derived a procedure to
correct the observed parallaxes, and this procedure was used
to transform all of the parallaxes used in this study, includ-
ing the parallaxes for the Westin OB stars. An individual
error is given for each Hipparcos star. For the Westin stars
Westin estimates that for B5 and earlier the parallax error is
35 % and for the B6–B9 stars 5 %–18 %. Because it is often
difficult to determine the exact spectral type, for the latter
I used a constant 11 %. The final solution, however, does
not depend critically on these corrections. Figure 1 shows
the distribution of the OB stars in space, Figs. 2, 3, and 4
the distributions in the x–y, x–z, and y–z planes. The con-
centration towards the Galactic plane becomes manifest and
confirms the assumptions used to derive Eq. (2). To empha-
size this, define a symmetric moment matrix M , referred to
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Fig. 2 Distribution in x–y plane

Fig. 3 Distribution in x–z plane

Fig. 4 Distribution in y–z plane

the centroid of the distances, x̄, ȳ, z̄, from the xi, yi, zi with

M11 =
∑

i

(xi − x̄)2

M12 =
∑

i

(xi − x̄)(yi − ȳ)

M13 =
∑

i

(xi − x̄)(zi − z̄)

M22 =
∑

i

(yi − ȳ)2

M23 =
∑

i

(yi − ȳ)(zi − z̄)

M33 =
∑

i

(zi − z̄)2.

Because the matrix is symmetric

M =
⎛

⎝
M11 M12 M13

M12 M22 M23

M13 M23 M33

⎞

⎠ . (3)

The eigenvalues of M , associated with the x,the y, and the z

directions, are 958662, and 65; the z eigenvalue is much less
prominent. Likewise, the latitude of the z-component is b =
88.◦73, showing that Gould belt stars, with b ≈ 72◦, seem to
have been successfully eliminated. There is little correlation
among the distances: −13.2 % between x and y, −0.01 %
between x and z, and 7.7 % between y and z. These Galactic
belt OB stars, therefore, form a homogeneous sample and
comply with the assumptions used to derive Eq. (2).

What about the quality of the data? The Hipparcos proper
motions (Branham 2009) are high quality. The parallaxes,
however, contain a median error of 22 %. The effects of
parallax error are ameliorated by elimination of parallaxes
under 1 mas and application of correction factors for the re-
maining parallaxes. In my study of the M giants (Branham
2008) I found that the Smith-Eichhorn procedure seems to
remove most of the parallax error; there is little indication of
substantial error remaining in the parallax. Radial velocities
come from disparate sources incorporated into the Wilson
and the Strasbourg Data Center catalogs, but are not used
alone. Rather, they are multiplied by the corrected parallaxes
in the equations of condition. The effect, aside from the con-
stant K term, will be to broaden the error distribution.

Regarding the final question, the effects of the errors and
the possible presence of systematic error, the answer de-
pends on the randomness of the residuals, which becomes
a crucial test for the goodness of the kinematical model.
Randomness allows one to assert that a least squares ad-
justment, or if the underlying error distribution is Laplacian
rather than normal, an L1 adjustment is optimal. Lack of ran-
domness indicates that systematic error is present and hence
the reduction model inadequate. Two tests will be used later
to check for the randomness of the residuals. A simplistic
runs test measures how often a variable, distributed about
the mean, changes sign from plus to negative or negative
to positive, the runs, which have a mean for m data points
of m/2 + 1 and a variance of m(m − 2)/4(m − 1) (Won-
nacott and Wonnacott 1972, pp. 409–411). A more sophisti-
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cated runs test, based on Knuth (1981, pp. 64–67) and imple-
mented in the IMSL Numerical Libraries “DRUNS” routine
(www.roguewave.com), calculates a covariance matrix and
a chi-squared statistic for the probability of the null hypoth-
esis. The covariance matrix trivially converts to a correlation
matrix that measures the correlations among a hierarchy of
series of runs from longest to shortest.

The other test, the Durbin-Watson statistic, also called the
mean-square successive difference d , measures the squared
differences between residuals ri and ri−1:

d = m

m∑

i=2

(ri − ri−1)
2/

[
m

m∑

i=1

r2
i −

(
m∑

i=1

ri

)2]
(4)

and is 2 for a completely random distribution with varia-
tion (m− 2)/m2 (Wonnacott and Wonnacott 1972, pp. 411–
413). Rather than the variance the statistic may be used by
establishing upper and lower confidence limits for the cal-
culated value of d . There seems to be a question whether the
test is only applicable to a temporal series, but Durbin and
Watson’s paper (1950) makes no such claim although their
second paper (1951) only considers temporal data.

4 The reduction method

Equation (2) may be solved as a linear or a nonlinear sys-
tem of equations. With the former we assume a set of val-
ues for R0 and interpolate the value that minimizes the sum
square of the residuals. Such a procedure incorporates risks,
as the pre-Charon determinations of Pluto’s mass showed,
and moreover fails to take into account the structure of
the equations of condition, which form the data matrix. To
consider R0 an additional unknown and Eq. (2) as nonlin-
ear seems preferable. Among other advantages it permits
a direct determination of R0, under the assumptions used
to derive Eq. (2). Given that many nonlinear methods are
available, the germane question becomes: which one? Ad-
vantages accrue to non-gradient methods. One of the best
is the Nelder–Mead simplex algorithm (1965), not to be
confused with the simplex algorithm for linear program-
ming, which can be used to reduce the residuals of any
vector norm. Instead of rT ·r = min, we can choose the ro-
bust L1 norm, |r| = min, much less influenced by discor-
dant data. I have published Fortran-77 code, since revised to
Fortran-90, (Branham 1990, pp. 191–197), for the simplex
algorithm. Although the method has been criticized, Cipra
(2011) defends it by pointing out that it generally works in
practice despite being occasionally fooled by “. . . cleverly
concocted counterexamples. . . .”

I employ the robust L1 norm to calculate a first solution
to R0 with the OB stars: the few high velocity stars in the
data set will have little effect on the calculated solution, thus

obviating a search for an elimination criterion. After the L1

solution is calculated one may eliminate discordant residuals
by a rejection criterion and then calculate a least squares so-
lution. Various criteria are available. One may simply elim-
inate discordant residuals by a criterion such as Pierce’s
(Branham 1990, pp. 79–80), a criterion supported by prob-
abilistic arguments. As an alternative one can use an empir-
ical criterion, one that has given me good results on many
occasions: discard residuals greater than five times the mean
absolute deviation, MAD, where MAD = ∑m

i=1 |ri |/(m−n)

with m being the number of equations of condition and n

the number of unknowns. More robust criteria assign higher
weight to smaller residuals before eliminating outliers. One
such criterion is the biweight (Branham 1990, p. 117), which
I have used with work on comet orbits, double star orbits,
and Galactic kinematics. Scale the residuals by the median
of the absolute values of the residuals, r = r/median(|r|),
then weight an individual residual ri by a factor wi

wi =
{ [1 − (ri/4.685)2]2; |ri | ≤ 4.685,

0; |ri | > 4.685.
(5)

The biweight recognizes two important characteristics of
real world distributions: large residuals are most likely dis-
cordant rather than genuine residuals with a low probabil-
ity of occurrence; small residuals are more probable than
large residuals. Another possibility is the Welsch weighting
(Branham 1990, p. 117):

wi = exp(−ri/2.985)2, (6)

with the residuals scaled as before. Although in theory
Welsch weighting rejects no residuals, in practice large
residuals receive such low weight as to become in effect
zero. My experience has been that the biweight rejects far
more residuals than does Pierce’s criterion. Stigler (1977)
criticizes such extreme trimming, finding little justification
for rejecting so many residuals and feels that more parsimo-
nious trimming is preferable.

As with all nonlinear methods one needs a first approxi-
mation to the solution. For this approximation I calculated
a linear solution to Eq. (2) with the L1 norm and using
R0 = 8.0 kpc, close to the value of 8.2 that Perryman (2009,
p. 621) recommends. Because the calculations are based on
the L1 norm, the MAD becomes a more natural measure of
dispersion than σ(1), the mean error of unit weight. Table 1
shows this first, linearsolution.

Certain comments should be made about this first approx-
imation. The Oort constants seem on the high side, the solar
velocity components on the low side, but nothing unreason-
able. c1 and c2 are both negative indicating, when multiplied
by a distance squared, net velocities towards, respectively,
the Galactic center and Galactic plane. Thus, all of these val-
ues can serve as good first approximations, combined with

http://www.roguewave.com
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Table 1 Linear solution for kinematic parameters for OB stars

Quantity Value Mean error

MAD (mas2 km s−1) 232.04 . . .

A km s−1 kpc−1 18.80 1.01

B km s−1 kpc−1 −18.60 0.79

c1 km s−1 kpc−2 −94.67 6.64

c2 km s−1 kpc−2 −430.09 16.97

X km s−1 −8.84 0.15

Y km s−1 −4.66 0.15

Y km s−1 −5.63 0.15

R0 = 8.0 kpc. For the K term I took K = 5 km s−1. This
value is suggested by my study of the O–B5 stars (Branham
2002), which found K = 5.46±2.09 km s−1. The other con-
stants in Eq. (2) were set to 0.

Not only does one wish to calculate a solution for the
14 unknowns of Eq. (2), but also a covariance matrix CV that
permits calculation of the mean errors and the correlations
among the unknowns. Because the covariance matrix does
not constitute an intrinsic part of a nonlinear adjustment, it
may be worthwhile to discuss the matter. The covariance
matrix is derived from the Jacobian matrix J of the partial
derivatives of R0π

2ṙ with respect to the 14 unknowns, the
partials of R0κπμl , and the partials of R0κπμb . J is evalu-
ated when the solution has converged to final iterates. To find
J calculate the derivative of each of Eq. (2) with respect to
A,B,R0, c1, c2,X,Y,Z,K,∂W/∂Z, ∂2W/∂z2,A1,A2,C.
The unscaled covariance matrix becomes

CV = (
J T · J )−1

. (7)

To obtain the scaled covariance matrix multiply Eq. (7) by a
measure of dispersion such as the MAD or σ(1).

To obtain an error for the solar velocity itself, de-
noted by S0 = √

X2 + Y 2 + Z2, not just its components,
and also e0 and ė0, Rice’s procedure (1902), expressed in
modern notation, calculates the mean error and uses CV .
Identify the error in, for example, S0 with its differen-
tial dS0. Let v be the 11-vector of the partial derivatives
(0 . . . ∂S0/∂X ∂S0/∂Y ∂S0/∂Z). Then the error can be
found from

(dS0)
2 = σ 2(1)v · CV · vT , (8)

or should one prefer the MAD could be used in lieu of σ(1).
For the error in the circular velocity V0 = (A − B)R0 use
Eq. (8) again and put v = (∂V0/∂A ∂V0/∂B ∂V0/∂R0 . . . 0).
By including all of the unknowns in the reduction model,
one correctly models the relations among the unknowns and
the calculated mean errors.

Table 2 Nonlinear solutions for kinematical parameters for OB
stars: L1

Quantity Value Mean error

MAD mas2 km s−1 182.97 . . .

A km s−1 kpc−1 19.40 0.71

B km s−1 kpc−1 −17.19 0.58

R0 kpc 8.15 1.24

V0 km s−1 298.18 7.02

c1 km s−1 kpc−2 −59.56 6.82

c2 km s−1 kpc−2 −548.67 8.52

X km s−1 −11.43 0.06

Y km s−1 −5.73 0.08

Z km s−1 −3.81 0.06

S0 km s−1 13.34 0.06

K km s−1 4.11 0.12

∂W/∂Z km s−1 kpc−1 −15.00 4.46

∂2W/∂z2 km s−1 kpc−1 −530.50 67.02

A1 mas km s−1 −0.80 0.71

A2 mas km s−1 11.20 1.44

C km s−1 kpc−1 2.15 13.53

5 Results

The simplex algorithm was applied to 14313 equations of
condition, 12694 in proper motion and 1619 in radial ve-
locity, for the OB stars within 3 kpc of the Sun. A tol-
erance of 10−6 was used as a convergence criterion and
λ = 0.0001 for the initial size of the simplex; see Branham
(1990, pp. 185–191) for details. After the algorithm con-
verged to an L1 solution a new solution was computed with
λ = 0.01, then λ = 0.001, and finally λ = 0.0001. The idea
becomes avoidance of a local minimum. With any nonlin-
ear method it is difficult or impossible to know if the min-
imum is global. Pourbaix (1998), studying orbits of binary
stars, combines a simplex with a simulated annealing algo-
rithm and admits that simulated annealing cannot guaran-
tee a global minimum. He follows the simulated annealing
phase with several simplex iterations. I have eschewed use
of simulated annealing because identifying the sum of the
squares of the residuals with a “temperature” seems to be
carrying the analogy between statistical mechanics and data
reduction too far. Restarting the solution after convergence,
however, with a new value for λ helps avoid a local mini-
mum. Table 2 shows the L1 solution along with mean errors.
Also shown are the circular velocity V0 at R0 and the solar
motion S0. The norm of the differences, 498, between Ta-
bles 1 and 2 far exceeds the value used for the parameter λ

that increments the variables and indicates that the final so-
lution has not fallen into a local minimum near the starting
values.

Table 2 solution can be taken as is or used to calcu-
late the residuals needed for a least squares or robust least
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Fig. 5 L1 residuals

squares solution based on the weighting function of Eqs. (5)
or (6). The Gauss-Markov theorem demonstrates that a least
squares solution represents the best linear unbiased estima-
tor (BLUE). But the qualifiers rule out a nonlinear estima-
tor, such as the median, or a biased estimator such as that
given by ridge regression or total least squares. If we con-
sider an L1 solution as one insensitive to outliers and not
necessarily optimal in the least squares sense, there is no rea-
son why the solution cannot be considered as good, robust,
and without the inconvenience of having to discard outliers.
Table 2 shows the L1 solution along with mean errors. How
the L1 mean errors are calculated will be explained later.
Also shown are the circular velocity V0 at R0 and the solar
motion S0.

The runs test shows that the residuals sorted by longi-
tude have a 50.6 % chance of confirming the null hypothesis
that they arise from a random distribution while the Durbin-
Watson statistic, under the assumption that it can be applied
to other than temporal series, gives a 19.7 % chance. Also,
Eichhorn’s efficiency (Eichhorn 1990, p. 149), which varies
from 0 for redundant data to 1 for independent data, be-
comes 0.73, showing that all of the unknowns, considered
as a set, are necessary and relatively uncorrelated. For a
more complete discussion of the efficiency see Eichhorn and
Xu (1990). Because the residuals do not represent time se-
ries, spectral analysis cannot be applied. Figure 5 shows the
residuals in latitude and longitude.

It would be possible to calculate genuine L1 mean errors,
which are invariably higher than least squares mean errors,
for this solution; see Branham (1986) for how to do this. It
would not, however, be advisable to do so. Figure 6 gives a
histogram of the residuals after 383 have been eliminated,
a 2.7 % trim. The criterion for rejection was five times the
MAD. This trim, although unnecessary for a robust L1 solu-
tion, permits calculation of reliable statistics for the residu-
als and a histogram without extremely long tails. The statis-
tics show that the residuals are somewhat asymmetric, co-

Fig. 6 Histogram of residuals

efficient of skewness 0.03 (0 for the normal distribution),
leptokurtic, kurtosis of 3.84 (3.0 for both the normal and the
L1 distribution), and lighter tailed than a normal or L1 distri-
bution, Q factor of 0.47 versus 2.58 for the normal and 3.11
for the L1. The Q factor is defined as

Q = (U0.05 − L0.05)/(U0.5 − L0.5), (9)

where Uα and Lα are averages of the respective upper and
lower 100α % of the data (Stigler 1977). L1 mean errors,
which are sometimes appropriate, see for example Branham
and Sanguin (1998), become otiose here because of the low
Q factor. The mean errors for the L1 solution in Table 2,
therefore, were calculated from the same covariance matrix
as that used for the least squares solution of Table 3, given
later, but by use of the MAD rather than σ(1) as the measure
of dispersion and without scaling the matrix by the weights.

This randomness also confirms that the adjustment model
of Eq. (2) produces residuals without systematic trends.
An earlier model did not include the last five terms:
∂W/∂z, ∂2W/∂z2,A1,A2,C. The Durbin-Watson statistic,
however, calculated, based on an L1 solution, only a 7.1 %
chance of the residuals being random, symptomatic of an
inferior adjustment model.

With this trim several least squares solutions were calcu-
lated: least squares based on the 2.7 % trim; least squares
based on the biweight function of Eq. (5); and least squares
based on the Welsch weighting of Eq. (6). The trimmed least
squares solution, with a 15.3 % chance of being random as
measured by a runs test and a 15.9 % chance by Durbin-
Watson, becomes inferior to the L1 solution. The biweight
rejects too many residuals, 14.4 % of the residuals in gen-
eral and over 29 % of the residuals in radial velocity. One
needs no statistical analysis to reject such profligate trim-
ming. The Welsch weighting solution, however, seems good
and is shown in Table 3. This solution calculates that 431
residuals are less than the machine ε and may be considered
0 and 1184 less than 0.01. The former values corresponds to
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Table 3 Nonlinear solutions for kinematical parameters for OB stars:
least squares

Quantity Value Mean error

σ(1) mas2 km s−1 335.84 . . .

A km s−1 kpc−1 16.00 0.36

B km s−1 kpc−1 −14.17 0.28

R0 kpc 6.72 0.39

V0 km s−1 203.35 12.00

c1 km s−1 kpc−2 −49.09 2.24

c2 km s−1 kpc−2 −452.33 6.35

X km s−1 −9.42 0.09

Y km s−1 −4.72 0.08

Z km s−1 −3.13 0.15

S0 km s−1 11.00 0.10

K km s−1 3.39 0.20

∂W/∂Z km s−1 kpc−1 −12.37 3.32

∂2W/∂z2 km s−1 kpc−1 −437.40 37.48

A1 mas km s−1 −0.66 0.36

A2 mas km s−1 9.24 1.09

C km s−1 kpc−1 1.77 4.52

Fig. 7 Residuals, Welsch weighting

a 3.0 % trim, although 8.3 % of the residuals are severely
downweighted. A runs test assigns a 61.8 % chance of the
residuals being random while Durbin-Watson gives 70.6 %.
The runs test correlation matrix shows little evidence of cor-
relation among runs, the highest correlation being a barely
significant −53.2 %. This enhances the evidence for the ran-
domness of the residuals. Figure 7 shows the distribution of
the residuals with respect to longitude and latitude.

6 Discussion

Which of the two solutions, that of Table 2 or that of Ta-
ble 3, is better, in some sense of the term “better”? Statis-

Table 4 Contribution of each
unknown to solution Quantity Percentage

A 35.5

B 20.1

R0 16.8

c1 12.8

c2 9.49

X 1.48

Y 1.24

Z 1.18

K 0.60

∂W/∂Z 0.37

∂2W/∂z2 0.20

A1 0.10

A1 0.06

C 0.01

tics favor the latter as do certain other indicators. The cir-
cular velocity V0 depends on the Oort A and B constants
and hence their determination becomes central to the de-
termination of V0. The values of A − B and −(A + B)

represent controls on their determination. The former, with
value 30.27, falls in of what is given in Table 4 of Branham
(2011), ranging from 19.77 to 31.1. The latter, with value
1.92 also falls within the range of Table 4 of that publica-
tion, −10.52 to 4.6. The solar velocity S0 seems a tad on
the low side, but hardly discordant. In fact, Branham (2006)
found 13.83 ± 0.17 km sec−1 for just the O and B giants,
but by use of a linear model and a reduction model based on
semi-definite programming. I therefore consider the Welsch
solution of Table 3 rather than the L1 solution of Table 2 as
the better of the two. The calculated value of C implies a
displacement of l1 = −3.◦14 ± 7.◦85 of the longitudes used
in this study with respect to the true longitude of the Galactic
center. One may infer that longitude bias is negligible.

Granted, we have calculated a solution, but how good is
it? The condition number of the Jacobian matrix is 5.1 · 102,
low with respect to the double-precision arithmetic, machine
epsilon of 2.2 · 10−16, used for the computations. Corre-
lations among individual unknowns are not excessive. The
correlation matrix is rather large to show and is instead given
as the contour plot of Fig. 8. Only three correlations exceed
50 %: −61.0 % between K and ∂W/∂z; −77.6 % between
K and A2; 88.9 % between c and C.

One would also like to know the contribution of each of
the original unknowns to the solution. This can be obtained
from an SVD of the Jacobian matrix J. Once the nonlinear
algorithm has converged to a solution, this may be repre-
sented as, with d as the right-hand-side,

J · x = U · S · V T · x = d, (10)
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Fig. 8 Correlations

where U is m × m orthogonal and represents the left proper
vectors, S m × n with the upper n × n part diagonal, the
diagonal elements being the singular values, and V n × n

orthogonal, the right proper vectors. If σi represents the
i-th singular value the decomposition can also be written
as

J =
n∑

i=1

σiuiv
T
i , (11)

where ui is the i-th column of U and vi the i-th row of V T .
The backwards product uiv

T
i is of rank 1 with unit norm.

Combining Eq. (10) with Eq. (11) we see that the weight
of each component of the solution x depends on the ex-
pansion of Eq. (11). The SVD, however, is not invariant to
scaling. Thus, the actual values assumed by the entities in
Eq. (11) will depend on the units as well as the scaling of
the matrix. Standard statistical packages for the SVD, more-
over, sort the singular values and associated right and left
proper vectors after they have been calculated, destroying
the association of index i with the corresponding unknown.
I have written a C++ program that leaves the singular values
unsorted and hence maintains the correspondence between
index i and the unknown. Table 4 shows the percentage
contribution of each unknown after the matrix J has been
scaled by imposition of unit Euclidean norm on each col-
umn.

Notice that R0 is hardly a minor contributor in the fi-
nal solution. Preparing a table such as Table 3 but also in-
cluding other unknowns involving W , such as ∂W/∂y or
∂2W/∂x∂y, bolsters the assertion made before Eq. (2) that
they remain unimportant in the solution: their percentage
sum would contribute less than 1 % to the solution.

R′
0s determination, although on the low side, falls within

the range of the values mentioned in the first section. One
should, nevertheless, discuss the difference between the L1

determination and that of the Welsch solution. Consider a
sensitivity test of a residual, whether in radial velocity or
proper motion, to the error dR0. A residual for just the terms

involving R0 after Eq. (2) has been multiplied by R0 can be
represented by

|r| =
∣∣∣∣∣

14∑

i=1,i �=3

kiR0

∣∣∣∣∣, (12)

where the ki are either constant or involve l and b. There-
fore, if we consider the p-th power of the residual

∂rp/∂R0 = p

∣∣∣∣∣

14∑

i=1,i �=3

kiR0

∣∣∣∣∣

p−1 14∑

i=1,i �=3

kidR0. (13)

When p = 2 the gradient becomes sensitive to R0dR0

whereas when p = 1 it is merely sensitive to dR0. Because
R0 is substantial, a least squares solution will be more sensi-
tive to the residuals and their exclusion than an L1 solution.
Thus, the determinations of the distance can vary depending
on the norm used for the reduction. Statistical tests indicate
which determination is best.

That the kinematical model used embodied in Eq. (2) also
seems adequate can be deduced from the randomness of the
residuals as evidenced by the runs test and Durbin-Watson
statistic. Systematic error, if present, must be at a level lower
than the noise in the data. Thus, one cannot maintain that
density waves affect the results, at least in a significant man-
ner, because their presence would become manifest in non-
random residuals.

A1 and A2 have been calculated, but little has been said
as what this portends. From definitions given previously
Ṙ0 = R0 · (e0 + ė0R0). Using values from the solution of
Table 3 and the conversion 1 kpc = 3.09 · 1016 km I find
that e0 = 9.90 ± 4.18 s−1, ė0 = −0.20 ± 0.11 s−1 kpc−1,
and Ṙ0 = 57.50 ± 8.52 km s−1. This implies an expan-
sion of the OB star system at the distance R0 of 1 kpc in
1.70 · 107 ± 2.51 · 106 yr. Interestingly, Trumpler (1940)
found from radial velocities of Galactic clusters a contrac-
tion of −4.3 km s−1 kpc−1 or −28.9 km s−1 at a distance
of 6.72 kpc. This corresponds to a contraction of 1 kpc in
3.39 · 107 yr. Neither such a rapid expansion nor contrac-
tion seems likely. These values seem indicative of some sort
of radial motion of the system, but one can attach little im-
portance to the exact values. Perhaps one should interpret
this as delineating the boundary between kinematics and
dynamics, the latter being required to study such complex
relations as bulk expansion or contraction of a stellar sys-
tem.

Do the velocities calculated from the solution of Table 3
indicate serious deviations from Galactic, differential mo-
tions? This question has been addressed regarding density
wave terms, but further evidence should be presented. Al-
though there are only 1619 radial velocities available com-
pared with 6347 proper motions, we can nevertheless cal-
culate 6347 space velocities, ẋ, ẏ, ż, corrected for differ-
ential motion by the values for A,B , and K in Table 3 if
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we are willing to perform a statistical inversion, called the
pseudo-inverse, by making use of the SVD and only the
proper motions. For the details of how to do this see Bran-
ham (2010), especially Eqs. (3)–(5). The medians of the
calculated absolute values of the space velocities yield re-
spective values of: 6.78, 6.49, 4.10 km s−1, also low and
in rough agreement with the values in Table 2. Their norm,
10.24 km s−1 differs little from the norm of the solution of
Table 2, 11.00 km s−1, especially if we keep in mind the dif-
ferent manner in which the respective space velocities have
been calculated.

For further analysis 64 stars were rejected by use of
the 5 ∗ MAD criterion, a 1 % trim. The calculated ve-
locities are random as measured by a runs test. For these
data a runs test is superior to the Durbin-Watson statis-
tic because some, but few, of the constructed velocities
are wildly inaccurate and calculate nonsense values for the
Durbin-Watson statistic. To be specific a runs test shows
that the x velocities have a 68.9 % chance of being ran-
dom, the y velocities a 28.9 % chance, and the z veloci-
ties a 61.4 % chance. One must remember, moreover, that
for the majority of these stars the space velocities are not
true space velocities but rather statistical velocities calcu-
lated from the SVD. There seem to be, therefore, no resid-
ual effects, such as possible streaming induced by other
than Galactic density waves, in the velocities. This once
again confirms that the solution of Table 3 seems accept-
able.

7 Conclusions

The OB stars, concentrated near the Galactic plane, conform
with the assumptions used to derive Eq. (2), namely that
motion in the Galactic plane is relatively uncoupled from
motion perpendicular to the plane and that moreover per-
pendicular motion is slight. The data appear to be homo-
geneous; there are no high correlations among the rectan-
gular coordinates. Both Eichhorn’s efficiency and the SVD
show that Smart’s model for the 14 unknowns, Oort con-
stants, distance to the Galactic center, two second-order par-
tial derivatives, the solar velocity, a K term and a C con-
stant, plus four additional unknowns to represent motion
perpendicular to the Galactic plane and a possible expan-
sion of the OB stars, seems well conditioned with no re-
dundant unknowns and, with three exception, low correla-
tions among the individual unknowns. The model, there-
fore, becomes adequate. Addition of more terms, such as
streaming motion induced by Galactic density waves, be-
comes unnecessary. Once the assumptions of the model
are complied with, the calculated distance to the Galactic
center becomes a direct determination with value 6.72 ±
0.39 kpc. The residuals from the post-fit solution are highly

random. Thus, the solution may be considered satisfac-
tory.
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