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Abstract The axisymmetric satellite problem including ra-
diation pressure and drag is treated. The equations of motion
of the satellite are derived. The energy-like and Laplace-like
invariants of motion have been derived for a general drag
force function of the polar angle, and the Laplace-like in-
variant is used to find the orbit equation in the case of a
spherical satellite. Then using the small parameter, the orbit
of the satellite is determined for an axisymmetric satellite.

Keywords Artificial satellite · Drag effect · Radiation
pressure

1 Introduction

The classical Kepler problem with additional forces due
to the resistance of the medium surrounding the attract-
ing centre, the radiation pressure, or both forces together
has been discussed by many authors such as Jezewski
and Mittleman (1983), Mittleman and Jezewski (1982),
Danby (1962), Leach (1987), Brouwer and Hori (1961),
Mavraganis (1991), Gorringe and Leach (1988), McMa-
hon and Scheeres (2010) etc. The two body problem with
a radiating major body in the existence of Danby’s drag
force has been studied by Mavraganis and Michalakis
(1994).
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In the present work we consider the problem of axisym-
metric satellite in the gravitational field of a radiating body
with drag. We obtain the equation of the satellite’s orbit.
First the Laplace-like invariant of motion has been derived
and then it is used to get the orbit for a spherical satellite.
Finally the orbit of the axisymmetric satellite is determined
using the method of the small parameter. In addition the
energy-like invariant of motion has been derived also. The
drag force function is taken to be generally depending on
the polar angle of the orbit.

2 The equation of motion and the integral of angular
momentum

Now, we deal with motion of an axisymmetric satellite under
the gravitational force of a spherical body with an additional
force due to the resistance force and radiation pressure. The
air resistance is taken as a general function of the polar an-
gle θ . Then the equation of motion is, Bhatnagar (1986),
Mavraganis and Michalakis (1994),

r̈ + f (θ)

r2
ṙ + (1 − β)μ

r3
r + 3μ(C − A)(1 − 3γ 2)

2r5
r = 0, (1)

where μ,β are constants, and C,A are the principal mo-
ments of inertia of the satellite (C about the symmetric axis).
While γ is the direction cosine of the radius vector w.r.t. the
axis of the satellite. The range of physically possible val-
ues of β , for a repulsive force, is 0 < β < 1. For β = 0 the
attracting centre does not radiate at all, hence the satellite
is acted upon only by two forces, the gravitation and drag
effect.

We shall show that at any time the center of the satellite
lies in a plane. Taking the vector product of Eq. (1) with the
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vector r

r × r̈ + f (θ)

r2
r × ṙ + (1 − β)μ

r3
r × r

+ 3μ(C − A)(1 − 3γ 2)

2r5
r × r = 0, (2)

and recalling the definition of the angular momentum, H =
r × ṙ, we achieve the relation

Ḣ + f (θ)

r2
H = 0 (3)

from which we readily obtain

H × Ḣ = 0.

This expression admits a first vector which is the constant
direction eH = H/H of the angular momentum H. There-
fore the motion is planar. This enables us to simplify Eq. (3)
by writing

Ḣ + f (θ)

r2
H = 0. (3a)

We see that the magnitude of the angular momentum is
not conserved, although its direction is. For this magnitude
we find, after solving Eq. (3a),

H = r2θ̇ = h − F(θ), (4)

where, h is the constant angular momentum in the absence
of the drag force, and F(θ) = ∫ θ

θ0
f (θ)dθ .

Now, if we consider C − A � 1, we can solve Eq. (1)
on two steps first for order zero, and then for the first order
terms which contain C − A. The zero order equation is,

r̈ + f (θ)

r2
ṙ + (1 − β)μ

r3
r = 0. (5)

The above equation can be solved using the Laplace-like in-
variant. This will be given in the following section.

3 The Laplace-like invariant of motion for a spherical
satellite

Now, we cross product Eq. (5) by Γ (θ)H,

Γ r̈ × H + Γf (θ)

r2
ṙ × H + Γ (1 − β)μ

r3
r × H = 0. (6)

Using Eq. (3) together with,

d

dt
(Γ ṙ × H) = Γ̇ ṙ × H + Γ r̈ × H + Γ ṙ × Ḣ.

We get,

d

dt
(Γ ṙ × H) +

(

2Γ
f (θ)

r2
− Γ̇

)

ṙ × H

+ Γ (1 − β)μ

r3
r × H = 0. (7)

We require the second term to vanish. This is guaranteed if,

dΓ

dθ
= 2Γf (θ)

r2θ̇

which, using Eq. (4) has the solution

Λ(θ) =
[

1

h − F(θ)

]2

.

Equation (7) becomes

d

dt

(
ṙ × H

[h − F(θ)]2

)

+ (1 − β)μ

[h − F(θ)]2

r × H
r3

= 0. (8)

Recalling that

r × H
r3

= −θ̇eθ

where eθ is the unit vector along the direction of increase of
the polar angle θ , we get,

ṙ × H
[h − F(θ)]2

= (1 − β)μ

∫
eθdθ

[h − F(θ)]2
. (9)

To integrate the above integral, we define the function g(θ)

such that

g′′ + g = 1

[h − F(θ)]2
. (10)

The above equation has the solution,

g(θ) =
∫ θ

θ0

sin(θ − η)

[h − F(θ)]2
dη. (11)

Now, substituting from Eq. (10) in Eq. (9), we get

ṙ × H
[h − F(θ)]2

= (1 − β)μ

∫
(
g′′ + g

)
eθdθ. (12)

After integrating, we get the Laplace-like vector invariant

ṙ × H
[h − F(θ)]2

− (1 − β)μ
(
g′eθ + ger

) = J (13)

where, J is a constant vector.
Substituting for

ṙ × H = r2θ̇ (rθ̇er − ṙeθ ), h − F(θ) = r2θ̇

we get

J =
(

1

r
− (1 − β)μg

)

er −
(

r ′

r2
+ (1 − β)μg′

)

eθ . (14)

Equation (14) gives the Laplace-like invariant of motion for
a spherical satellite.
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4 The orbit equation for a spherical satellite

Now, if we measure the polar angle θ from the constant di-
rection of the vector J, we dot product Eq. (14) by er to get
the orbit equation

r = 1

J cos θ + (1 − β)μg
. (15)

Equations (15) and (11) give the orbit equation for a spheri-
cal satellite under the effect of radiation pressure and an air
drag force given as a general function of the polar angle θ . It
is clear that the result will be reduced to the case of Danby’s
drag force when f (θ) = Const.

5 The energy-like invariant of motion for a spherical
satellite

Now, we get the energy like integral by dot product Eq. (5)
by γ (θ)ṙ which gives

γ r̈.ṙ + γf (θ)

r2
ṙ.ṙ + γ (1 − β)μ

r3
r.ṙ = 0, (16)

which can be written in the form,

1

2

d

dt
(γ ṙ.ṙ) −

(
θ̇

2

dγ

dθ
− γf (θ)

r2

)

ṙ.ṙ + γ (1 − β)μ

r3
r.ṙ = 0.

(17)

Again, we require the second term to vanish. This is guaran-
teed if,

dγ

dθ
= 2γf (θ)

r2θ̇
, (18)

which, using Eq. (4) has the solution

γ (θ) =
[

1

h − F(θ)

]2

. (19)

Therefore Eq. (17) becomes,

1

2

d

dt
(γ ṙ.ṙ) + γ (1 − β)μ

r2
ṙ = 0, (20)

which enables us to change the independent variable from t

to θ by the substitution,

d

dt
= θ̇

d

dθ
.

Then we get

1

2

d

dθ

(
ṙ.ṙ

[h − F(θ)]2

)

= (1 − β)μ

[h − F(θ)]2

du

dθ
, (21)

where, u = 1
r
.

Thus,

1

2

(
ṙ.ṙ

[h − F(θ)]2

)

= (1 − β)μ

∫
u′

[h − F(θ)]2
dθ. (22)

Using the function g(θ) defined before, we get

1

2

(
ṙ.ṙ

[h − F(θ)]2

)

= (1 − β)μ

∫
{[

ug + u′g′]′ − g′(u′′ + u
)}

dθ

= (1 − β)μ

{

ug + u′g′ −
∫

g′(u′′ + u
)
dθ

}

.

Now, using Eq. (4), with the equation of motion in the eθ

direction written in terms of u = 1
r

and θ , we can show that

u′′ + u = (1 − β)μ

[h − F(θ)]2

which gives,

1

2

(
ṙ.ṙ

[h − F(θ)]2

)

= (1 − β)μ

{

ug + u′g′ − (1 − β)μ

∫
g′(g′′ + g

)
dθ

}

.

We finally arrive at

1

2

(
ṙ.ṙ

[h − F(θ)]2

)

= (1 − β)μ

{

ug + u′g′ − (1 − β)μ

2

(
g′2 + g2)

}

+ E.

(23)

Equation (23) defines the energy-like invariant of motion of
a spherical satellite.

6 The orbit equation for an oblate satellite

Now, we solve the equations of motion by taking into con-
sideration the oblateness of the satellite. The equations of
motion in the directions of er and eθ are thus,

r̈ − rθ̇2 + f (θ)

r2
ṙ + (1 − β)

μ

r2

+ 3

2

μ(C − A)(1 − 3γ 2)

r4
= 0, (24a)

2ṙ θ̇ + rθ̈ + f (θ)

r2
rθ̇ = 0. (24b)

It may easily be shown that the latter equation admits the
integral given by Eq. (4). The former equation, under substi-
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tution u = 1
r
, becomes

−u′′

u2
θ̇2 − u′

u

(

−2
u′

u2
θ̇2 + θ̈

u
+ αuθ̇

)

− θ̇2

u

+ (1 − β)μu2 + 3

2
μ(C − A)

(
1 − 3γ 2)u4 = 0 (25)

(the prime denotes differentiation w.r.t. the angle θ ). Writing
Eq. (24b) in terms of u and u′, we see that it is exactly the
same with the coefficient of the ratio u′

u
in Eq. (25). There-

fore we have

u′′ + u = (1 − β)μ

[h − F(θ)]2
+ 3

2

μ(C − A)(1 − 3γ 2)

[h − F(θ)]2
u2

which can be written as

u′′ + u = (1 − β)

[h1 − F1(θ)]2
+ 3

2

(C − A)(1 − 3γ 2)

[h1 − F1(θ)]2
u2, (26.1)

h1 = h√
μ

, F1(θ) = F(θ)√
μ

. (26.2)

Let ε be a small parameter then u can be written as

u = u0 + εu1 (27)

where ε = 3
2 (C − A), and u0 is the zero order term of the

solution corresponding to the case of a spherical satellite,
and u1 is the first order term arising from the asphericity of
the satellite. Equation (26.1), will be spited to,

u0 + u0 = (1 − β)

[h1 − F1(θ)]2
, (28)

u1 + u1 = 1 − 3γ 2

[h1 − F1(θ)]2
u2

0. (29)

It is clear that Eq. (28) is the equation of motion for a spher-
ical satellite, written in terms of u = 1

r
and θ , which has the

solution given in Eq. (15),

u = J cos θ + (1 − β)μg. (15a)

In case of the stationary rotational motion of the satellite
there exist three positions, Bhatnagar (1986),

(i) γ = 0, (ii) γ = 1, (iii) γ = cos

(
π

2
+φ

)

,

where φ is the angle between the radius vector and the nor-
mal to the tangent. In the case (i) the axis of the satellite is
normal to the plane of motion. In the case (ii) the axis of the
satellite takes the direction of the radius vector. But in the
case (iii) the axis of the satellite takes the direction of the
tangent of the orbit.

Now, we consider three cases of Eq. (29)

(a) γ = 0, then Eq. (29) takes the form

u′′
1 + u1 = u2

0

[h1 − F1(θ)]2
, (29a)

which has the solution,

u1 =
∫ θ

θ0

sin(θ − η)

(
J cosη + (1 − β)μg(η)

h1 − F1(η)

)2

dη.

(30a)

(b) γ = 1, then we have

u′′
1 + u1 = −2u2

0

[h1 − F1(θ)]2
, (29b)

which has the solution,

u1 = −2
∫ θ

θ0

sin(θ − η)

(
J cosη + (1 − β)μg(η)

h1 − F1(η)

)2

dη.

(30b)

(c) γ = cos(π
2 + φ), then we get

u′′
1 + u1 = 1

[h1 − F1(θ)]2

(
u2

0 − 2u′2
0

u2
0 + u′2

0

)

(29c)

which has the solution,

u1 =
∫ θ

θ0

sin(θ − η)

(
J cosη + μ(1 − β)g(η)

h1 − F1(η)

)2

× W(η)dη, (30c.1)

where,

W(η) = (J cosη + h1g(η))2 − 2(h1g
′(η) − J sinη)2

(J cosη + h1g(η))2 + (h1g′(η) − J sinη)2
.

(30c.2)

7 Conclusion

The motion of an axisymmetric satellite about a radiating
body in the presence of air drag has been studied. The work
can be divided to three parts: in the first part the invariants
of motion of the energy-like and Laplace-like have been de-
termined for a general drag function of the polar angle θ .
Second the Laplace-like integral has been used to determine
the orbit equation in a closed form terms of the parameters
of the different forces of gravitation, radiation and the drag
force. Finally, the oblateness of the satellite has been intro-
duced and studied through the small parameter C − A con-
sidered � 1, and the orbit is determined in terms of C − A.
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