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Abstract We report a general solution in one of the gravita-
tional potentials to the Einstein system in static spherically
symmetric spacetime, modeling anisotropic strange quark
matter by imposing a linear barotropic equation of state. The
model generated by choosing Tolmann IV form for the grav-
itational potential is shown to contain the previously known
anisotropic dark energy star model of Lobo (Class. Quantum
Gravity 23:1525, 2006) and isotropic models of de Sitter and
Einstein. Moreover, the model is shown to be physically ad-
missible and corroborate with experimental observations on
strange star candidates such as SAX J1808.4-3658 and 4U
1820-30.
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1 Introduction

The modeling of astrophysical compact objects has been
a challenge and continuous interest among the relativistic
community. Analysis emanating from experimental obser-
vations (Demorest et al. 2010; Freire et al. 2011; Pons et al.
2002; Dey et al. 1998; Li et al. 1999; Xu et al. 1999) on
astrophysical compact objects predict densities that signifi-
cantly exceed the equilibrium density of nuclear matter ex-
otica, ρs � 2.7 × 1014 g cm−3 (or ns � 0.16 baryons fm−3).
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To explain such observed compactness of pulsars, strange
quark stars (SQS) have been proposed in recent past (We-
ber 2005; Angeles Perez-Garcia et al. 2010; Rodrigues et al.
2011). Strange stars are expected to form during the col-
lapse of the core of a massive star after the supernova ex-
plosion. In the extreme of such high densities, a decon-
fined quark-gluon phase is possible at the core of a com-
pact star, as predicted by Quantum chromodynamics. It has
already been conjectured that strange quark matter (SQM)
might be the true ground state of hadrons (Witten 1984;
Farhi and Jaffe 1984). It has been articulated that SQM
made of up, down and strange quarks is absolutely sta-
ble with a lower charge-to-baryon ratio compared to the
nuclear matter, and compression of which to sufficiently
high density would trigger a phase transition converting
virtually the entire star into SQM. Such a SQS is more
stable and self-bound as opposed to being gravitationaly
bound as in normal neutron star. One expects configurations
of quark stars with macroscopic properties quite different
from neutron stars (Hansel et al. 1986; Alcock et al. 1986;
Kettner et al. 1995) and are not compatible with the stan-
dard neutron star models. However, it has so far been dif-
ficult to identify sites from astrophysical observations (e.g.
photon or neutrino observations, or radio binary pulsar tim-
ing measurements) that could unambiguously distinguish a
SQS from the normal neutron star because self-bound stars
have similar radii, moments of inertia, and neutrino emissiv-
ities and opacities to that of moderate mass neutron stars.

The SQS, founded from quark matter theory, consists of
too many unsolved puzzles which are usually involved in the
physics of these high density relativistic objects and hence
prohibits considering all physical and astrophysical proper-
ties simultaneously. Therefore, most of the SQS studies have
been performed within the framework of quark matter MIT-
Bag models (Hansel et al. 1986; Kettner et al. 1995; Müller
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1997; Burgio et al. 2002; Mak and Harko 2004; Di Toro et al.
2006; Nicotra et al. 2006; Komathiraj and Maharaj 2007).
In the quark bag model (Chodos et al. 1974), it is assumed
that breaking of physical vacuum takes place inside hadrons.
As a result, vacuum energy densities inside and outside a
hardron becomes essentially different and the vacuum pres-
sure on the bag wall equilibrates the quark pressure thus
stabilizing the system. In the simplified version of the bag
model, the equation of state relating the total pressure p and
energy density ρ is given by p = 1

3 (ρ − 4B) (Witten 1984;
Sotani et al. 2004), where B is known as the Bag constant.
The stability of the SQS is due to the long range effects of
confinement of quarks, represented by B (Hansel et al. 1986;
Chodos et al. 1974), which is the universal pressure on the
surface of any region containing quarks. The equation of
state formulated by Dey et al. (1998) can also be approxi-
mated to a linear form (Gondek-Rosińska et al. 2000) that
describes the quark interaction in a SQS by an interquark
vector potential originating from gluon exchange and a den-
sity dependent scalar potential which restores chiral symme-
try at high density. Therefore, linearity in equation of state
appears to be a most convincing feature in the composition
of compact objects such as SQS.

Moreover, in modeling such ultra-compact SQS, aniso-
tropy is expected to play a crucial role as first shown by Ru-
derman (1972) where nuclear interactions need to be treated
relativistically. Since the pioneering work of Bowers and
Liang (1974), there has been extensive literature devoted to
the study of anisotropic, spherically symmetric, static rel-
ativistic matter distributions in which radial pressure (pr)

is not equal to tangential pressure (pt ). On similar physical
grounds that quark phase inside the core is best described by
linear bag model, there have been studies reported with dif-
ferent forms for one of the gravitational potentials (Maharaj
et al. 2014; Mafa Takisa and Maharaj 2013; Feroze 2012;
Thirukkanesh and Ragel 2013; Thirukkanesh and Maharaj
2008). Through this work, we seek new class of solu-
tion to the Einstein system in static spherically symmetric
spacetime, modeling anisotropic SQM by imposing a linear
barotropic equation of state with one of the potentials hav-
ing Tolmann IV form (Tolman 1939). The physically admis-
sible Tolmann IV type potential (Delgaty and Lake 1998)
has been previously used to model anisotropic fluids and
solved numerically without specifying an equation of state
(Cosenza et al. 1981). The feature of this work as described
above is that we characterize a linear barotropic equation
of state in the MIT-Bag model to signify SQM. We moti-
vate that the generated model represents a wider physical
scenario by showing in Sect. 4 the model reduces to previ-
ously known models, and in Sect. 6 that the model parame-
ters corroborate well with experimental observations of real-
istic stars. Through a physical analysis in Sect. 5, the gener-
ated models are shown to be physically viable (Delgaty and

Lake 1998): regularity of the gravitational potentials at the
origin, positive definiteness of the energy density and the ra-
dial pressure at the origin, vanishing of the pressure at some
finite radius, and monotonic degrease of the energy density,
the radial pressure with increasing radius, and the generated
interior metric match smoothly with the Schwarzschild exte-
rior metric at the boundary of stellar object. Moreover, Mo-
tivated by significant experimental developments in recent
years with attempts on measuring the radii and masses of
dense astrophysical objects (Thorsett and Chakrabarty 1999;
Link et al. 1999; Heinke et al. 2006; Ho Wynn and Heinke
2009), we attempt to provide physical significance to the
model with relation to compactness, which provides a vi-
tal clue to distinguish different stars such as white dwarf,
neutron stars and strange stars from one another (Tikekar
and Jotania 2007). Stellar objects such as SAX, Her.X-1 and
other low mass X-ray binaries have been differently inter-
preted at times (Li et al. 1999) and hence compaction pa-
rameter is suggested to be a good measure in this study to
differentiate compact stellar objects.

2 Anisotropic model

The gravitational field for static, spherically symmetric
spacetime can be describe by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (1)

in Schwarzschild coordinates (xa) = (t, r, θ,φ). We assume
the energy momentum tensor for an anisotropic imperfect
fluid sphere to be of the form

Tij = diag(−ρ,pr,pt ,pt ). (2)

The energy density ρ, the radial pressure pr and the tangen-
tial pressure pt are measured relative to the comoving fluid
velocity ui = e−νδi

0. For the line element (1) and matter dis-
tribution (2) the Einstein field equations can be expressed
as

ρ = 1

r2

[
r
(
1 − e−2λ

)]′
, (3)

pr = − 1

r2

(
1 − e−2λ

) + 2ν′

r
e−2λ, (4)

pt = e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
, (5)

where primes denote differentiation with respect to r . In
the field equations (3)–(5), we employ the coupling constant
8πG

c4 = 1 and the speed of light c = 1. This system of equa-
tions govern the behaviour of the gravitational field for an
anisotropic imperfect fluid sphere.
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The mass contained within a radius r of the sphere is
defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (6)

If we introduce the transformation

x = r2, Z(x) = e−2λ(r) and y2(x) = e2ν(r), (7)

the system (3)–(5) takes the form

ρ = 1 − Z

x
− 2Ż, (8)

pr = 4Z
ẏ

y
+ Z − 1

x
, (9)

pt = 4xZ
ÿ

y
+ (4Z + 2xŻ)

ẏ

y
+ Ż, (10)

where dots denote differentiation with respect to the vari-
able x. The mass function (6) becomes

m(x) = 1

4

∫ x

0

√
wρ(w)dw, (11)

in terms of the new variables in (7).
For a physically realistic relativistic star we expect that

the matter distribution should satisfy a barotropic equation
of state pr = pr(ρ). As motivated in the introduction, we
assume a linear EOS to represent SQM:

pr = αρ − β, (12)

where α and β are constants. With the inclusion of (12) the
general solution to the Einstein system (3)–(5) can be ex-
pressed as

e2λ = 1

Z
(13)

e2ν = y2 (14)

ρ = 1 − Z

x
− 2Ż, (15)

pr = αρ − β, (16)

pt = pr + �, (17)

� = 4xZ
ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+ 1 − Z

x
(18)

in terms of the gravitational potential Z, where the quantity
� = pt − pr is the measure of anisotropy,

y = dx
−(1+α)

4 Z
−α
2 exp

[∫ (
1 + α − βx

4xZ

)
dx

]
(19)

and d is the constant of integration. Therefore the line ele-
ment (1) takes the form

ds2 = −d2r−(1+α)Z−α exp

[∫ (
1 + α − βr2

rZ

)
dr

]
dt2

+ Z−1dr2 + r2(dθ2 + sin2 θdφ2).

Hence, any solution describing static spherically symmetric
anisotropic matter distribution with linear equation of state
can be easily determined by the generating function Z(r).
It is noted that this matter distribution may be modeled by
means of two generating functions irrespective of specifying
an equation of state (Herrera et al. 2008).

3 Particular model

To investigate the physical significant of the matter quanti-
ties, the solution must be given in simple elementary func-
tions without an integral. Variety of choices can be made
for the gravitational potential Z, however the choices must
be physically reasonable to model a realistic stellar object.
Consequently, we choose a form for the gravitational poten-
tial Z as

Z = (1 + ax)(1 − bx)

(1 + 2ax)
, (20)

where a and b are real constants. A similar form of the grav-
itational potential (20) had been used to study a relativistic
compact sphere with isotropic matter distribution by Tolman
(1939) and satisfy all the physical requirements (Delgaty
and Lake 1998). For the choice (20) the solution (13)–(18)
takes the form

e2λ = (1 + 2ax)

(1 + ax)(1 − bx)
(21)

e2ν = d2(1 + 2ax)α(1 + ax)
a−(a+2b)α+β

2(a+b)

× (1 − bx)
− bα(4a+3b)+(b−β)(2a+b)

2b(a+b) (22)

ρ = 3(a + b) + (2a + 7b)ax + 6a2bx2

(1 + 2ax)2
(23)

pr = αρ − β, (24)

pt = pr + �, (25)

� = −x

4(1 + ax)(1 + 2ax)(1 − bx)

× {[
β − 3b(1 + α)

][
b(1 + 3α) − β

]

+ 4a3x
[−3α2 − b2x2(1 + 3α)(8 + 7α)

− 2(1 − 2βx)2 + α(9 + 10βx)

+ 2bx
[−2(2 + α)(1 + 4α) + (9 + 13α)βx

]]
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+ a2[−3
(
1 + 3α2) − b2x2[33 + α(146 + 85α)

]

+ 4βx(5 − 6βx) + 28α(1 + βx)

+ 2bx
[−3(1 + 3α)(4 + 3α) + 2βx(16 + 23α)

]]

+ 4a4x2[2α − 1 + 4βx − 3b2x2(1 + α)(1 + 3α)

− (α − 2βx)2 + 2bx
[
2(2βx − 1)

− α(7 + 3α − 6βx)
]] + 2a

[−b2x
[
8 + 3α(13 + 7α)

]

+ β(2 + 3α − 4βx)

+ b
[−3 + 13βx + α(−2 − 9α + 19βx)

]]}
(26)

The solution (21)–(26) is given in simple elementary func-
tion so that it is more convenient to study the physical be-
haviour of SQS.

In this case mass function (11) takes the form

m(x) = x3/2[b2 + a2(1 + b2x)]
2(1 + 2a2x)

. (27)

4 Known solutions

It is interesting to observe that for particular parameter val-
ues we can regain anisotropic and isotropic models from our
solution (21)–(26). We regain the following particular cases
of physical interest:

4.1 Lobo model

If we set β = b = 0 then we regain the equation of state
studied by Lobo (2006)

pr = αρ

and generate the metric

ds2 = −(
1 + ar2)(1−α)/2(1 + 2ar2)α

dt2

+
(

1 + 2ar2

1 + ar2

)
dr2 + r2(dθ2 + sin2 θdφ2). (28)

The line element (28) corresponds to the anisotropic model
of Lobo (2006). Lobo (2006) showed that the line ele-
ment (28) describes as an interior solution for dark energy
stars with α < − 1

3 and proved that stability regions exist for
dark energy stars by selecting particular values of α using a
graphical analysis.

4.2 Isotropic models

In general the measure of anisotropy � �= 0 so that the
model remains anisotropic. However for particular param-
eter values we can show that � vanish in the relevant limit

in the general solution (21)–(26). If we set a = − 1
R2 , b = 2

R2

and β = 0 then we obtain

� = 3x

4R2(R2 − x)
(1 + α)(1 + 3α). (29)

If we set � = 0 in (29), then two different cases arise α =
−1 and α = − 1

3 .
In the first case (α = −1) equation of state becomes

pr(= pt) = −ρ. In this case the line element becomes

ds2 = −
(

1 − r2

R2

)
dt2 +

(
1 − r2

R2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2). (30)

The metric (30) corresponds to the familiar isotropic de Sit-
ter model.

In the second case (α = − 1
3 ), equation of state becomes

pr(= pt ) = − 1
3ρ. In this case the line element becomes

ds2 = −A2dt2 +
(

1 − r2

R2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2). (31)

The metric (31) corresponds to the well known isotropic
Einstein model.

5 Physical analysis

In this section, we show that the solutions generated in
Sect. 3 is physically viable to model an anisotropic strange
star. At the origin (r = 0), e2ν(0) = d2, e2λ(0) = 1, which
are constants and (e2ν(r))′ = (e2λ(r))′ = 0. Hence the grav-
itational potentials are regular at the origin. Since ρ(0) =
3(a + b) and pr(0) = 3α(a + b) − β , it is possible to make
both the energy density and radial pressure to be positive at
the origin for appropriate choices of the parameters a, b,α

and β . Vanishing of radial pressure (pr) at some finite radius
r = s gives

s =
{

1

4a(3bα − 2β)

[
4β − α(2a + 7b)

+
√

α(a + b)
[
α(2a − 23b) + 16β

]]}1/2

.

Since dρ
dr

= − 2ar(2a+b)(5+2ar2)

(1+2ar2)3 < 0, for suitable choice of
parameters a and b, the energy density is a decreasing func-
tion of r . For the same choice of parameters the radial pres-
sure pr is also a decreasing function as pr and ρ are related
on a linear equation of state. Therefore, our generated model
is stable for appropriate choice of parameters (Herrera et al.
2008).



Astrophys Space Sci (2014) 352:743–749 747

Fig. 1 Energy density

Fig. 2 Radial pressure

Moreover, the solution generated must smoothly match
with the Schwarzschild exterior metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r2(dθ2 + sin2 θdφ2)

across the boundary r = s, where M is the total mass of the
sphere. This leads to the constrains

(
1 − 2M

s

)
= (1 + as2)(1 − bs2)

(1 + 2as2)
(32)

(
1 − 2M

s

)
= y2(s2) (33)

The condition (32) does not impose any restrictions on the
parameters. However the condition (33) impose the restric-
tion on the constant of integration d as

d = ±(
1 + as2) (1+α)(a+2b)−β

4(a+b)
(
1 + 2as2)− (1+α)

2

× (
1 − bs2) (1+α)b(3b+4a)−β(2a+b)

4b(a+b)

Fig. 3 Tangential pressure

Fig. 4 Measure of anisotropy

We demonstrate that the matter variables are well be-
haved throughout the interior of the star by plotting the
radial dependence of physical quantities: Figs. 1–4 repre-
sent the energy density, the radial pressure, the tangential
pressure and the measure of anisotropy respectively. The
graphs has been plotted for a particular choice of param-
eters a = 0.0225, b = 0.00776, α = 1

3 and β = 0.0083
with stellar boundary set at r = 7.07 km. Figs. 1 and 2
show that the energy density and the radial pressure de-
creases continuously with increasing radius. Moreover, as
seen in Figs. 1, 2 and 3, density and tangential pressure
are non-zero at the surface and the radial pressure van-
ishes, which is physically acceptable (Herrera 1997). It is
noted that an ideal isotropic fluid with non-vanishing sur-
face pressure cannot be concentrated in a thin layer and in
most cases this layer is composed of dust. Hence, in the sce-
nario of anisotropic fluid, the absence of radial pressure with
non-zero density at the surface has been explained by as-
sumption of particles moving on circular orbits (Lake 1979;
Maeda and Sato 1983), and hence the tangential pressure of
a surface layer is related to surface tension (Schmidt 1984).
In fact, Mak and Harko (2002) show that the anisotropic
pressure distribution leads to an increase in the maximum
radius and mass of the quark star. As seen in Fig. 4, the mea-
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Table 1 Density (central and surface) and mass for different anisotropic stellar models

ã b̃ s

(km)
ρ(0)

(×1015 g cm−3)
ρ(s)

(×1015 g cm−3)
ρ(0)/ρ(s) M

(M�)

0.0169 0.00454 10.00 3.4484 0.7071 4.8768 2.2498

0.0225 0.00776 7.07 4.8667 1.3272 3.6669 1.4350

0.0324 0.00986 6.35 6.7963 1.6534 4.1105 1.3224

sure of anisotropy � remains finite and continuous in the in-
terior, and the anisotropy is directed inward or attractive (i.e.
� < 0) in the region 0 < r < 3.55 km, and the anisotropy is
outward or repulsive (i.e. � > 0) in the region r > 3.55 km,
which indicates instabilities in the internal substance in the
radial direction (Chan et al. 1993).

6 Stellar structure

In this section we show that the solutions generated in this
paper can be used to describe realistic compact objects. In
particular we seek to compare our results with the obser-
vational results. In this model, the parameters a and b has
the dimension of length−2. For simplicity, we introduce the
transformation

ã = aS2, and b̃ = bS,

where S is a parameter which has the dimension of length.
Under this transformation the energy density becomes

ρ = 1

S2

3(ã + b̃) + ã(2ã + 7b̃) r2

S2 + 6ã2b̃ r4

S4

[1 + 2ã r2

S2 ]2
, (34)

and the mass contained within a radius s has the form

M = S

2

[b̃ + ã(1 + b̃ s2

S2 )] s3

S3

[1 + 2ã s2

S2 ]
. (35)

In view of comparing our model with realistic stellar ob-
jects, we choose S = 1 km, α = 1/3 with stellar boundary
r = s to calculate values of model parameters and the rel-
evant physical parameters for strange star candidates SAX
J1808.4-3658(SS1), SAX J1808.4-3658(SS2) and 4U 1820-
30 respectively are given in Table 1. Our calculated masses
1.44M� and 1.32M� for radii 7.07 km and 6.35 km re-
spectively, well corroborates with values emanating from the
theoretical model reported analyzing pulsars SAX J1808.4-
3658 (SS1 & SS2) (Li et al. 1999), in which it was also
shown to be consistent with observational data and remark-
able accord with the strange star models (Li et al. 1999).
Our calculated values for surface densities for SAX J1808.4-
3658 (SS1 & SS2) in Table 1 are about 5–6 times of nu-
clear saturation density ρn, suggesting the chargeless beta-
stable (u, d, s) quarks may form the surface of the compact

star with central core density being in the order of ∼ 20ρn,
which substantiate the reported claim for strange star. More-
over, our calculations of surface and central densities of 4U
1820-30 show ρ(s) = 2.6ρn and ρ(0) = 12.8ρn, which sug-
gests it to be a strange star candidate, corroborating with
mass-radius relation studies using theoretical models ana-
lyzing X-ray burst spectra of 4U 1820-30 (Bombaci 1997).

Moreover, our calculated masses for respective strange
star candidates coincide with the values of Tikekar and Jota-
nia (2007). Therefore we compare the compaction param-
eter (mass-to-radius ratio) in Tikekar and Jotania (2007):
U > 0.3 for pulsars SAX J1808.4-3658 (SS1 & SS2) and
4U 1820-30 suggests they are strange stars of type I.

7 Conclusion

There have been studies reported with MIT-Bag model treat-
ing strange matter with linear equation of state with differ-
ent forms of gravitational potentials. By motivating Tolmann
IV type for one of the gravitational potentials, we find new
class of solutions to the Einstein system in static spherically
symmetric spacetime, modeling anisotropic strange quark
matter by imposing a linear barotropic equation of state.
The models generated can be reduced to previously known
anisotropic dark energy star model of Lobo (2006), and
isotropic models of de Sitter and Einstein. The physical anal-
ysis with graphical illustration indicate that the model sat-
isfy all the major physical requirements of a realistic star and
calculations with specific model parameters well corrobo-
rates with experimental observations on strange star candi-
dates such as SAX J1808.4-3658 and 4U 1820-30. Hence,
the models generated will be useful to describe a wider phys-
ical scenario of strange matter.
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