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Abstract A general formalism for the investigation of the
late time dynamics of the universe for any analytic f (R)

gravity model, along with a cold dark matter, has been dis-
cussed in the present work. The formalism is then elucidated
with two examples. The values of the parameters of the mod-
els are chosen in such a way that they are consistent with the
basic observational requirement.
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1 Introduction

Cosmology has indeed undergone a dramatic change over
the past couple of decades. The availability of high precision
data regarding our universe and its indication towards an ex-
panding universe with an accelerated rate invoked all sorts
of modifications of Einstein’s equations. That the accelera-
tion must have set in a not too distant past is a theoretical
requirement as well as has been observationally supported.
There are excellent reviews regarding the accelerated ex-
pansion (Sahni and Starobinski 2000; Padmanabhan 2003;
Copeland et al. 2006).

The theoretical investigation towards finding a viable op-
tion which can drive this acceleration is done in two distinct
ways. One way is to modify the matter sector by adding an
exotic field giving rise to an effective negative pressure. The
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most talked about agent capable of doing this is certainly the
cosmological constant Λ. A scalar field with some potential,
known as the quintessence matter, is also amongst the most
favourite candidates as a “dark energy”, the agent driving
this alleged expansion. We refer to the reviews (Sahni and
Starobinski 2000; Padmanabhan 2003; Copeland et al. 2006)
and the references therein.

The second option is to look for a theory of gravity where
the Einstein-Hilbert action is modified. One way to do that
is to consider a scalar field nonminimally coupled to the ge-
ometry sector (Banerjee and Paovn 2001a, 2001b; Sen and
Sen 2001; Bertolami and Martins 2000; Elizalde et al. 2004;
Onemli and Woodard 2002, 2004; Brunier et al. 2005; Das
and Banerjee 2006) or to the matter sector (Khoury and
Weltman 2004a, 2004b; Mota and Barrow 2004a, 2004b;
Das et al. 2006b; Banerjee et al. 2010) or both (Das and
Banerjee 2008). The other popular way is to use an analytic
function f = f (R) in place of R in the action, where R

is the Ricci scalar (Capozziello et al. 2003; Borowiec and
Francaviglia 2004; Nojiri and Odintsov 2003a; Dolgov and
Kawasaki 2003; Carroll et al. 2004; Das et al. 2006a). It
had already been noted that f (R) ∝ R2 kind of theories
could successfully generate inflationary universe scenario
for the early universe (Starobinski 1980; Kerner 1982; Du-
ruisseau and Kerner 1986). As the curvature R decreases
with time, inverse power of R in an f (R) theory might be
expected to generate a late time acceleration. For a detailed
description of f (R) theories and their application in cosmo-
logical models, we refer to some recent reviews (Sotiriou
and Faraoni 2010; Felice and Tsujikawa 2010; Nojiri and
Odintsov 2011). The f (R) gravity models, available in the
literature mostly deal with only the present acceleration and
hardly talk about the smooth transition from a decelerated
to an accelerated regime. There are anyway a few investi-
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gations regarding this signature flip in the deceleration pa-
rameter q . For instance, we refer to Nojiri and Odintsov
(2006) and Nojiri et al. (2006). Nojiri and Odintsov (2007a)
also reconstructed an f (R) gravity model from a ΛCDM
one.

Das et al. (2006a) indeed discussed models that show
such a smooth transition analytically, but the models do
not contain matter. However, it has been shown that, along
with a matter field, any such model could behave in quite
a different manner (Amendola et al. 2007a, 2007b). Some
models where the Ricci scalar is non-minimally coupled to
the matter sector are also there in literature (Thakur et al.
2011). Some of the modifications of the geometry sector
also involves a function of G, the Gauss-Bonnet scalar.
Nojiri and Odintsov discussed f (G) and f (R,G) models
in connection with the recent accelerated expansion of the
universe (Nojiri and Odintsov 2007d). A reconstruction of
f (R) gravity model can be found in reference (Nojiri and
Odintsov 2007e). As the ΛCDM model does well regarding
the fits with the observational data, there are attempts to dis-
tinguish between models that mimic the ΛCDM model and
those which do not. For example, the models given by Hu
and Sawicki (2007) and Starobinski (2007) are distinct from
the ΛCDM, whereas those given by He and Wang (2013)
and Dunsby et al. (2010) are consistent with that. Constrain-
ing the model parameters of an f (R) gravity model has been
discussed recently by Nojiri and Odintsov (2007b, 2007c),
Gironés et al. (2010) and Basilakos et al. (2013).

One general problem with f (R) theories is that they ei-
ther give an early inflation or a late time acceleration. There
have been recent attempts to find some form of f (R) which
would yield accelerated expansion in two phases, one in an
early epoch and the other in the late stage of evolution. Cog-
nola et al. (2009) and Elizalde et al. (2011) made such at-
tempts with an f (R) which is an exponential function of R.
Nojiri and Odintsov (2003b) made an attempt to unify the
two phases of accelerated expansion in the realm of a sin-
gle f (R) gravity model by combining positive and negative
powers of R. Possible impacts of the existence of nonlinear
terms involving R in the action on the structure formation
has been discussed by Thakur and Sen (2013).

In the present work, a straightforward way to facilitate
the investigation of the dynamics of the universe is dis-
cussed. The net conservation equation results from the con-
tracted Bianchi identity. We assume that the matter content
obeys its own conservation, which, in tandem with the net
conservation equation yields an equation for the contribu-
tion from the geometry sector to the evolution of the uni-
verse. This equation is a second order differential equation
in the Hubble parameter H . The equation is highly nonlin-
ear and it is difficult to get an analytic solution. However,
with proper boundary conditions, one can plot the relevant
cosmological parameters like the deceleration parameter q ,

the effective equation of state parameter weff such that the
qualitative behaviour of the model is understood. We deal
with two simple examples to elucidate the method, a two-
parameter model (f (R) ∝ (λ + R)n) and a one-parameter
model (f (R) ∝ exp(αR)).

2 f (R) gravity and the conservation equation

The generalized Einstein-Hilbert action for f (R) gravity is

A =
∫ [

1

16πG
f (R) +Lm

]√−gd4x, (1)

where R is replaced by f (R) in the Einstein-Hilbert action,
f (R) being an analytic function of R. Here Lm is the usual
matter field Lagrangian. A variation of this action, with re-
spect to the metric, yields the field equations as

f ′(R)Rμν − ∇μ∇νf
′(R) +

[
�f ′(R) − 1

2
f (R)

]
gμν

= T (m)
μν , (2)

where a prime indicates differentiation with respect to the
Ricci scalar R and T

(m)
μν represents the contribution to the

energy momentum tensor from matter fields with a choice of
unit as 8πG = 1. This variation is popularly dubbed as the
metric f (R) gravity as opposed to the Palatini formulation
where the variation is carried out with respect to both the
metric and the affine connections.

The present endeavour is to study the dynamics of the
universe in the background of the spatially flat FRW metric,
which is written as

ds2 = dt2 − a2(t)
[
dr2 + r2dθ2 + r2 sin2 θdφ2], (3)

where a(t) is the scale factor. The field equations take the
form

3
ȧ2

a2
= ρm

f ′ + 1

f ′

[
1

2

(
f − Rf ′) − 3Ṙf ′′ ȧ

a

]
, (4)

2
ä

a
+ ȧ2

a2

= − 1

f ′

[
R̈f ′′ + Ṙ2f ′′′ + 2Ṙf ′′ ȧ

a
− 1

2

(
f − Rf ′)], (5)

where dots are the derivatives with respect to cosmic time
and a prime denotes derivative with respect to R. Also, ρm

is the dark matter density and, consistent with the cold dark
matter, the corresponding pressure pm is taken to be zero.

We write
[

1

2

(
f − Rf ′) − 3Ṙf ′′ ȧ

a

]
= ρc, (6)
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and
[
R̈f ′′ + Ṙ2f ′′′ + 2Ṙf ′′ ȧ

a
− 1

2

(
f − Rf ′)] = pc, (7)

as ρc and pc determine the contribution by the curva-
ture to the density and pressures sectors respectively. For
f (R) = R, both ρc and pc would vanish as expected. In
terms of the Hubble parameter (H = ȧ

a
), the modified field

equations (4) and (5) will read as

3H 2 = ρm + ρc

f ′ , (8)

and

2Ḣ + 3H 2 = −pc

f ′ , (9)

respectively.
Finally, the contracted Biacchi identity will yield

d

dt

(
ρm + ρc

f ′

)
+ 3H

(
ρm + ρc + pc

f ′

)
= 0. (10)

Considering the matter conservation, i.e., ρ̇m + 3Hρm = 0,
is satisfied independently, Eq. (10) will be simplified to the
form

d

dt

(
ρc

f ′

)
+ 3H

(
ρc + pc

f ′

)
= ρm

(
Ṙf ′′

f ′

)
. (11)

This equation can be written in the form

18
f ′′

f ′ H(Ḧ + 4HḢ) + 3
(
Ḣ + H 2) + f

2f ′ + ρm

f ′ = 0, (12)

where use has been made of the expressions R = −6(Ḣ +
2H 2) and Ṙ = −6(Ḧ + 4HḢ). It is important to note that
Eq. (10) yields Eq. (12) under the condition f ′′ �= 0. So one
cannot arrive at the corresponding equation for f (R) = R,
the usual Einstein-Hilbert action. Now we write Eq. (12)
with the redshift z (given by 1 + z = a0

a
) as the argument.

The equation now looks like

d2H

dz2
= 3

(1 + z)

dH

dz
− 1

H

(
dH

dz

)2

− 3f ′(H 2 − (1 + z)H dH
dz

) + f
2 + ρm0(1 + z)3

18(1 + z)2H 3f ′′ .

(13)

This is the key equation in our attempt to study the dynamics
of the universe in f (R) gravity models. Though the equation
is highly non-linear, we can at least investigate the redshift
dependence of the Hubble parameter H(z) and other impor-
tant parameters numerically when the form of f (R) is given.

Now from Eq. (8), the present matter density ρm0 can be
expressed as

ρm0 = 3H 2
0 f ′

o − ρc0. (14)

where a subscript 0 indicates the values of the functions at
the present epoch, namely at z = 0. Now R = −6H 2(1 − q)

and Ṙ = −6H 3(j − q − 2) where q = − ä

aH 2 is the decel-

eration and j = ä

a3H 3 is the jerk parameter. Hence present
value of Ricci scalar and its derivative can be estimated
from the knowledge of present deceleration parameter q0

and jerk j0. We scale H as H
H0

so that the present value of
Hubble parameter H0 is unity. A simple dimensional con-
sideration shows that this can be done without any loss of
generality in Eq. (13) by dividing both sides by H0. There
are observational estimates for the parameters q0 and j0.
In the present work, we pick up the relevant values from
the work of Rapetti et al. (2007). The relevant values are
q0 = −0.81 ± 0.14 and j0 = 2.16+0.81

−0.75.

3 f (R) gravity in a spatially flat FRW universe

With a functional form of f (R), Eq. (13), a second order
differential equation in H(z), can be numerically integrated.
In this work, two f (R) gravity models have been discussed.
The aim is to find the parameters of the models that would
be in agreement with the observed values of the relevant cos-
mological parameters, namely the deceleration parameter q

and the effective equation of state parameter weff given by
weff = pc

ρc+ρm
.

3.1 Case I: f (R) = λ0(λ + R)n

We choose f (R) = λ0(λ + R)n, where λ0, λ and n are con-
stants and they actually are the model parameters. As f (R)

should have the dimension of R, the constant λ0 is there to
take care of the dimension. In all subsequent discussion, the
value of the constant λ0 is taken to be unity. From Eq. (13),
the numerical plots of deceleration parameter q(z) and the
effective equation of state parameter weff (z) are obtained us-
ing the present values q0 = −0.81±0.14 and j0 = 2.16+0.81

−0.75
as mentioned in the previous section. There are two param-
eters in the model, namely λ and n. The plots have been
generated taking four sets of values of these two parameters.
Each set has been adjusted in such a way that the recent ac-
celeration starts around z = 0.5. Figures 1, 2, 3 and 4 show
these plots. The present value of the parameter weff in all
cases is between −0.8 to −1.0. This also in conformity with
the observational estimate. It deserves mention that most
of the examples of the power law type f (R) gravity mod-
els leading to present acceleration involves some negative
power for the Ricci scalar R in the action. But in all the
examples in this work, n is positive and so there is no singu-
larity in f (R) for R going to zero.



896 Astrophys Space Sci (2014) 352:893–898

Fig. 1 Plots of deceleration
parameter q (left panel) and
effective equation of state weff
(right panel) against redshift z

for f (R) = λ0(λ + R)n with
λ0 = 1, n = 0.5 and
λ = 13.5 ± 0.5. The central dark
line is for λ = 13.5 and λ = 13.0
is the upper and λ = 14.0 is the
lower bounds of the plots

Fig. 2 Plots of deceleration
parameter q (left panel) and
effective equation of state weff
(right panel) against redshift z

for f (R) = λ0(λ + R)n with
λ0 = 1, n = 0.1 and
λ = 13.0 ± 0.25. The central
dark line is for λ = 13.0 and
λ = 12.75 is the upper and
λ = 13.25 is the lower bounds
of the plots

Fig. 3 Plots of deceleration
parameter q (left panel) and
effective equation of state weff
(right panel) against redshift z

for f (R) = λ0(λ + R)n with
λ0 = 1, n = 1.5 and
λ = 16.0 ± 3.0. The central dark
line is for λ = 16.0 and λ = 19.0
is the upper and λ = 13.0 is the
lower bounds of the plots

Fig. 4 Plots of deceleration
parameter q (left panel) and
effective equation of state weff
(right panel) against redshift z

for f (R) = λ0(λ + R)n with
λ0 = 1, n = 2.0. The central
dark line is for λ = 12.0 and
λ = 15.0 is the upper and
λ = 1.0 is the lower bounds of
the plots

3.2 Case II: f (R) = R0 exp(αR)

This exponential form of f (R) had already been discussed
in Das et al. (2006a). However, that was done with no matter
content of the universe. In the present work, the same single
parameter exponential form of f (R) has been introduced
along with the matter content. Like the previous example,

the constant R0 takes care of the dimensional requirement
and is chosen to be unity in the subsequent discussion. The
numerical plots for the deceleration parameter q and the ef-
fective equation of state parameter weff are obtained for a
range of values of α (between 0.5 and 15.0) with the sim-
ilar boundary conditions used for the previous model. The
range of values of α are chosen so as to get the signature
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Fig. 5 Plots of deceleration
parameter q (left panel) and
effective equation of state weff
(right panel) against redshift z

for f (R) = R0 exp(αR). The
central dark line is for R0 = 1,
α = 1.5 and α = 0.5 is the
upper and α = 15.0 is the lower
bounds of the plots

flip in q close to z = 0.5. Figure 5 clearly shows that this
model also successfully generates late time acceleration ac-
companied by the decelerated expansion era that prevailed
earlier. The central curve is for α = 1.5 for both of q and
weff . If the value of α is raised to 15, the lower curve is ob-
tained. But almost similar amount of deviation is seen for
the higher curve for a much smaller variation of the param-
eter. The upper curve is obtained when α is changed to 0.5.
So the amount of acceleration is much more sensitive to a
decrease of the parameter of the model.

4 Discussion

A straightforward way for the discussion of the dynamics
of the much talked about f (R) gravity models along with
a cold dark matter content has been presented in this work.
As it has been shown that an f (R) gravity model could be-
have in a dramatically different manner in the presence of
matter (Amendola et al. 2007a, 2007b), it is imperative that
the models are discussed in the presence of matter. Equation
(13) sets up a basic framework for that. Both the models
presented here work well in the presence of matter.

Two examples have been worked out, one of them,
namely the case I is apparently new, and the second case has
already been discussed, although without the requisite mat-
ter content. The parameters of the model are reconstructed
from the observational values of some cosmological param-
eters. However, no rigorous statistical analysis has been em-
ployed for the estimation of the model parameters.

It deserves mention at this stage that the two models
presented here do not have the same degree of stability.
If a quantity, m2 = 1

3 [ f ′(R)
f ′′(R)

− R], is defined at R = R0,

the present value of the Ricci curvature, one can show that
m2 < 0 leads to a tachyonic instability (Nojiri and Odintsov
2007b). The second model of the present work (Sect. 3.2)
has this instability. Our first model f (R) = λ0(λ + R)n, on
the other hand, passes this fitness test.

The primary motivation is to set up a general framework,
but both the examples discussed can produce a signature
flip at the right epoch and can reproduce the total effective

equation of state parameter weff close to its expected present
value. This basic observational requirement is met for actu-
ally quite a wide range of the model parameters.

It also deserves mention that according to the criterion
discussed by Basilakos et al. (2013), none of the two mod-
els presented here would actually converge to the ΛCDM
model. The first example would do that only for the trivial
case of n = 1.
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