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Abstract In this paper, we study the effects of polynomial
f (R) model on the stability of homogeneous energy density
in self-gravitating spherical stellar object. For this purpose,
we construct couple of evolution equations which relate the
Weyl tensor with matter parameters. We explore different
factors responsible for density inhomogeneities with non-
dissipative dust, isotropic as well as anisotropic fluids and
dissipative dust cloud. We find that shear, pressure, dissipa-
tive parameters and f (R) terms affect the existence of inho-
mogeneous energy density.

Keywords Dissipative systems · Relativistic systems ·
Modified gravity

1 Introduction

Recent cosmological evidences predicted by different mea-
surements indicate transition of our universe from matter
dominated epoch to accelerating expansion state (Perlmut-
ter et al. 1999, Riess et al. 2007, Komatsu et al. 2011). The
accelerating cosmic expansion has been prompted by an
enigmatic ingredient with large negative pressure, dubbed
as dark energy. To explain its nature, different models
like cosmological constant, phantom, quintessence, Chap-
lygin gas etc. have been established. The exploration of
modified gravity theories obtained by modifying geomet-
ric gravitational part of Einstein-Hilbert action has received
much attention in mathematical physics. The f (R) grav-
ity (Capozziello 2002; Nojiri and Odintsov 2011) is one
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of the most viable theories in which Ricci scalar is re-
placed by its non-linear generic function. Among impor-
tant features of this theory, the likely one is to present a
model that represents early as well as late-time universe ex-
pansion in the absence of dark component. Bamba et al.
(2012a, 2012b) introduced unified model for inflation as
well as late cosmic expansion model in this theory. There
exist number of f (R) models (Faraoni and Nadeau 2005;
Nojiri and Odintsov 2007; Hu and Sawicki 2007; Bamba
et al. 2012a, 2012b) that correspond to cosmological con-
straints and pass experimental test.

Anisotropic pressure in matter configurations results
from several astrophysical factors like pion condensation
(Sawyer 1972), various types of phase transitions (Sokolov
1980), presence of a solid core, superfluids (Heiselberg and
Jensen 2000) as well as strong magnetic field (Yazadjiev
2012). It is worth stressing that for stable fluid distribution,
anisotropy can endorse outwardly increasing density within
the core of star (Horvat et al. 2011). After the ground work
of Bowers and Liang (1974), there have been number of
papers on pressure anisotropy (Herrera and Santos 1997;
Bohmer and Harko 2006; Herrera et al. 2008, Sharif and
Yousaf 2012a, 2012b, Mimoso et al. 2013, Sharif and Bhatti
2013a, 2013b, 2014b) which assert that anisotropy may have
non-negligible consequences on the structure and properties
of self-gravitating systems. Thirukkanesh and Ragel (2013)
presented spherically symmetric compact star models with
anisotropic pressure which help to understand strange quark
stars.

Gravitational collapse is the phenomenon in which mas-
sive body falls inward due to the action of its own gravity
that may lead to stars, star clusters and galaxies from inter-
stellar gas. This occurs due to extremely inhomogeneous ini-
tial state thereby showing the importance of energy density
inhomogeneities in the collapse process. Penrose and Hawk-
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ing (1979) laid much emphasis on the importance of en-
ergy density inhomogeneity in the gravitational time arrow
by relating inhomogeneous density with Weyl tensor. Eard-
ley and Smarr (1979) asserted that inhomogeneous spherical
dust configuration leads to naked singularities for inhomo-
geneous collapse. Herrera et al. (1998) discussed the role of
density inhomogeneities and local anisotropy of pressure on
the structure and evolution of spherically symmetric adia-
batic self-gravitating objects through the active gravitational
mass. Further, Herrera et al. (2004) investigated density in-
homogeneity effects on the evolutionary phases of dissipa-
tive anisotropic spherical systems by evaluating a link be-
tween the Weyl tensor and local anisotropic pressure. Bamba
et al. (2011) discussed matter instability and curvature sin-
gularity in the star collapse with f (R) background.

Ziaie et al. (2011) studied collapsing mechanism of a star
satisfying barotropic equation of state in f (R) theories and
found finite-time singularities. Borisov et al. (2012) ana-
lyzed spherical collapse in metric f (R) gravity with the help
of time evolution numerical simulations. Guo et al. (2013)
studied collapse of spherical star in Einstein f (R) frame
and concluded that this may lead to de-Sitter Schwarzschild
black hole. We have investigated impact of late and early
time cosmic models on the collapse of self-gravitating sys-
tems with metric as well as Palatini f (R) theory (Sharif and
Yousaf 2013a, 2013b, 2013c, 2013d, 2014a, 2014c).

A great deal of effort has been devoted to study the
stability of stellar systems upon fluctuations. Galli and
Koshelev (2011) studied a class of late-time cosmic evolu-
tion models with perturbations induced by inhomogeneous
energy density. Pinheiro and Chan (2011) examined non-
adiabatic anisotropic collapse accompanied by inhomoge-
neous density configuration with and without shearing mo-
tion. Sharma and Tikekar (2012) explored shear-free spher-
ical collapse with dissipation through heat to investigate
the inhomogeneity effects during evolution. Sharif and his
collaborators (Sharif and Yousaf 2012b, 2012c; Sharif and
Bhatti 2012a, 2012b, 2014a, 2014c; Sharif and Tahir 2013)
studied spherical, cylindrical and planar celestial models and
analyzed the role of energy density inhomogeneity in the
evolution of fluid parameters that characterize gravitational
collapse.

Herrera et al. (2009) explored spherical relativistic fluid
configurations through scalar functions, i.e., YT , XT , YT F

and XT F . Herrera et al. (2011) extended their results by in-
voking cosmological constant to examine the evolution of
shear tensor and expansion scalar. They identified XT F as a
factor describing inhomogeneity in the energy density. Her-
rera (2011) discussed stability of inhomogeneous density
in anisotropic spherical fluid configuration with diffusion
and free-streaming approximations. Recently, we have stud-
ied dynamics of spherical matter distribution with structure
scalars and εR2 cosmology (Sharif and Yousaf 2014b).

This paper investigates the role of polynomial f (R) grav-
ity on the stability of homogeneous energy density with
anisotropic and dissipative spherical matter. The paper is
planned as follows. In Sect. 2, we discuss f (R) formula-
tion and relate matter variables with the Weyl scalar. Sec-
tion 3 is devoted to construct scalar functions with a well-
consistent polynomial f (R) model to obtain conservation
and Ellis equations. In Sect. 4, we consider various aspects
of matter distribution to analyze density inhomogeneity. In
the last section, we conclude our results.

2 f (R) formalism

The gravitational part of the Einstein-Hilbert action in f (R)

gravity is

Sf (R) = 1

2κ

∫
d4x

√−gf (R), (1)

where κ and f (R) are coupling constant and a non-linear
generic Ricci scalar function, respectively. The usual GR
action can be retrieved by taking f (R) = R. The field equa-
tions, in metric formalism, are calculated by varying Eq. (1)
with respect to gαβ as follows

RαβfR − (∇α∇β − gαβ�)fR − 1

2
gαβf = κTαβ, (2)

where ∇α and � are the covariant derivative and d’Alembert
operator, respectively. Equation (2), after some manipula-
tions, can be expressed as

Gαβ = κ

fR

( (D)

Tαβ + Tαβ

)
, (3)

where

(D)

Tαβ = 1

κ

{
∇α∇βfR + (f − RfR)

gαβ

2
−�fRgαβ

}
,

is the stress energy tensor which indicates gravitational con-
tribution due to f (R) terms. Under GR limit, i.e., f (R) →
R,

(D)

Tαβ disappears identically. The system under considera-
tion is modeled as a sphere with non-static spacetime

ds2− = A2(t, r)dt2 − B2(t, r)dr2

− C2(t, r)
(
dθ2 + sin2 θdφ2), (4)

consisting of locally anisotropic pressure, dissipating in the
diffusion (heat) and free streaming (null radiation) approxi-
mations. The corresponding stress-energy tensor is

Tαβ = (μ + P⊥)VαVβ + (Pr − P⊥)χαχβ

− P⊥gαβ + qαVβ + εlαlβ + Vαqβ, (5)
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where μ, P⊥, Pr , qβ and ε, are the energy density, tangential
and radial pressures, heat conducting vector and radiation
density, respectively. Moreover, lβ , V β and χβ are the null
four-vector, fluid four-velocity and radial unit four-vector,
respectively. These quantities V β = 1

A
δ
β

0 , χβ = 1
B

δ
β

1 , lβ =
1
A

δ
β

0 + 1
B

δ
β

1 , qβ = q(t, r)χβ in comoving coordinates obey

V αVα = −1, χαχα = 1, χαVα = 0,

V αqα = 0, lαVα = −1, lαlα = 0.

The expansion and shear scalars for Eq. (1) are given by

ΘA =
(

2Ċ

C
+ Ḃ

B

)
, σA = −

(
Ċ

C
− Ḃ

B

)
, (6)

where dot stands differentiation with respect to t .
The metric f (R) field equations turn out to be

κ

fR

[
A2(μ + ε) + A2

κ

{
f ′

R

B2

(
B ′

B
+ 2C′

C

)

− fR

2

(
R − f

fR

)
+ f ′′

R

B2
− ḟR

A2

×
(

Ḃ

B
+ 2Ċ

C

)}]

=
(

Ċ

C

)2

+ 2ĊḂ

CB
+

{
C′

C

(
2B ′

B
− C′

C

)
+

(
B

C

)2

− 2C′′

C

}(
A

B

)2

, (7)

κ

fR

[
BA(q + ε) − 1

κ

(
ḟ ′

R − Ḃf ′
R

B
− A′ḟR

A

)]

= 2

(
Ċ′
C

− A′Ċ
CA

− C′Ḃ
BC

)
, (8)

κ

fR

[
B2(Pr + ε) − B2

κ

{
f ′

R

B2

(
A′

A
+ 2C′

C

)
− fR

2

(
R − f

fR

)

+
(

Ȧ

A
− 2Ċ

C

)
ḟR

A2
− f̈R

A2

}]

=
{(

2Ȧ

A
− Ċ

C

)
Ċ

C
− 2C̈

C

}
B2

A2
− B2

C2

+ C′

C

(
C′

C
+ 2A′

A

)
, (9)

κ

fR

[
P⊥C2 − C2

κ

{
f ′′

R

B2
− f̈R

A2
+

(
Ȧ

A
− Ḃ

B
+ Ċ

C

)
ḟR

A2

− fR

2

(
R − f

fR

)
+

(
C′

C
− B ′

B
+ A′

A

)
f ′

R

B2

}]

=
{

Ċ

C

(
Ȧ

A
− Ḃ

B

)
− C̈

C
+ ḂȦ

BA
− B̈

B

}
C2

A2

+
{

A′

A

(
C′

C
− B ′

B

)
C′′

C
− B ′C′

BC
+ A′′

A

}
C2

B2
, (10)

where prime represents differentiation with respect to r . The
Misner-Sharp mass function is given by (Misner and Sharp
1964)

m(t, r) = C

2

(
1−gαβC,αC,β

) =
{

1+
(

Ċ

A

)2

−
(

C′

B

)2}
C

2
.

(11)

The radial and proper derivative operators are defined re-
spectively as follows

DC = 1

C′
∂

∂r
, DT = 1

A

∂

∂t
. (12)

The proper time rate of change of areal radius of the spheri-
cal system is

U = DT C = Ċ

A
< 1 (for collapsing bodies). (13)

In terms of collapsing fluid velocity, Eq. (11) can be written
as

E ≡ C′

B
=

[
1 + U2 − 2m(t, r)

C

]1/2

. (14)

The time and radial mass variations can be followed from
Eqs. (7)–(9), (11) and (12) as

DT m = − κ

2fR

{
U

(
P̂r +

(D)

T11

B2

)
+ E

(
q̂ −

(D)

T01

AB

)}
C2,

(15)

DCm = κ

2fR

{
μ̂ +

(D)

T00

A2
+ U

E

(
q̂ −

(D)

T01

AB

)}
C2, (16)

where P̂r = Pr + ε, q̂ = q + ε and μ̂ = μ+ ε. Integration of
Eq. (16) provides

3m

C3
= 3κ

2C3

∫ r

0

[
1

fR

{
μ̂ +

(D)

T00

A2

+
(

q̂ −
(D)

T01

AB

)
U

E

}
C2C′

]
dr, (17)

thereby relating mass function and other fluid variables with
f (R) terms. The electric component of the Weyl tensor in
terms of χα and unit four velocity is given by

Eαβ = E
[
χαχβ − 1

3
(gαβ + VαVβ)

]
,
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where

E =
[
C̈

C
+

(
Ḃ

B
− Ċ

C

)(
Ċ

C
+ Ȧ

A

)
− B̈

B

]
1

2A2
− 1

2C2

−
[
C′′

C
−

(
C′

C
+ B ′

B

)(
A′

A
− C′

C

)
− A′′

A

]
1

2B2
, (18)

which after using Eqs. (7) and (9)–(11) can be expressed as

3m

C3
= κ

2fR

(
μ̂ − Π̂ +

(D)

T00

A2
−

(D)

T11

B2
+

(D)

T22

C2

)
− E, (19)

where Π̂ = P̂r − P⊥. This equation peculiarly relates mass
function with Weyl scalar and all the fluid variables in f (R)

gravity.

3 Structure scalars and Ellis equations

In this section, we first discuss a viable f (R) model and then
construct structure scalars. We also write down conservation
laws from the usual as well as effective stress energy tensors
and develop the so called Ellis equations. We take a polyno-
mial inflationary model given as follows (Huang 2014)

f (R) = R + εR2 + λn(2εR)n

4nε
, (20)

where ε = 1
6M2 and λn is a dimension-free coupling pa-

rameter with n > 2. Here energy scale M is refined in or-
der to make unit normalization to the higher coefficient
of R2 term. This model corresponds to the model with
f (R) = R + Rn/(3M2)n − 1 under λn � 1 while λn → 0
provides Starobinsky model (Starobinsky 1980). In the limit
λn 	 1, Rn terms serve as a small correction to the infla-
tionary R + εR2 model which of course makes the model
expansion around the Starobinsky model. It is interesting to
mention here that the inflation induced by R + R4 gravity
provides much different platform than that of R+R2 gravity
and is close to topological inflation (Saidov and Zhuk 2010).
All GR solutions can be found by taking limit f (R) → R.

To formulate f (R) structure scalars, we orthogonally
split the Riemann tensor and propose tensors Xαβ and Yαβ

as (Herrera et al. 2011)

Xαβ =∗ R∗
αμβνV

μV ν = 1

2
ηερ

αμR∗
ερβνV

μV ν,

Yαβ = RαμβνV
μV ν,

where R∗
αβμν = 1

2ηερμνR
ερ
αβ . These equations in terms of

trace and trace-less components are given by

Xαβ = 1

3
XT hαβ + XT F

(
χαχβ − 1

3
hαβ

)
, (21)

Yαβ = 1

3
YT hαβ + YT F

(
χαχβ − 1

3
hαβ

)
. (22)

We use Eqs. (7), (9), (10) and (20)–(22) with some manipu-
lations to obtain the following scalar structures

XT = 4κεR

4εR(1 + 2εR) + λn(2εR)n

(
μ̂ + ϕμ

A2

)
, (23)

XT F = −E − 2κεR

4εR(1 + 2εR) + λn(2εR)n

×
(

Π̂ − 2ση + ϕPr

B2
− ϕP⊥

C2

)
, (24)

YT = 2κεR

4εR(1 + 2εR) + λn(2εR)n

×
(

μ̂ + ϕμ

A2
+ ϕPr

B2
+ 2ϕP⊥

C2
+ 3P̂r − 2Π̂

)
, (25)

YT F = E − 2κεR

4εR(1 + 2εR) + λn(2εR)n

×
(

Π̂ − 2ησ + ϕPr

B2
− ϕP⊥

C2

)
, (26)

where ϕμ,ϕPr and ϕP⊥ are given in Appendix. It is well es-
tablished in GR as well as in f (R) gravity that, one of the
structure scalars XT describes matter energy density while
its inhomogeneity is discussed with the help of XT F only if
the system evolves adiabatically alongwith ε = 0. The scalar
functions YT F and YT incorporating ε terms control the evo-
lutionary mechanisms of shearing and expansion rates of the
system.

The two independent components of the contracted
Bianchi identities are

( (D)

T αβ + T αβ
)
;β = 0,

( (D)

T αβ + T αβ
)
;β = 0, (27)

which yield

ˆ̇μ + Aq̂ ′

B
+ (P̂r + μ̂)

Ḃ

B
+ 2Aq̂C′

BC

+ 2(P⊥ + μ̂)
Ċ

C
+ D0(t, r) = 0, (28)

AP̂ ′
r

B
+ ˙̂q + (P̂r + μ̂)

A′

B
+ 2

(
Ċ

C
+ Ḃ

B

)
q̂

+ 2Π̂
(AC)′

BC
+ D1(t, r) = 0, (29)

where D0 and D1 are f (R) dark source terms given in
Appendix. Now we find two very important differential
equations which play a pivotal in the stability analysis
of inhomogeneous energy density. These two equations
were firstly calculated by Ellis (2009) and then by Herrera
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et al. (2004) in GR. These equations are obtained by using
Eqs. (7)–(10), (15), (16) and (20) as

[
E − 2κεR

4εR(1 + 2εR) + λn(2εR)n

×
(

μ̂ − Π̂ + ϕμ

A2
− ϕPr

B2
+ ϕP⊥

C2

)]
,0

= 3Ċ

C

[
2κεR

4εR(1 + 2εR) + λn(2εR)n

×
(

μ̂ + P̂⊥ + ϕμ

A2
+ ϕP⊥

C2

)
− E

]

+ 6κεR

4εR(1 + 2εR) + λn(2εR)n

(
AC′

BC

)(
q̂ − ϕq

AB

)
,

(30)[
E − 2κεR

4εR(1 + 2εR) + λn(2εR)n

×
(

μ̂ − Π̂ + ϕμ

A2
− ϕPr

B2
+ ϕP⊥

C2

)]
,1

= −3C′

C

[
2κεR

4εR(1 + 2εR) + λn(2εR)n

(
μ̂ + ϕμ

A2

)
− 3m

C3

]

− 6κεR

4εR(1 + 2εR) + λn(2εR)n

(
BĊ

AC

)(
q̂ − ϕq

AB

)
,

(31)

where ψq is mentioned in Appendix. Both of the above
equations reduce to GR (Herrera 2011) under ε → 0.

4 Stability of homogeneous energy density

In this section, we discuss different factors affecting en-
ergy density homogeneity in matter distribution with f (R)

framework for different cases. We confine ourselves with
present valued cosmological Ricci scalar, i.e., R = R̃.

4.1 Non-dissipative fluids

In this subsection, we perform our analysis with non-
dissipative matter distribution with polynomial f (R) grav-
ity model for dust, isotropic and anisotropic fluid configura-
tions.

4.1.1 Dust cloud

Here we take non-dissipative dust fluid with its geodesic mo-
tion which gives q̂ = P⊥ = P̂r = 0 and A = 1. In this con-
text, Eqs. (30) and (31) give

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]
,0

= 3Ċ

C

[
2κεR̃μ

4εR̃(1 + 2εR̃) + λn(2εR̃)n
− E

]
, (32)

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]′

= −3C′

C
E . (33)

By making use of Eqs. (6), (28) and (52)–(55) in Eqs. (32)
and (33), we obtain

Ė + 3Ċ

C
E = −2κεAσμR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n
, (34)

E ′ + 3C′

C
E = 2κεR̃μ′

4εR̃(1 + 2εR̃) + λn(2εR̃)n
. (35)

Equation (34) yields

E = −2κεR̃
∫ t

0 AσμC3dt

[4εR̃(1 + 2εR̃) + λn(2εR̃)n]C3
, (36)

which provides condition for the existence of homogeneity
in the dust fluid. This states that non-dissipative homoge-
neous spherical matter configuration exists only if the sys-
tem is conformally flat. Similarly, we can identify the Weyl
scalar as an inhomogeneity factor from Eq. (35). Equation
(36) also asserts that conformal flatness exists if the system
evolves with vanishing shear scalar.

4.1.2 Isotropic fluid

Now, we consider adiabatic spherical system with locally
isotropic pressure. Under this scenario, Eqs. (30) and (31)
become

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]
,0

+ 3Ċ

C

[ −2κεR̃(μ + P)

4εR̃(1 + 2εR̃) + λn(2εR̃)n
+ E

]
= 0, (37)
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[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]′

+ 3C′

C
E = 0. (38)

It is seen that Eq. (38) turns out to be same as Eq. (33), thus
showing that E = 0 if and only if μ′ = 0. Equation (37) after
using Eqs. (6) and (28) provides the following differential
equation

Ė + 3Ċ

C
E = −2κεAσ(μ + P)R̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n
, (39)

whose solution is

E = −2κεR̃
∫ t

0 Aσ(μ + P)C3dt

[4εR̃(1 + 2εR̃) + λn(2εR̃)n]C3
. (40)

This argues that energy density of the system will be ho-
mogeneous as long as the system embodies shear-free mo-
tion. Thus the condition of locally isotropic pressure in the
matter configuration with constant Ricci scalar f (R) model
does not affect the stability of homogeneous energy density
found in the above case. Let us assume shear-free fluid so
that Eq. (39) provides

E = ω(r)

C3
,

where ω(r) is an integration function. If the system is ho-
mogeneous initially, i.e., E(0, r) = 0, then ω = 0 yields
E(t, r) = 0. Thus the above condition for homogeneous en-
ergy density will be valid from t = 0 to onward. However, if
the fluid is expanding such that E has very small (non-zero)
value at the initial stage, then it will remain as it is in all
the evolutionary phases. If instead the system is contracting,
then the Weyl scalar does not vanish for all time.

4.1.3 Anisotropic fluid

This case corresponds to anisotropic but non-dissipating
matter distribution, i.e. Π �= 0 and q̂ = 0. In this framework,
Eqs. (30) and (31) provide

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ − Π + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]
,0

= 3Ċ

C

[
2κεR̃(μ + P⊥)

4εR̃(1 + 2εR̃) + λn(2εR̃)n
− E

]
, (41)

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ − Π + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]′

= −3C′

C

[
E + 2κεR̃Π

4εR̃(1 + 2εR̃) + λn(2εR̃)n

]
. (42)

We use Eqs. (6) and (28) in Eqs. (41) and (42) to obtain the
following set of evolutionary equations

[
E + 2κεR̃Π

4εR̃(1 + 2εR̃) + λn(2εR̃)n

]
,0

+ 3Ċ

C

[
E + 2κεR̃Π

4εR̃(1 + 2εR̃) + λn(2εR̃)n

]

= −2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

{
Aσ(μ + Pr) − 2Π

Ċ

C

}
,

[
E + 2κεR̃Π

4εR̃(1 + 2εR) + λn(2εR̃)n

]′

− 2κεR̃μ′

4εR̃(1 + 2εR̃) + λn(2εR̃)n

= −3C′

C

[
E + 2κεR̃Π

4εR̃(1 + 2εR̃) + λn(2εR̃)n

]
.

These equations in terms of structure scalar (24) can be
written as

ẊT F + 3XT F Ċ

C
= 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
{
Aσ(μ + Pr) − 2Π

Ċ

C

}
,

X′
T F + 3XT F C′

C
= − 2κεR̃μ′

4εR̃(1 + 2εR̃) + λn(2εR̃)n
,

whose general solutions can be found respectively as

XT F = −2κεR̃
∫ t

0 [2ΠĊ − ACσ(μ + Pr)]C2dt

C3[4εR̃(1 + 2εR̃) + λn(2εR̃)n] , (43)

XT F = − 2κεR̃
∫ r

0 C3μ′dr

C3[4εR̃(1 + 2εR̃) + λn(2εR̃)n] . (44)

These equations indicate that quantity incorporating stabil-
ity of inhomogeneous energy density is one of the f (R)

structure scalars, i.e., XT F . Equation (44) shows that μ′ = 0
if and only if XT F vanishes, thereby showing XT F as a
factor of controlling inhomogeneity in anisotropic spher-
ical system which is well-consistent with (Herrera et al.
2009, 2011; Herrera 2011). Thus the inclusion of dark mat-
ter/energy effects in the evolving system do not disrupt the
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importance of XT F . Also, the above expressions reduce to
GR under the limit ε → 0. However, Eq. (43) asserts that
anisotropic pressure, f (R) model and shear scalar are re-
sponsible for the emergence of inhomogeneous energy den-
sity in the matter distribution.

4.2 Dissipative dust cloud

To see the effects of radiation density and heat conduct-
ing vector in the inhomogeneous energy density, we assume
geodesic case, i.e., Pr = P⊥ = 0 with A = 1. Many authors
(Herrera et al. 2004; Herrera 2011; Kolassis et al. 1988;
Govender et al. 1998; Thirukkanesh and Maharaj 2009;
Naidu et al. 2006) discussed spherical dissipative collapsing
dust models with geodesics in order to explore dissipation
effects through the system. In this case, Eqs. (30) and (31)
yield

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]
,0

= 3Ċ

C

[
2κεR̃μ

4εR̃(1 + 2εR̃) + λn(2εR̃)n
− E

]

+ 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

(
AC′q̂
BC

)
, (45)

[
E − 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

μ + λn(1 − n)(2εR̃)n

8κεn
− εR̃2

2κ

)]′

= −3C′

C
E − 6κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

(
Bq̂Ċ

AC

)
. (46)

Equation (46) gives

Φ ≡ E − 6κεR̃
∫ r

0 BC2q̃Ċdr

4εR̃(1 + 2εR̃) + λn(2εR̃)n
. (47)

It is found that μ′ = 0 if and only if Φ = 0, indicating that
Φ is responsible for fluid density inhomogeneity in the dust
spherical system with free streaming and diffusion approx-
imations. We use Eqs. (6) and (28) in Eq. (45) to obtain Φ

evolution equation as follows

Φ̇ − Ψ̇

C3
= 2κεR̃

4εR̃(1 + 2εR̃) + λn(2εR̃)n

×
(

q̃C′

BC
− μ̃σ − q̃ ′

B

)
− 3Ċ

C
Φ, (48)

with Ψ = 6κεR̃

4εR̃(1+2εR̃)+λn(2εR̃)n

∫ r

0 BC2q̃Ċdr , which yields

Φ as follows

Φ =
∫ t

0 [Ψ̇ + 2κεC2R̃

4εR̃(1+2εR̃)+λn(2εR̃)n
(
q̃C′
B

− μ̃Cσ − q̃ ′C
B

)]dt

C3
.

(49)

This indicates that various fluid parameters affect the evolu-
tion of Φ in the self-gravitating system. We also see from
the above relation that existence of inhomogeneous density
depends upon two factors, i.e., dissipative parameters and
shear scalar. This describes that shearing scalar, radiation
density and heat dissipation hold fundamental importance
in the study of inhomogeneous matter distribution leading
to gravitational collapse.

5 Summary and discussion

This work analyzes various factors producing inhomogene-
ity in the energy density of the spherical self-gravitating ce-
lestial body in f (R) gravity. We have constructed structure
scalars by orthogonally splitting the Riemann curvature ten-
sor to obtain evolution equations using a viable inflation-
ary f (R) model. We have discussed our analysis for non-
dissipative dust, isotropic as well as anisotropic fluid con-
figurations and dust cloud dissipating fluid. The results are
concluded as follows.

• For non-dissipative dust and locally isotropic ideal matter
cloud, it is seen from Eqs. (35) and (38) that the system
will encapsulate homogeneous energy density if and only
if the system is conformally flat. The extra f (R̃) degrees
of freedom terms turn down contribution of E , thus relax-
ing conformal flatness condition.

• In an adiabatic anisotropic spherical system, the den-
sity inhomogeneity is described in terms of pressure
anisotropy which in turn controlled by one of the struc-
ture scalars, XT F as mentioned in Eq. (24). Equation (44)
also establishes XT F as an element of governing inho-
mogeneity in the system. This result is well-consistent
with (Sharif and Yousaf 2014b) under λn → 0 and (Her-
rera 2011) under ε → 0 which correspond to solutions in
R + εR2 gravity and GR, respectively.

• The quantity Φ is explored and identified to be responsi-
ble for the emergence of inhomogeneity in energy density
for geodesic radiating dust fluid. Extra curvature f (R)

terms, dissipation parameters and shear scalar affect evo-
lution of Φ as described by Eq. (49).

• All these results correspond to GR under ε → 0 (Her-
rera 2011). It is worth stressing that structure scalars ob-
tained in Eqs. (23)–(26) hold fundamental importance in
the study of self-gravitating system. For λn → 0, scalar
functions reduces for f (R) = R+εR2 cosmology (Sharif
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and Yousaf 2014b) while ε → 0 provides GR results (Her-
rera et al. 2011).
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Appendix

The higher curvature terms D0 and D1 of Eqs. (28) and (29)
are given as

D0 = 1

κ

[{(
A′

A
ḟR + Ḃ

B
f ′

R − ḟ ′
R

)
1

A2B2

}
,1

+ 1

A2

{
fR

2

(
f

fR

− R

)
+

(
2C′

C
+ B ′

B

)
f ′

R

B2
+ f ′′

R

B2

− ḟR

A2

(
2Ċ

C
+ Ḃ

B

)}
,0

+ 1

A2

{
f̈R

A2
−

(
B ′

B
+ A′

A

)
f ′

R

B2

+ f ′′
R

B2
−

(
Ḃ

B
+ Ȧ

A

)
ḟR

A2

}
Ḃ

B

+ 2

A2

{
−

(
A′

A
− C′

C

)
f ′

R

B2
+ f̈R

A2

− ḟR

A2

(
3Ċ

C
+ Ȧ

A

)}
Ċ

C
+

(
Ḃ

B
f ′

R − ḟ ′
R + A′

A
ḟR

)

× 1

A2B2

(
3A′

A
+ B ′

B
+ 2C′

C

)]
, (50)

D1 = 1

κ

[{
1

B2A2

(
A′

A
ḟR − ḟ ′

R + Ḃ

B
f ′

R

)}
,0

+ 1

B2

{
f̈R

A2
− fR

2

(
f

fR

− R

)
− f ′

R

B2

(
A′

A
+ 2

C′

C

)

− ḟR

A2

(
Ȧ

A
− 2

Ċ

C

)}
,1

+ 1

B2

{
f ′′

R

B2
+ f̈R

A2

−
(

A′

A
+ B ′

B

)
f ′

R

B2
−

(
Ȧ

A
+ Ḃ

B

)
ḟR

A2

}
A′

A

+ 2

B2

{
−f ′

R

B2

(
B ′

B
+ C′

C

)
+ f ′′

R

B2
− ḟR

A2

(
Ḃ

B
+ 3Ċ

C

)}

× C′

C
− 1

(AB)2

(
ḟ ′

R − Ḃ

B
f ′

R − A′

A
ḟR

)

×
(

3Ḃ

B
+ Ȧ

A
+ 2Ċ

C

)]
. (51)

The quantities ϕμ, ϕPr , ϕP⊥ and ϕq are

ϕμ = A2

κ

[
2εR′′

B2
+ λn(n − 1)(2εR)n

ε(2BR)2

{
(n − 2)R′2

R
+ R′′

}

−
(

Ḃ

B
+ 2

Ċ

C

){
2εṘ

A2
+ λn(n − 1)(2εR)nṘ

2εR2A2

}

− εR2

2
+ λn(n − 1)(2εR)n

8nε
−

{
2εR′

B2

+ λn(n − 1)(2εR)nR′

2εR2B2

}(
B ′

B
− 2C′

C

)]
, (52)

ϕPr = −B2

κ

[{
2εṘ

A2
+ λn(n − 1)(2εR)nṘ

2εR2A2

}(
Ȧ

A
− 2Ċ

C

)

+ λn(1 − n)(2εR)n

8εn
− εR2

2
− 2εR̈

A2

+ λn(1 − n)(2εR)n

ε(2AR)2

{
R̈ + (n − 2)Ṙ2

R

}
+

(
A′

A

+ 2C′

C

){
2εR′

B2
+ λn(n − 1)(2εR)nR′

2εR2B2

}]
, (53)

ϕP⊥ = −C2

κ

[(
Ȧ

A
− Ḃ

B
+ Ċ

C

){
2εṘ

A2

+ λn(n − 1)(2εR)nṘ

2εR2A2

}
+ λn(1 − n)

8εn

× (2εR)n +
{

2εR′

B2
+ λn(n − 1)(2εR)nR′

2εR2B2

}

×
(

C′

C
− B ′

B
+ A′

A

)
+

(
R′′

B2
− R̈

A2

)
2ε

+ λn(n − 1)(2εR)n

4εR2

{
R′′

B2
− R̈

A2
+ (n − 2)R′2

RB2

− (n − 2)Ṙ2

RA2

}
− εR2

2

]
, (54)

ϕq = 1

κ

[
λn(n − 1)(2εR)n

4εR2

{
(n − 2)ṘR′

R
+ Ṙ′

}

− 2ε

(
R′Ḃ
B

+ ṘA′

A

)
− λn(n − 1)(2εR)n

2εR2

×
(

R′Ḃ
B

+ ṘA′

A

)
+ 2εṘ′

]
. (55)
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