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Abstract We present a new class of static spherically sym-
metric exact solutions of the Einstein-Maxwell field equa-
tions in isotropic coordinates for perfect fluid by consider-
ing a specific choice of electrical intensity which involves
a parameter K . The resulting solutions represent charged
fluid spheres joining smoothly with the Reissner-Nordstrom
metric at the pressure free interface. The solutions so ob-
tained are utilized to construct the models for super-dense
star like neutron stars (ρb = 2 and 2.7 × 1014 g/cm3) and
Quark stars (ρb = 4.6888 × 1014 g/cm3). It is observed
that the models are well behaved for the restricted value
of parameter K (0.141 ≤ K ≤ 0.159999). Corresponding
to Kmax = 0.159999 for which, umax = 0.259, the resulting
Quark star has a maximum mass M = 1.618 M� and radius
R = 9.263 km and the neutron star modeling based on the
particular solution; corresponding to K = 0.15, u = 0.238
and by assuming the surface density ρb = 2.7 × 1014 g/cm3

the maximum mass of neutron star M = 1.966 M� and ra-
dius R = 12.23 km and by assuming the surface density
ρb = 2 × 1014 g/cm3 the resulting well behaved solution
has a maximum mass of neutron M = 2.284 M� and radius
R = 14.21 km. The robustness of our result is that it matches
with the recent discoveries.
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1 Introduction

Ever since the formulation of Einstein-Maxwell field equa-
tions, the relativists have been proposing different models of
immensely gravitating astrophysical objects by considering
the distinct nature of matter or radiation (energy-momentum
tensor) present in them. Einstein-Maxwell field equations
have more importance over Einstein field equations due to
following rationale justifications:

• The presence of some charge may avert the catastrophic
gravitational collapse by counter balancing the gravita-
tional attraction by the electric repulsion in addition to
the pressure gradient.

• The inclusion of charge inhibits the growth of space time
curvature which has a great role to avoid singularities
(Ivanov 2002; de Felice and Fang 1995).

• Bonnor (1965), pointed out that a dust distribution of ar-
bitrarily large mass and small radius can remain in equi-
librium against the pull of gravity by a repulsive force
produced by a small amount of charge.

• The solutions of Einstein-Maxwell equations are useful to
study the cosmic matter.

• The charge dust models and electromagnetic mass models
are providing some clue about the structure of electron
(Bijalwan et al. 2011) and Lepton model (Kiess 2013).

• Several solutions which do not satisfy some or all the con-
ditions for well behaved nature can be renewed into well
behaved nature by charging them.

Thus it is desirable to study the insinuations of Einstein-
Maxwell field equations with reference to the general rela-
tivistic prediction of gravitational collapse. For this purpose
charged fluid ball models are required. The external field of
such ball is to be matched with Reissner-Nordstrom solu-
tion. The solutions of Einstein-Maxwell field equations suc-
cessfully explain the characteristics of massive objects like
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neutron star, quark star or other super-dense object. Further,
these stars are specified in terms of their masses and densi-
ties:

(a) A Neutron Star has surface density ρb = 2×1014 g/cm3

(Brecher and Caporaso 1976) or 2.7 × 1014 g/cm3 (As-
tashenok et al. 2013) and mass 1.4 M�–2.9 M�. How-
ever, Astashenok et al. (2013) established that f (R)

models with realistic equation of state of neutron star
has upper limit Mass 2.0 M� and minimal radius close
to 9 km.

(b) A Strange Quark Star has surface density ρb = 4.6888×
1014 g/cm3 (Fatema and Murad 2013; Zdunik 2000)
and possible maximum mass 2 M�. However, Dong
et al. (2013) established that due to presence of half
skyrmions in the dense baryonic matter the stable
Strange Quark Star can have upper mass limit 2.4 M�.

2 Conditions for well behaved solution

For well behaved nature of the solution in isotropic coordi-
nates, the following conditions should be satisfied:

(i) The solution should be free from physical and geomet-
rical singularities i.e. finite and positive values of cen-
tral pressure, central density and non zero positive val-
ues of eω and eν .

(ii) The solution should have positive and monotonically
decreasing expressions for pressure and density (p and
ρ) with the increase of r . The solution should have pos-
itive value of ratio of pressure-density and less than 1
(weak energy condition) and less than 1/3 (strong en-
ergy condition) throughout within the star, monotoni-
cally decreasing as well.

(iii) The causality condition should be obeyed i.e. velocity
of sound should be less than that of light throughout the
model. In addition to the above the velocity of sound
should be decreasing towards the surface i.e. d

dr
(
dp
dρ

) <

0 or (
d2p

dρ2 ) > 0 for 0 ≤ r ≤ rb i.e. the velocity of sound
is increasing with the increase of density. In this context
it is worth mentioning that the equation of state at ultra-
high distribution, has the property that the sound speed
is decreasing outwards (Canuto and Lodenquai 1975).

(iv) p
ρ

≤ dp
dρ

, everywhere within the ball. γ = d loge P

d loge ρ
=

ρ
p

dp
dρ

⇒ dp
dρ

= γ
p
ρ

, for realistic matter γ ≥ 1.

(v) The red shift z should be positive, finite and monotoni-
cally decreasing in nature with the increase of r .

(vi) Electric intensity E, such that E(r = 0) = 0, is taken
to be monotonically increasing.

Under these conditions, we have to assume the one of the
gravitational potential components and electric intensity in

such a way that the field equation (8) can be integrated and
solution should be well behaved.

Keeping in view this aspect, several authors obtained
the parametric class of exact solutions Das et al. (2011),
Pant et al. (2011a, 2011b), Pant and Negi (2012), Kiess
(2012), Gupta and Maurya (2011), Pant (2011a, 2011b),
Murad and Fatema (2013), Takisa and Maharaj (2013) etc.
These coupled solutions are well behaved with some pos-
itive values of charge parameter K and completely de-
scribe the interior of the super-dense astrophysical object
with charged matter. However, the works of Pant (2011a,
2011b), Kiess (2012), Gupta and Maurya (2011) and Mu-
rad and Fatema (2013) are well behaved with their neutral
counterparts. Most of the findings are in curvature coordi-
nates. In this paper we present a new class of solution of
Einstein-Maxwell field equations which is well behaved in
isotropic coordinates by motivation of Ivanov (2012) and
Das et al. (2011).

3 Field equations in isotropic coordinates

We consider the static and spherically symmetric metric in
isotropic co-ordinates

ds2 = −eω
[
dr2 + r2(dθ2 + sin2 θdφ2)] + c2eνdt2 (1)

where, ω and ν are functions of r .
Einstein-Maxwell field equations of gravitation for a non

empty space-time are

Ri
j − 1

2
Rδi

j = −8πG

c4
T i

j

= −8πG

c4

[(
p + ρc2)vivj − pδi

j

+ 1

4π

(
−F imFjm + 1

4
δi
jFmnF

mn

)]
(2)

where Rij is Ricci tensor, Tij is energy-momentum tensor,
R the scalar curvature and Fjm is the electromagnetic field
tensor.

Where p denotes the pressure distribution, ρ the density
distribution and vi the velocity vector, satisfying the relation

gij v
ivj = 1 (3)

Since the field is static, therefore

v1 = v2 = v3 = 0 and v4 = 1√
g44

(4)

Thus we find that for the metric (1) under these conditions
and for matter distributions with isotropic pressure the field
equation (2) reduces to the following (Das et al. 2011)
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8πG

c4
p = e−ω

[
(ω′)2

4
+ ω′

r
+ ω′ν′

2
+ ν′

r

]
+ q2

r4
(5)

8πG

c4
p = e−ω

[
ω′′

2
+ ν′′

2
+ (ν′)2

4
+ ω′

2r
+ ν′

2r

]
− q2

r4
(6)

8πG

c2
ρ = −e−ω

[
ω′′ + (ω′)2

4
+ 2ω′

r

]
− q2

r4
(7)

where, prime (′) denotes differentiation with respect to r .
From Eqs. (5) and (6) we obtain following differential equa-
tion in ω and ν.

e−ω

(
ω′′ + ν′′ + (ν′)2

2
− (ω′)2

2
− ω′ν′ − ω′

r
− ν′

r

)
− 4

q2

r4

= 0 (8)

Our task is to explore the solutions of Eq. (8) and obtain the
fluid parameters p and ρ from Eqs. (5) and (7). To solve
the above equation we consider a seed solution as Murad
and Pant (2013) and the electric intensity E of the following
form:

E2

C
= q2

Cr4
= KCr2(1 + Cr2)

−8
5

B2
(9)

where K is a positive constant. The electric intensity is so
assumed that the model is physically significant and well
behaved i.e. E remains regular and positive throughout the
sphere. In addition, E vanishes at the center of the star and
increases towards the boundary.

4 Boundary conditions in isotropic coordinates

For exploring the boundary conditions, we use the principle
that the metric coefficients gij and their first derivatives gij,k

in interior solution (I ) as well as in exterior solution (E) are
continuous upto and on the boundary B . The continuity of
metric coefficients gij of I and B on the boundary is known
first fundamental form. The continuity of derivatives of met-
ric coefficients gij of I and B on the boundary is known
second fundamental form.

The exterior field of a spherically symmetric static
charged fluid distribution is described by Reissner-Nord-
strom metric given by

ds2 =
(

1 − 2GM

c2R
+ q2

R2

)
c2dt2

−
(

1 − 2GM

c2R
+ q2

R2

)−1

dR2 − R2dθ2

− R2 sin2 θdφ2 (10)

where M is the mass of the ball as determined by the ex-
ternal observer and R is the radial coordinate of the exterior
region.

Since Reissner-Nordstrom metric (10) is considered as
the exterior solution, thus we shall arrive at the follow-
ing conclusions by matching first and second fundamental
forms:

eνb =
[

1 − 2
GM

c2Rb

+ q2
b

R2
b

]
(11)

Rb = rb · e ωb
2 and q (at r = rb) = qb (12)

1

2

(
ω′ + 2

r

)

b

rb =
(

1 − 2
GM

c2Rb

+ q2
b

R2
b

)1/2

(13)

1

2

(
ν′)

b
rb =

(
GM

c2Rb

− q2
b

R2
b

)(
1 − 2

GM

c2Rb

+ q2
b

R2
b

)−1/2

(14)

Equations (11) to (14) are four conditions, known as bound-
ary conditions in isotropic coordinates. Moreover, (12) and
(14) are equivalent to zero pressure of the interior solution
on the boundary.

5 A new class of solution

Equation (8) is solved by assuming the seed solution as
a particular member of Murad and Pant (2013) and the
charge q in such a manner that the solution can be obtained
and physically viable. Thus we have,

eω/2 = B
(
1 + Cr2)−1/5

, x = Cr2,

y = dν

dx
and q2 = K

B2C
x3(1 + x)−8/5

(15)

On substituting the above in Eq. (8), we get the following
Riccati differential equation in y,

dy

dx
+ 2

5

1

(1 + x)
y + 1

2
y2 = − 8

25

1

(1 + x)2
+ K

(1 + x)2
(16)

which yields the following solution,

eν/2 = {1 + A(1 + Cr2)
2S
10 }(1 + Cr2)

3−S
10

B2
(17)

where A, B , C and K are arbitrary constants and

S = √
50K − 7 (18)

S is imaginary for K < 0.14.
The expressions for density and pressure are given by

8πGρ

c2
= C

25B2f 16

(
60 + 16Cr2 − 25KCr2) (19)
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8πGp

c4
= C

25B2f 16{1 + Af 2S}
[
Cr2[Af 2S(25K + 2 + 6S)

+ (25K + 2 − 6S)
]

+ 10
[
Af 2S(1 + S) + (1 − S)

]]
(20)

where

f = (
1 + Cr2)1/10

. (21)

6 Properties of the new solution

The central values of pressure and density are given by

(
8πGp

c4

)

r=0
= 2C

5B2(1 + A)

[
(1 + A) + S(A − 1)

]
(22)

(
8πGρ

c2

)

r=0
= 12C

5B2
(23)

The central values of pressure and density will be non zero
positive definite, if the following conditions will be satisfied.

A > (S − 1)/(S + 1), C > 0. (24)

In view of (19) and (20) the ratio of pressure-density is given
by

P

ρc2
= Cr2[f 2SA(25K + 2 + 6S) + (25K + 2 − 6S)]

(1 + Af 2S)[60 + 16Cr2 − 25KCr2]

+ 10[f 2SA(1 + S) + (1 − S)]
(1 + Af 2S)[60 + 16Cr2 − 25KCr2] (25)

Subjecting the condition that positive value of ratio of
pressure-density and less than 1 at the centre i.e. p0

ρ0c
2 ≤ 1

which leads to the following inequality,

{
P

ρc2

}

r=0
= (1 + A) + SA − S

6(1 + A)
= 1

6
− S(1 − A)

6(1 + A)
(26)

All the values of A which satisfy Eq. (24), will also lead to
the condition p0

ρ0c
2 ≤ 1.

Differentiating (20) with respect to r, we get

8πG

c4

dp

dr
= C2r

125B2{1 + Af 2S}2f 26

[−6Cr2[A2f 4S

×{25K + 2 + 6S} + {25K + 2 − 6S}
+ 2Af 2S

(
25K + 2 − 2S2)]

+ 10
[
A2f 4S{25K − 14 − 10S}

+ (25K − 14 + 10S)

+ 2Af 2S
(
25K − 14 + 2S2)]] (27)

Thus it is found that extrema of p occur at the centre i.e.

p′ = 0 ⇒ r = 0 and
8πG

c4

(
p′′)

r=0 = −ve (28)

Thus the expression of right hand side of Eq. (28) is neg-
ative for all values of A satisfying condition (24), showing
thereby that the pressure (p) is maximum at the centre and
monotonically decreasing.

Now differentiating Eq. (19) with respect to r we get

8πG

c2

dρ

dr
= C2r

125B2f 26

[−800 − 250K − 96Cr2

+ 150KCr2] (29)

Thus the extrema of ρ occur at the centre if

ρ′ = 0 ⇒ r = 0

8πG

c2

(
ρ′′)

r=0 = (−800 − 250K)C2

125B2
(30)

Thus, the expression of right hand side of (30) is negative
showing thereby that the density ρ is maximum at the centre
and monotonically decreasing.

The square of adiabatic sound speed at the centre,
1
c2 (

dp
dρ

)r=0, is given by

1

c2

(
dp

dρ

)

r=0

= (25K − 14)(1 + A)2 + 10S + 4AS2 − 10SA2

(−80 − 25K)(1 + A)2

< 1 and positive (31)

The causality condition is obeyed at the centre for all values
of constants satisfying condition (24).

Due to cumbersome expressions of (25) and (31), the
trend of pressure-density ratio and adiabatic sound speed is
studied analytically after applying the boundary conditions.

Applying the boundary conditions from (11) to (14),
we get the values of the arbitrary constants in terms of
Schwarzschild parameters u = GM

c2Rb
and radius of the

star Rb .

C = 5(1 − d)

(5d − 3)r2
b

> 0 for u ≤ 8

25
+ q2

b

2R2
b

(32)

A =
5(u − q2

b

R2
b

)(1 + Cr2
b
)

(3−S)
10 − (3 − S)dCr2

b
(1 + Cr2

b
)

−7−S
10

(3 + S)dCr2
b
(1 + Cr2

b
)

−7+S
10 − 5(u − q2

b

R2
b

)(1 + Cr2
b
)

3+S
10

(33)

B =
√

(1 + Cr2
b )

3−S
10 + A(1 + Cr2

b )
3+S
10

d
(34)
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Table 1 The march of pressure, density, pressure-density ratio, square of adiabatic speed of sound, γ , red shift and electric field intensity within
the ball corresponding to K = 0.15 and u = 0.238

r
rb

8πG

c4 pr2
b

8πG

c2 ρr2
b

p

ρc2
1
c2 (

dp
dρ

) γ = dp
dρ

/
p
ρ

Z Erb

0 0.0257706 2.645867 0.00973995 0.0145783002 1.49675358 0.586179988 0.00000000

0.2 0.0227766 2.4398684 0.00933519 0.0144879875 1.55197596 0.567278828 0.09507251

0.4 0.0159868 1.9672919 0.00812630 0.0142345938 1.75166893 0.517614776 0.16772287

0.6 0.0090272 1.4721621 0.00613190 0.0138489260 2.25850359 0.451821727 0.21154576

0.8 0.0036613 1.0781755 0.00339583 0.0133440656 3.92953905 0.382261213 0.23257058

1 0.0000000 0.7977931 0.00000000 0.0127110261 ∞ 0.315789474 0.23928619

Table 2 The march of pressure, density, pressure-density ratio, square of adiabatic speed of sound, γ , red shift and electric field intensity within
the ball corresponding to Kmax = 0.159999 for which umax = 0.259

r
rb

8πG
c4 pr2

b
8πG
c2 ρr2

b
p

ρc2
1
c2 (

dp
dρ

) γ = dp
dρ

/
p
ρ

Z Erb

0 0.0000029 2.65183 0.00000108 0.0000015099 1.39825716 0.662456 0.00000000

0.2 0.0000025 2.402227 0.00000104 0.0000015014 1.44982047 0.639048 0.10768683

0.4 0.0000017 1.859131 0.00000090 0.0000014781 1.63732599 0.578956 0.18548357

0.6 0.0000009 1.332856 0.00000068 0.0000014428 2.11580514 0.501971 0.22780534

0.8 0.0000004 0.944339 0.00000038 0.0000013955 3.69640190 0.423096 0.24478934

1 0.0000000 0.683736 0.00000000 0.0000013336 infinity 0.349528 0.24745345

Table 3 The variation of maximum mass of neutron star and corresponding radius Rb with u for K = 0.15

u
8πGρr2

b

c2 Rb (km) M
M� Rb (km) M

M�

For ρb = 2 × 1014 g/cc For ρb = 2.7 × 1014 g/cc

0.010 0.070554 3.974159 0.026804 3.420412 0.02307

0.040 0.260232 7.702494 0.207604 6.629252 0.17868

0.060 0.368978 9.22742 0.372823 7.941698 0.32088

0.100 0.546201 11.36153 0.764124 9.778445 0.65765

0.160 0.720555 13.27488 1.432899 11.4252 1.23324

0.200 0.779395 13.94519 1.881977 12.00211 1.61975

0.238 0.797793 14.21536 2.284475 12.23464 1.96616

Where we define a new parameter called as Reissner-
Nordstrom parameter ‘d’ given by

d =
√

1 − 2u + q2
b

R2
b

(35)

Whose value lies between 0.6 < d < 1 for Cr2
b > 0.

Surface density is given by

8πG

c2
ρbR

2
b = Cr2

b [60 + 16Cr2
b − 25KCr2

b ]
25(1 + Cr2

b )2
(36)

Central red-shift is given by

Z0 =
[

B2

1 + A
− 1

]
(37)

The surface red shift is given by

Zb = [
e− νb

2 − 1
]

(38)

7 Discussion and conclusion

In view of Tables 1 and 2 and Figs. 1 and 2 it has been
observed that all the physical parameters (p, ρ, p

ρc2 , dp
dρ

,
z, γ and E) are positive at the centre and within the limit
of realistic equation of state and the conditions for well
behaved nature are satisfied. Our solution is well behaved
for the all values of K satisfying the inequalities 0.141 ≤
K ≤ 0.15999. However, corresponding to any value of K <

0.141, there exist no value of u for which the nature of adi-
abatic sound speed is monotonically decreasing from centre



148 Astrophys Space Sci (2014) 352:143–149

Fig. 1 The variation of p, ρ, p

ρc2 , Z, 1
c2 (

dp
dρ

), γ , E etc. from centre to
surface for K = 0.15 is shown in the following graphs Fig. 2 The variation of p, ρ, p

ρc2 , Z, 1
c2 (

dp
dρ

), γ , E etc. from centre to
surface for K = 0.159999 is shown in the following graphs

Table 4 By assuming the surface density ρb = 4.6888 × 1014 g/cm3, the variation of maximum mass of Quark star, corresponding radius Rb ,
surface red shift and the surface electric field with u for K = 0.159999

u
8πGρr2

b

c2 Rb (km) M/M� Zb Ebrb

0.010 0.058508 2.595412 0.01751 0.01010 0.0100

0.040 0.216485 5.029412 0.135726 0.04167 0.0396

0.080 0.387878 6.796385 0.366821 0.08696 0.0785

0.140 0.567833 8.331088 0.789142 0.16333 0.1359

0.180 0.638778 8.898557 1.080634 0.21951 0.1730

0.220 0.676423 9.20235 1.365865 0.28205 0.2105

0.259 0.683736 9.263323 1.61865 0.34953 0.2475
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to pressure free interface and for K > 0.15999, the pressure
is negative.

In Table 3, we present the neutron star modeling based
on the particular solution; corresponding to K = 0.15,
u = 0.238 and by assuming the surface density ρb =
2.7 × 1014 g/cm3 the maximum mass of neutron star
M = 1.966 M� and radius R = 12.23 km and by assum-
ing the surface density ρb = 2 × 1014 g/cm3 the result-
ing well behaved solution has a maximum mass of neutron
M = 2.284 M� and radius R = 14.21 km.

In Table 4, we present a quark star modeling based
on the particular solution discussed above by assuming
surface density; ρb = 4.6888 × 1014 g/cm3. Correspond-
ing to Kmax = 0.159999 for which, umax = 0.259, the
resulting well behaved solution has a maximum mass
M = 1.618 M� and radius R = 9.263 km. The robustness
of our result is that it matches with the recent discover-
ies.
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