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Abstract In the present paper, we have obtained a class
of charged super dense star models, starting with a static
spherically symmetric metric in isotropic coordinates for
perfect fluid by considering Hajj-Boutros (in J. Math. Phys.
27:1363, 1986) type metric potential and a specific choice
of electrical intensity which involves a parameter K . The
resulting solutions represent charged fluid spheres joining
smoothly with the Reissner-Nordstrom metric at the pres-
sure free interface. The solutions so obtained are utilized
to construct the models for super-dense star like neutron
stars (ρb = 2 and 2.7 × 1014 g/cm3) and Quark stars (ρb =
4.6888 × 1014 g/cm3). Our solution is well behaved for all
values of n satisfying the inequalities 4 < n ≤ 4(4 + √

2)

and K satisfying the inequalities 0 ≤ K ≤ 0.24988, depend-
ing upon the value of n. Corresponding to n = 4.001 and
K = 0.24988, we observe that the maximum mass of quark
star M = 2.335M� and radius R = 10.04 km. Further, this
maximum mass limit of quark star is in the order of maxi-
mum mass of stable Strange Quark Star established by Dong
et al. (in arXiv:1207.0429v3, 2013). The robustness of our
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results is that the models are alike with the recent discover-
ies.
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1 Introduction

Ever since the formulation of Einstein-Maxwell field equa-
tions, the relativists have been proposing different models of
immensely gravitating astrophysical objects by considering
the distinct nature of matter or radiation (energy-momentum
tensor) present in them. Einstein-Maxwell field equations
have more importance over Einstein field equations due to
following rationale justifications:

• The presence of some charge may avert the catastrophic
gravitational collapse by counter balancing the gravita-
tional attraction by the electric repulsion in addition to
the pressure gradient.

• The inclusion of charge inhibits the growth of space time
curvature which has a great role to avoid singularities
(Ivanov 2002; de Felice et al. 1995).

• Bonnor (1965), pointed out that a dust distribution of ar-
bitrarily large mass and small radius can remain in equi-
librium against the pull of gravity by a repulsive force
produced by a small amount of charge.

• The solutions of Einstein-Maxwell equations are useful to
study the cosmic matter.

• The charge dust models and electromagnetic mass models
are providing some clue about the structure of electron
(Bijalwan 2011) and Lepton model (Kiess 2013).

• Several solutions which do not satisfy some or all the con-
ditions for well behaved nature can be renewed into well
behaved nature by charging them.

Thus it is desirable to study the insinuations of Einstein-
Maxwell field equations with reference to the general rela-
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tivistic prediction of gravitational collapse. For this purpose
charged fluid ball models are required. The external field of
such ball is to be matched with Reissener-Nordström solu-
tion. The solutions of Einstein-Maxwell field equations suc-
cessfully explain the characteristics of massive objects like
neutron star, quark star or other super-dense objects. Fur-
ther, these stars are specified in terms of their masses and
densities:

(a) A Neutron Star has surface density ρb = 2 × 1014 g/cm3

(Brecher and Caporaso 1976) or 2.7 × 1014 g/cm3 (As-
tashenok et al. 2013) and mass 1.4M�–2.9M�. How-
ever, Astashenok et al. (2013) established that f (R)

models with realistic equation of state of neutron star
has upper limit mass 2.0M� and minimal radius close
to 9 km.

(b) A Strange Quark Star has surface density ρb = 4.6888×
1014 g/cm3 (Fatema and Murad 2013; Zdunik 2000)
and possible maximum mass 2M�. However, Dong
et al. (2013) established that due to presence of half
skyrmions in the dense baryonic matter the stable
Strange Quark Star can have upper mass limit 2.4M�.

2 Conditions for well behaved solution

For well behaved nature of the solution in isotropic coordi-
nates, the following conditions should be satisfied:

(i) The solution should be free from physical and geomet-
rical singularities i.e. finite and positive values of cen-
tral pressure, central density and non zero positive val-
ues of eω and eυ .

(ii) The solution should have positive and monotoni-
cally decreasing expressions for pressure and density
(p and ρ) with the increase of r . The solution should
have positive value of ratio of pressure-density and
less than 1 (weak energy condition) and less than 1/3
(strong energy condition) throughout within the star,
monotonically decreasing as well.

(iii) The causality condition should be obeyed i.e. velocity
of sound should be less than that of light throughout the
model. In addition to the above the velocity of sound
should be decreasing towards the surface i.e.

d

dr

(
dp

dρ

)
< 0 or

(
d2p

dρ2

)
> 0

for 0 ≤ r ≤ rb i.e. the velocity of sound is increasing
with the increase of density. In this context it is worth
mentioning that the equation of state at ultra-high dis-
tribution, has the property that the sound speed is de-
creasing outwards (Canuto and Lodenquai 1975).

(iv) p
ρ

≤ dp
dρ

, everywhere within the ball.

γ = d loge p

d loge ρ
= ρ

p

dp

dρ
⇒ dp

dρ
= γ

p

ρ
,

for realistic matter γ ≥ 1.
(v) The red shift Z should be positive, finite and monoton-

ically decreasing in nature with the increase of r .
(vi) Electric intensity E, such that E(r=0) = 0, is taken to

be monotonically increasing.

Under these conditions, we have to assume the one of the
gravitational potential components in such a way that the
field equation (8) can be integrated and solution should be
well behaved. Further, the mass of the such modeled super
dense object can be maximized by assuming surface den-
sity, for Neutron star (Brecher and Caporaso 1976) ρb =
2 × 1014 g/cm3 and for SQM, Strange Quark star (Fatema
and Murad 2013; Zdunik 2000) ρb = 4.6888 × 1014 g/cm3.

Keeping in view this aspect, several authors obtained the
parametric class of exact solutions; Das et al. (2011), Pant
et al. (2011a, 2011b), Pant and Negi (2012), Kiess (2012),
Gupta and Maurya (2011), Maurya and Gupta (2011), Pant
(2011a, 2011b), Murad and Fatema (2013), Takisa and Ma-
haraj (2013) etc. These coupled solutions are well behaved
with some positive values of charge parameter K and com-
pletely describe the interior of the super-dense astrophys-
ical object with charged matter. However, the works of
Pant (2011b), Kiess (2012), Gupta and Maurya (2011) and
Fatema and Murad (2013) are well behaved with their neu-
tral counterparts. Most of the findings are in curvature coor-
dinates. By motivation of Ivanov (2012) and in continuation
our previous work (Pradhan and Pant 2014), in this paper we
present a new family of solutions of Einstein-Maxwell field
equations in isotropic coordinates for perfect fluid assuming
a particular form of one of the metric potentials and suitable
choice of electric intensity.

3 Field equations in isotropic coordinates

We consider the static and spherically symmetric metric in
isotropic co-ordinates

ds2 = −eω
[
dr2 + r2(dθ2 + sin2 θdφ2)] + c2eυdt2 (1)

where, ω and υ are functions of r .
Einstein-Maxwell field equations of gravitation for a non

empty space-time are

Ri
j − 1

2
Rδi

j = −8πG

c4
T i

j

= −8πG

c4

[(
p + ρc2)vivj − pδi

j

+ 1

4π

(
−F imFjm + 1

4
δi
jFmnF

mn

)]
(2)

where Rij is Ricci tensor, Tij is energy-momentum tensor,
R is the scalar curvature and Fjm is the electromagnetic field
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tensor, p denotes the pressure distribution, ρ the density dis-
tribution and vi the velocity vector, satisfying the relation

gij v
ivj = 1 (3)

Since the field is static, therefore

v1 = v2 = v3 = 0 and v4 = 1√
g44

(4)

Thus we find that for the metric (1) under these conditions
and for matter distributions with isotropic pressure the field
equation (2) reduces to the following Das et al. (2011):

8πG

c4
p = e−ω

[
(ω′)2

4
+ ω′

r
+ ω′υ ′

2
+ υ ′

r

]
+ q2

r4
(5)

8πG

c4
p = e−ω

[
ω′′

2
+ υ ′′

2
+ (υ ′)2

4
+ ω′

2r
+ υ ′

2r

]
− q2

r4
(6)

8πG

c2
ρ = −e−ω

[
ω′′ + (ω′)2

4
+ 2ω′

r

]
− q2

r4
(7)

where, prime (′) denotes differentiation with respect to r .
From Eqs. (5) and (6) we obtain following differential equa-
tion in ω and υ .

e−ω

(
ω′′+ν′′+ (υ ′)2

2
− (ω′)2

2
−ω′υ ′− ω′

r
− υ ′

r

)
−4

q2

r4
= 0

(8)

Our task is to explore the solutions of Eq. (8) and obtain the
fluid parameters p and ρ from Eq. (5) and Eq. (7). To solve
the above equation we consider a seed solution as Pant et al.
(2013), Murad and Pant (2014) and the electric intensity E

of the following form:

E2

C
= q2

Cr4
= KCr2(1 + Cr2)

2−2n
n

B2
(9)

where K is a positive constant. The electric intensity is so
assumed that the model is physically significant and well
behaved i.e. E remains regular and positive throughout the
sphere. In addition, E vanishes at the center of the star and
increases towards the boundary.

4 Boundary conditions in isotropic coordinates

For exploring the boundary conditions, we use the princi-
ple that the metric coefficients gij and their first derivatives
gij,k in interior solution (I ) as well as in exterior solution
(E) are continuous upto and on the boundary B . The conti-
nuity of metric coefficients gij of I and B on the boundary
is known first fundamental form. The continuity of deriva-
tives of metric coefficients gij of I and B on the boundary
is known second fundamental form.

The exterior field of a spherically symmetric static
charged fluid distribution is described by Reissner-
Nordström metric given by

ds2 =
(

1 − 2GM

c2R
+ q2

R2

)
c2dt2

−
(

1 − 2GM

c2R
+ q2

R2

)−1

dR2 − R2dθ2

− R2 sin2 θdφ2 (10)

where M is the mass of the ball as determined by the ex-
ternal observer and R is the radial coordinate of the exterior
region.

Since Reissner-Nordström (10) is considered as the ex-
terior solution, thus we shall arrive at the following conclu-
sions by matching first and second fundamental forms:

eυb =
[

1 − 2
GM

c2Rb

+ q2
b

R2
b

]
(11)

Rb = rb.e
ωb
2 and q(at r=rb) = qb (12)

1

2

(
ω′ + 2

r

)
b

rb =
(

1 − 2
GM

c2Rb

+ q2
b

R2
b

)1/2

(13)

1

2

(
ν′)

b
rb =

(
GM

c2Rb

− q2
b

R2
b

)(
1 − 2

GM

c2Rb

+ q2
b

R2
b

)−1/2

(14)

Equations (11) to (14) are four conditions, known as bound-
ary conditions in isotropic coordinates. Moreover, (12) and
(14) are equivalent to zero pressure of the interior solution
on the boundary.

5 A new class of solution

Equation (8) is solved by assuming the seed solution as Hajj-
Boutros (1986), Murad and Pant (2014) and the electric in-
tensity E in such a manner that the solution can be obtained
and physically viable. Thus we have,

eω/2 = B
(
1 + Cr2)− 1

n , x = Cr2, y = dυ

dx
and

q2 = K

B2C
x3(1 + x)

2−2n
n

(15)

On substituting the above in Eq. (8), we get the following
Riccati differential equation in y,

dy

dx
+ 2

n

1

(1 + x)
y + 1

2
y2 = −2n − 2

n2

1

(1 + x)2
+ K

(1 + x)2

(16)
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Which yields the following solution,

e
ν
2 = {1 + A(1 + Cr2)

2S
2n }(1 + Cr2)

n−2−S
2n

B2
(17)

where A, B , C and K are arbitrary constants and

S =
√

2n2K + n2 − 8n + 8 (18)

S is real for K >
8n − n2 − 8

2n2

K is non-zero for 4 − 2
√

2 < n < 4 + 2
√

2

(18a)

The expressions for density and pressure are given by

8πGρ

c2
= C

n2B2f 4n−4

(
12n + (4n − 4)Cr2 − n2KCr2)

(19)

8πGp

c4

= C

n2B2f 4n−4{1 + Af 2S}
× [

Cr2[Af 2S
(
n2K + 2n2 − 12n + 12 + 2nS − 4S

)
+ (

n2K + 2n2 − 12n + 12 − 2nS + 4S
)]

+ 2n
[
Af 2S(n − 4 + S) + (n − 4 − S)

]]
(20)

where, f = (
1 + Cr2) 1

2n (21)

6 Properties of the new solution

The central values of pressure and density are given by

(
8πGp

c4

)
r=0

= 2C

nB2(1 + A)

[
(n − 4)(1 + A) + S(A − 1)

]
(22)(

8πGρ

c2

)
r=0

= 12C

nB2
(23)

The central values of pressure and density will be non zero
positive definite, if the following conditions will be satisfied.

A > (S − n + 4)/(S + n − 4), C > 0. (24)

In view of (19) and (20) the ratio of pressure-density is given
by

p

ρc2
= (

Cr2[Af 2S
(
n2K + 2n2 − 12n + 12 + 2nS − 4S

)

+ (
n2K + 2n2 − 12n + 12 − 2nS + 4S

)]
+ 2n

[
Af 2S(n − 4 + S) + (n − 4 − S)

])

× ((
1 + Af 2S

)[
12n + (4n − 4)Cr2 − n2KCr2])−1

(25)

Subjecting the condition that positive value of ratio of
pressure-density and less than 1 at the centre i.e. p0

ρ0c
2 ≤ 1

which leads to the following inequality,
{

p

ρc2

}
r=0

= (n − 4)(1 + A) + SA − S

6(1 + A)

= n − 4

6
− S(1 − A)

6(1 + A)
(26)

All the values of A which satisfy Eq. (24), will also lead to
the condition p0

ρ0c
2 ≤ 1.

Differentiating (20) with respect to r , we get

8πG

c4

dp

dr

= C2r

n3B2{1 + Af 2S}2f 6n−4

[−Cr2(2n − 4)

× [
A2f 4S

{
n2K + 2n2 − 12n + 12 + (2n − 4)S

}
+ {

n2K + 2n2 − 12n + 12 − (2n − 4)S
}

+ 2Af 2S
(
n2K + 2n2 − 12n + 12 − 2S2)]

+ 2n
[
A2f 4S

{
n2K − 2n2 + 8n − 4 − 2nS

}
+ (

n2K − 2n2 + 8n − 4 + 2nS
)

+ 2Af 2S
(
n2K − 2n2 + 8n − 4 + 2S2)]] (27)

Thus it is found that extrema of p occur at the centre i.e.

p′ = 0 ⇒ r = 0 and
8πG

c4

(
p′′)

r=0 = −ve (28)

Thus the expression of right hand side of Eq. (28) is neg-
ative for all values of A satisfying condition (24), showing
thereby that the pressure (p) is maximum at the centre and
monotonically decreasing.

Now differentiating Eq. (19) with respect to r we get

8πG

c2

dρ

dr
= C2r

n3B2f 6n−4

[−40n2 + 40n − 2n3K

− 8
(
n2 − 3n + 2

)
Cr2 + (

2n3 − 4n2)KCr2]
(29)

Thus the extrema of ρ occur at the centre if

ρ′ = 0 ⇒ r = 0

8πG

c2

(
ρ′′)

r=0 = (−40n2 + 40n − 2n3K)C2

n3B2
(30)

Thus, the expression of right hand side of (30) is negative
showing thereby that the density ρ is maximum at the centre
and monotonically decreasing.
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The square of adiabatic sound speed at the centre,
1
c2 (

dp
dρ

)r=0, is given by

1

c2

(
dp

dρ

)
r=0

= (n2K − 2n2 + 8n − 4)(1 + A)2 + 2nS + 4AS2 − 2nSA2)

(20 − 20n − n2K)(1 + A)2
< 1 and positive (31)

The causality condition is obeyed at the centre for all values
of constants satisfying condition (24).

Due to cumbersome expressions of (25) and (31), the
trend of pressure-density ratio and adiabatic sound speed is
studied analytically after applying the boundary conditions.

Applying the boundary conditions from (11) to (14),
we get the values of the arbitrary constants in terms of

Schwarzschild parameters u = GM

c2Rb
and radius of the

star Rb .

C = n(1 − d)

(nd − n + 2)r2
b

> 0 for u ≤ 2n − 2

n2
+ q2

b

2R2
b

(32)

A =
n.(u − q2

b

R2
b

).(1 + Cr2
b )

n−2−S
2n − (n − 2 − S).Cr2

b .d.(1 + Cr2
b )

−n−2−S
2n

(n − 2 + S).d.Cr2
b .(1 + Cr2

b )
−n−2+S

2n − n(u − q2
b

R2
b

).(1 + Cr2
b )

n−2+S
2n

(33)

B =
√

(1 + Cr2
b )

n−2−S
2n + A(1 + Cr2

b )
n−2+S

2n

d
(34)

where we define a new parameter called as Reissner-
Nordström parameter ‘d’ given by

d =
√

1 − 2u + q2
b

R2
b

(35)

Whose value lies between (n − 2)/n < d < 1 for Cr2
b > 0.

Surface density is given by

8πG

c2
ρbR

2
b = Cr2

b [12n + 4(n − 1)Cr2
b − n2KCr2

b ]
n2(1 + Cr2

b )2
(36)

Central red-shift is given by

Z0 =
[

B2

1 + A
− 1

]
(37)

The surface red shift is given by

Zb = [
e− νb

2 − 1
]

(38)

7 Discussions

In view of Table 1 and Fig. 1 it has been observed that all
the physical parameters (p, ρ, p

ρc2 , dp
dρ

, z, γ and E) are pos-
itive at the centre and within the limit of realistic equation of

state and the conditions for well behaved nature are satisfied.
Our solution is well behaved for the all values of n satisfy-
ing the inequalities 4 < n ≤ 4(4 + √

2) and K satisfying the
inequalities 0 ≤ K ≤ 0.24988. However, for n > 4(4+√

2),
there exist no value of K for which the nature of adia-
batic sound speed is monotonically decreasing from centre
to pressure free interface. In view of Fig. 2: With the increase
of n the maximum mass decreases.

In Table 2, we present a neutron star modeling based
on the particular solution; corresponding to n = 4.001 for
which Kmax = 0.24988 and umax = 0.3448 the maximum
mass of neutron star for surface density 2 × 1014 gm/cc is
found to be M = 3.58M� and radius R = 15.37 km and
that for surface density 2.7 × 1014 gm/cc is found to be
M = 3.08M� and radius R = 13.23 km.

In Table 3, we present a quark star modeling based
on the particular solution; corresponding to n = 4.001 for
which Kmax = 0.24988 and umax = 0.3448 and by assum-
ing the surface density the maximum mass of quark star
M = 2.335M� and radius R = 10.04 km.

8 Conclusion

We find that all the physical parameters (p, ρ, p

ρc2 , dp
dρ

, Z,
γ and E) are showing the desired trend in our range for
K(0 ≤ K ≤ 0.24988) and for the prescribed value for n;
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Table 1 The march of pressure,
density, pressure-density ratio,
square of adiabatic speed of
sound, γ , red shift and electric
field intensity within the ball
corresponding to n = 4.001 for
which Kmax = Kmin = 0.24988,
dmin = 0.6552 and
umax = 0.3448

r
rb

8πG

c4 pr2
b (10−6) 8πG

c2 ρr2
b

p

ρc2 (10−7) 1
c2 (

dp
dρ

) (10−7) γ = dp
dρ

/
p
ρ

Z E.rb

0 0.1626 5.5598 0.2925 0.4133 1.4129 1.0448 0.0000000

0.1 0.1560 5.3993 0.2889 0.4118 1.4252 1.0336 0.0998146

0.2 0.1382 4.9653 0.2784 0.4075 1.4639 1.0017 0.1903867

0.3 0.1142 4.3700 0.2612 0.4010 1.5349 0.9537 0.2655015

0.4 0.0888 3.7310 0.2380 0.3927 1.6503 0.8950 0.3230645

0.5 0.0655 3.1304 0.2092 0.3834 1.8329 0.8309 0.3642153

0.6 0.0457 2.6086 0.1753 0.3732 2.1290 0.7653 0.3917283

0.7 0.0298 2.1752 0.1369 0.3624 2.6475 0.7009 0.4087300

0.8 0.0172 1.8238 0.0945 0.3510 3.7152 0.6391 0.4180159

0.9 0.0075 1.5421 0.0487 0.3391 6.9673 0.5807 0.4218196

1 0.0000 1.3168 0.0000 0.3264 infinity 0.5262 0.4218197

Table 2 The variation of maximum mass of neutron star, corresponding radius Rb , surface red shift and electric field with u for n = 4.001 and
K = 0.24988

u
8πGρr2

b

c2 Rb (km) M
M⊕ Rb (km) M

M⊕ Zb Eb.rb

(ρb = 2 × 1014 g/cc) (ρb = 2.7 × 1014 g/cc)

0.010 0.10011 3.98069 0.02686 3.42604 0.02311 0.01010 0.0130

0.020 0.19585 5.58163 0.07531 4.80390 0.06482 0.02041 0.0260

0.040 0.37442 7.75630 0.20932 6.67556 0.18015 0.04167 0.0517

0.080 0.68170 10.56996 0.57049 9.09718 0.49100 0.08696 0.1024

0.100 0.81136 11.58804 0.78180 9.97339 0.67287 0.11111 0.1274

0.140 1.02521 13.15114 1.24216 11.31869 1.06908 0.16279 0.1766

0.180 1.18178 14.24872 1.73035 12.26334 1.48925 0.21951 0.2251

0.200 1.23988 14.65740 1.97776 12.61508 1.70218 0.25000 0.2490

0.240 1.31840 15.23216 2.46638 13.10975 2.12272 0.31579 0.2965

0.280 1.35045 15.51135 2.93018 13.35004 2.52190 0.38889 0.3438

0.300 1.35056 15.54574 3.14644 13.37964 2.70802 0.42857 0.3675

0.320 1.34096 15.51093 3.34869 13.34968 2.88209 0.47059 0.3915

0.3448 1.31677 15.37104 3.57546 13.22928 3.07727 0.52620 0.4218

Fig. 1 The variation of p,
ρ,

p

ρc2 , Z, 1
c2 (

dp
dρ

), γ and E

from centre to surface for
n = 4.001 and K = 0.24988 is
shown in the following graphs
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Fig. 2 Variation of maximum mass M of quark star with n

Table 3 Variation of maximum mass of quark star (surface density
ρb = 4.6888 × 1014 g/cc) and its radius with u for n = 4.001 and K =
0.24988

u Rb (km) M
M⊕

0.010 2.59982 0.01754

0.020 3.64540 0.04919

0.040 5.06569 0.13671

0.080 6.90331 0.37259

0.100 7.56822 0.51060

0.140 8.58909 0.81126

0.180 9.30593 1.13011

0.200 9.57284 1.29169

0.240 9.94822 1.61081

0.280 10.13057 1.91372

0.300 10.15303 2.05496

0.320 10.13029 2.18705

0.3448 10.03893 2.33516

4(4 + √
2) ≥ n > 4. However, for 4 + 2

√
2 ≥ n > 4, we ob-

serve that with the increase of K , i.e. increasing the charge,
the mass of the star increases. This is consistent with the
observed phenomena. The ratio of mass/radius is increasing
as we increase the charge i.e. with increasing charge; the

proportion of mass to the radius of the star is increasing.
Hence the denser star can be stabilized with the increase
of charge. Second important aspect of the solutions is that
the range of well behaved nature of solutions of Murad and
Pant (2014) (Neutral solutions) is augmented substantially
from 4(4 + √

2) ≥ n > 4 + 2
√

2 to 4(4 + √
2) ≥ n > 4.

The maximum mass of the quark star is very close to the
value suggested by Dong et al. (2013). Further, for some
suitable choices of input parameters n and u, we have gen-
erated in Table 3 compact fluid spheres similar to the mass
and radius of some possible strange star candidates like
Her X-1, 4U 1538–52, LMCX-4, SAX J1808.4–3658 (Gan-
gopadhyay et al. 2013).
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