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Abstract A theoretical investigation has been performed
on the nonlinear propagation of nonplanar (cylindrical
and spherical) Gardner solitons (GSs) associated with the
positron-acoustic (PA) waves in a four component plasma
system consisting of nonthermal distributed electrons and
hot positrons, mobile cold positrons, and immobile posi-
tive ions. The well-known reductive perturbation method
has been employed to derive the modified Gardner (MG)
equation. The basic features (viz. amplitude, polarity, speed,
etc.) of nonplanar PA Gardner solitons (GSs) have been ex-
amined by the numerical analysis of the MG equation. It
has been observed that the properties of the PA GSs in a
nonplanar geometry differ from those in a planar geometry.
It has been also investigated that the presence of nonther-
mal (Cairns distributed) electrons and hot positrons signifi-
cantly modify the amplitude, polarity, speed, and thickness
of such PA GSs. The results of our investigation should play
an important role in understanding various interstellar space
plasma environments as well as laboratory plasmas.
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1 Introduction

Nowadays the research works on the nonlinear propagation
of solitary waves (SWs) in electron-positron-ion (e-p-i) plas-
mas have been received a considerable attention because of
significant importance to understand the behavior of space
plasmas viz. supernovas, pulsar environments, cluster ex-
plosions, and active galactic nuclei (Begelman et al. 1984;
Miller and Witta 1987; Tribeche et al. 2009). Some theo-
retical investigations (Popel et al. 1995; Shukla et al. 2004;
Mahmood and Ur-Rehman 2009) have been made on the
nonlinear propagation of ion-acoustic (IA) SWs in e-p-i
plasmas based on Maxwellian assumption.

Recently, the nonlinear phenomena (viz. solitons, shocks,
double layers, etc.) associated with positron-acoustic (PA)
waves have been attracted to a number of authors (Tribeche
et al. 2009; Nejoh 1996; Tribeche 2010; Sahu 2010; El-
Shamy et al. 2012). PA waves are basically acoustic-type of
waves, in which the inertia is provided by the cold positron
mass, and the restoring force is provided by the thermal
pressure of hot positrons. Nejoh (1996) studied the non-
linear wave structures of large-amplitude PA waves in an
electron-positron plasma with an electron beam. Tribeche
et al. (2009) investigated the PA SWs in a four-component
plasma system consisting of mobile cold positrons, im-
mobile positive ions, and Boltzmann distributed electrons
and positrons. One year later, Tribeche (2010) analyzed the
small amplitude PA double layers (DLs) in e-p-i plasmas
considering the same plasma species. Sahu (2010) investi-
gated the planar and nonplanar PA shock waves in an un-
magnetized plasma consisting of mobile cold positrons, sta-
tionary positive ions and Boltzmann-distributed electrons
and hot positrons. Using the Poincaré-Lighthill-Kuo method
El-Shamy et al. (2012) theoretically investigated the charac-
teristics of the head-on collision between two PA SWs con-
sidering the same plasma model as like as the considered
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model of Tribeche et al. (2009), Tribeche (2010) and Sahu
(2010). However, all of these works (Tribeche et al. 2009;
Tribeche 2010; Sahu 2010; El-Shamy et al. 2012) are con-
cerned with Maxwellian distributed electrons and positrons.

A wide range of investigations of space plasmas are char-
acterized by a particle distribution function with high en-
ergy tail and they may deviate from the Maxwellian (Alam
et al. 2013a; Alam 2013). In the heliospheric environments,
the plasma contains the nonthermally distributed ions (Tas-
nim et al. 2013a; Shuchy et al. 2013) or electrons (Mamun
et al. 1996; Shukla and Mamun 2002; Verheest and Pillay
2008). Thus population of energetic or nonthermal particles
and their distribution have received a great deal of attention
in understanding the nonlinear electrostatic perturbations in
space plasmas, particularly in the upper Martian ionosphere
(Lundin et al. 1989), in the lower part of magnetosphere
(Boström 1992), in/around the Earth’s bow shock (Mat-
sumoto et al. 1994), etc. Cairns et al. (1995) used nonther-
mal distributed electrons to study the IA SWs which were
observed by the Freja and Viking satellites (Boström 1992;
Dovner et al. 1994; Mamun 2000). Baluku and Hellberg
(2011) studied the arbitrary amplitude IA SWs and DLs by
using the Sagdeev potential approach in an e-p-i plasma con-
sisting of nonthermal (Cairns-distributed) electrons, Boltz-
mann positrons and cold ions. Jilani et al. (2012) analyzed
the IA solitons in e-p-i plasma with nonthermal electrons.
Verheest et al. (2013) studied the dust-ion-acoustic (DIA)
super solitons in a dusty plasma with immobile negative
dust, cold fluid protons, and nonthermal electrons through
a Sagdeev pseudopotential approach. Recently, Chatterjee
et al. (2012) investigated the nonlinear propagation of IA
shock waves in an unmagnetized plasma consisting of non-
thermal electrons, nonthermal positrons, and singly charged
adiabatically hot positive ions. Alinejad (2010) rigorously
studied the DIA SWs and shock structures in a dusty plasma
with nonthermal electrons.

However, all of these works (Popel et al. 1995; Shukla
et al. 2004; Mahmood and Ur-Rehman 2009; Nejoh 1996;
Tribeche 2010; Sahu 2010; El-Shamy et al. 2012; Baluku
and Hellberg 2011; Jilani et al. 2012; Chatterjee et al. 2012;
Alinejad 2010) are limited to one dimensional (1D) planar
geometry associated with either IA SWs or PA SWs in e-p-i
plasmas which may not be a realistic situation in space and
laboratory devices. Since in many cases, the wave structures
observed in space or laboratory devices are certainly not in-
finite (unbounded) in one dimension (Shukla and Rosenberg
1999). The nonplanar geometries of practical interest are
capsule implosion (spherical geometry), shock tube (cylin-
drical geometry), star formation, supernova explosions, etc.

Some of the investigations (Sahu and Roychoudhury
2005; Jehan et al. 2007; Sabry et al. 2009) have been re-
ported on the study of nonplanar IA SWs in e-p-i plasmas.
Moslem et al. (2007) used cylindrical geometry to study the

propagation of nonlinear excitations in an e-p-i plasma in
the inner region of the accretion disc. They inferred that the
solitary potential excitations suffer a velocity modification
because of the deviation from the radial direction. Li (2010)
investigated the interaction of IA SWs in a nonplanar quan-
tum plasma and found that the variations of phase shifts
with quantum Bohm potential for compressive and rarefac-
tive IA SWs are quite different. These works (Sahu and
Roychoudhury 2005; Jehan et al. 2007; Sabry et al. 2009;
Moslem et al. 2007; Li 2010) are concerned with nonplanar
IA SWs in e-p-i plasmas.

Recently, a number of authors have been investigated the
nonlinear propagation of planar GSs (Deeba et al. 2012;
Masud et al. 2012; Tasnim et al. 2013b; Alam et al. 2014;
Lee 2009) and nonplanar GSs (Mannan and Mamun 2011;
Akhter et al. 2013; Ghosh et al. 2013; Alam et al. 2013b) in
their considered plasma system. But up to now, no theoreti-
cal investigation has been performed on the cylindrical and
spherical PA GSs in e-p-i plasmas with nonthermal (Cairns
distributed) electrons and hot positrons. Therefore, we con-
sider a four-component plasma system consisting of non-
thermal distributed electrons and hot positrons, mobile cold
positrons, and immobile positive ions. In this paper, we see
that cylindrical and spherical geometries associated with PA
GSs differ qualitatively from those in 1D planar geometries
and we also observe that how nonthermal electrons and hot
positrons significantly affect them.

It is noted here that reductive perturbation method is
used for small amplitude SWs (Verheest and Cattaert 2004;
Gogoi et al. 2012). Small-amplitude SWs observed in the
auroral plasma between altitudes of 6000 and 8000 km
(Temerin et al. 1982). Higher order approximations can
not be neglected in case of large amplitude SWs (specially
DLs) and perturbation method is not adequate to study such
waves (Gogoi et al. 2012). Sagdeev was the first to use non-
perturbative approach to study SWs in plasmas. Sagdeev’s
pseudopotential method is suitable to study large amplitude
SWs and DLs (Gogoi et al. 2012). However, our intention
here is to study small amplitude SWs by using reductive per-
turbation method.

The manuscript is organized as follows. The govern-
ing equations are provided in Sect. 2. The MG equation
is derived by using the reductive perturbation method in
Sect. 3. The analytical and numerical solutions are presented
in Sect. 4. A brief discussion is finally given in Sect. 5.

2 Governing equations

We consider a nonplanar (cylindrical or spherical) geome-
try, and nonlinear propagation of the PA waves in a four-
component plasma system consisting of nonthermal dis-
tributed electrons and hot positrons, mobile cold positrons,
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and immobile positive ions. Hence, at equilibrium, ne0 =
npc0 + nph0 + ni0, where ni0, ne0 are the unperturbed ion
number density and electron number density respectively.
npc0 (nph0) is the number density of unperturbed cold (hot)
positron.

The electrons and hot positrons are assumed to obey non-
thermal distribution on the PA wave time scale and are given
by the following expressions (Cairns et al. 1995):

ne = ne0
(
1 − βφ + βφ2) exp

(
eφ

Te

)
,

nph = nph0
(
1 + βφ + βφ2) exp

(−eφ

Tph

)
,

where β is the nonthermal parameter, ne and nph are the
number densities of perturbed electron and hot positron,
while Te and Tph are the temperatures of electron and hot
positron (in the energy units), respectively. The range of
the nonthermal parameter β is 0 ≤ β ≤ 4/3 (El-Taibany
et al. 2010; El-Labany et al. 2012; Gogoi et al. 2012). When
β → 0, the above two equations give the Boltzmann distri-
bution of electrons and hot positrons, respectively.

The normalized basic equations governing the dynamics
of the PA waves in a nonplanar geometry are given in di-
mensionless variables as follows:

∂npc

∂t
+ 1

rν

∂

∂r

(
rνnpcupc

) = 0, (1)

∂upc

∂t
+ upc

∂upc

∂r
= −∂φ

∂r
, (2)

1

rν

∂

∂r

(
rν ∂φ

∂r

)
= −ρ, (3)

−ρ = −npc − μ1
(
1 + βσ1φ + βσ 2

1 φ2) exp (−σ1φ)

+ μ2
(
1 − βσ2φ + βσ 2

2 φ2) exp (σ2φ) − μ3. (4)

It is to be noted that ν = 0 for 1D planar geometry, and ν =
1 (2) for a nonplanar cylindrical (spherical) geometry. Here
npc is the cold positron number density normalized by its
equilibrium value npc0, upc is the cold positron fluid speed
normalized by Cpc = (kBTef /mp)1/2, φ is the electro-
static wave potential normalized by kBTef /e, the time vari-
able t is normalized by ω−1

pc = (mp/4πnpc0e
2)1/2 and the

space variable x is normalized by the Debye length λDm =
(kBTef /4πnpc0e

2)1/2, kB is the Boltzmann constant, mp is
the positron mass, ρ is the surface charge density, and e is
the magnitude of the electron charge, σ1 = Tef /Tph, σ2 =
Tef /Te, μ1 = nph0/npc0, μ2 = ne0/npc0, μ3 = ni0/npc0,
and Tef = TeTph/(μ1Te + μ2Tph) is the effective temper-
ature. It should be noted here that for any plasma species
having two different temperatures, many authors use ef-
fective temperature for normalization (Jones et al. 1975;

Masood et al. 2009). However, instead of effective temper-
ature one can use other species temperature for normaliza-
tion. It is, in fact, not important which temperature we use
for normalization. Since the physics of the work does not
depend on normalization at all.

3 Derivation of the MG equation

To study the finite amplitude PA GSs by analyzing the ingo-
ing solutions of Eqs. (1)–(4), we first introduce the stretched
coordinates:

ζ = ε(r − Vpt), (5)

τ = ε3t, (6)

where Vp is the phase speed (ω/k) of the perturbation mode
and ε is a smallness parameter measuring the weakness of
the dispersion (0 < ε < 1). To obtain a dynamical equation,
we also expand the perturbed quantities npc, upc , φ, and ρ

in power series of ε. Let M be any of the system variables
npc, upc , φ, and ρ describing the systems’s state at a given
position and instant. We consider small deviations from the
equilibrium state M(0)—which explicitly is n

(0)
pc = 1, u

(0)
pc =

0, φ(0) = 0, and ρ(0) = 0 by taking

M = M(0) +
∞∑

n=1

εnM(n). (7)

To the lowest order in ε, Eqs. (1)–(7) give

u(1)
pc = 1

Vp

ψ, (8)

n(1)
pc = 1

V 2
p

ψ, (9)

ρ(1) = 0, (10)

Vp = 1√
(1 − β)(μ1σ1 + μ2σ2)

, (11)

where ψ = φ(1). Equation (11) represents the phase speed
of the PA waves propagating in a plasma system under con-
sideration. To the next higher order of ε, we obtain a set of
equations, which, after using Eqs. (8)–(11), can be simpli-
fied as

u(2)
pc = 1

2V 3
p

ψ2 + 1

Vp

φ(2), (12)

n(2)
pc = 3

2V 4
p

ψ2 + 1

V 2
p

φ(2), (13)

ρ(2) = −1

2
Aψ2 = 0, (14)
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A = V 3
p

2

[
3

V 4
p

+ μ1σ
2
1 − μ2σ

2
2

]
. (15)

It is obvious from Eqs. (14) that A = 0 since ψ �= 0.
Therefore, the solution of A(μ1 = μc) = 0 for μ1 is given
by

μ1 = μc = − 1

6P 2
+

√
σ 2

1 + 12μ2σ2P 2(σ1 + σ2)

6σ1P 2

− μ2σ2

σ1
, (16)

where P = (−1 + β). Equation (16) represents the critical
value of μ1 above (below) which the SWs with a positive
(negative) potential exists. We can find A = 0 for a certain
(critical) value of μ1, i.e. A = 0 for μ1 = μc � 0.116 [ob-
tained from A(μ1 = μc) = 0 for a set of plasma parame-
ters viz. μ2 = 0.7, σ1 = 3, σ2 = 1.5, and β = 0.7]. We let
A = A0 when μ1 �= μc, but μ1 ∼ μc. So, for μ1 around its
critical value (μc), A = A0 can be expressed as

A0 � s

(
∂A

∂μ1

)

μ1=μc

|μ1 − μc| = c1sε, (17)

where c1 = σ 2
1 , |μ1 − μc| is a small and dimensionless pa-

rameter, and can be taken as the expansion parameter ε,
i.e. |μ1 − μc| � ε, and s = 1 for μ1 > μc and s = −1 for
μ1 < μc. So, ρ(2) can be expressed as

ε2ρ(2) � −ε3 1

2
c1sψ

2, (18)

which, therefore, must be included in the third order Pois-
son’s equation. To the next higher order in ε, we obtain a set
of equations:

∂n
(1)
pc

∂τ
− Vp

∂n
(3)
pc

∂ζ
+ ∂u

(3)
pc

∂ζ
+ ∂

∂ζ

[
n(1)

pc u(2)
pc

]

+ ∂

∂ζ

[
n(2)

pc u(1)
pc

] + νu
(1)
pc

Vpτ
= 0, (19)

∂u
(1)
pc

∂τ
− Vp

∂u
(3)
pc

∂ζ
+ u(1)

pc

∂u
(2)
pc

∂ζ
+ u(2)

pc

∂u
(1)
pc

∂ζ

+ ∂φ(3)

∂ζ
= 0, (20)

∂n
(3)
pc

∂ζ
− 2

V 3
p

∂ψ

∂τ
− 15

2V 6
p

ψ2 ∂ψ

∂ζ
− 3

V 4
p

∂

∂ζ

[
ψφ(2)

]

− ν

V 3
p τ

ψ − 1

V 2
p

∂φ(3)

∂ζ
= 0, (21)

∂2ψ

∂ζ 2
+ 1

2
c1sψ

2 + n(3)
pc − (1 − β)(μ1σ1 + μ2σ2)φ

(3)

+ (
μ1σ

2
1 − μ2σ

2
2

)
ψφ(2)

− 1

2

(
μ1σ

3
1 + μ2σ

3
2

)
(

1

3
+ β

)
ψ3 = 0. (22)

Now, using Eqs. (11)–(14) and Eqs. (19)–(22), we obtain a
equation of the form:

∂ψ

∂τ
+ ν

2τ
ψ + c1sBψ

∂ψ

∂ζ
+ αBψ2 ∂ψ

∂ζ
+ B

∂3ψ

∂ζ 3
= 0, (23)

where

α = 15

2V 6
p

− 1

2
(1 + 3β)

(
μ1σ

3
1 + μ2σ

3
2

)
, (24)

B = V 3
p

2
. (25)

Equation (23) is known as MG equation. The modifica-
tion is due to the extra term (viz. ν

2τ
ψ ), which arises due

to the effects of the nonplanar geometry. Equation (23) con-
tains the geometrical term ν

2τ
ψ which is singular at τ → 0

(Javidan 2013). Therefore, we can analyze the behaviour of
SWs near the singularity. It is clear that Eq. (23) is sym-
metrical respect to time and therefore we can (numerically)
solve Eq. (23) in the left limit (τ < 0) or right limit (τ > 0)
of the singularity (Javidan 2013). The evolution of a SW
which moves toward the singularity (τ < 0) is the same as its
evolution when it goes far away from the singularity (τ > 0).
It should be mentioned that for larger values of τ , the term
ν

2τ
ψ is negligible. However, as the value of τ decreases,

the term ν
2τ

ψ becomes dominant. The nonplanar geomet-
rical effect is significant when τ → 0 and weaker for larger
value of τ .

It would be mentioned here that if we neglect ψ3 term,
and set

c1sB = A = V 3
p

2

[
3

V 4
p

+ μ1σ
2
1 − μ2σ

2
2

]
,

the MG equation reduces to a modified K-dV equation,
which can be derived by using a lower-order stretching, viz.

ζ = ε1/2(r − Vpt), τ = ε3/2t.

However, in this modified K-dV equation, the nonlinear
term vanishes at μ1 = μc and is not valid near μ1 = μc,
which makes soliton amplitude large enough to break down
the validity of the reductive perturbation method. However,
the MG equation derived here is valid for nonplanar geome-
try as well as for μ1 � μc.

4 SW solution of MG equation

We have already mentioned that ν = 0 corresponds to a 1D

planar geometry which reduces Eq. (23) to a standard Gard-
ner equation. Before going to numerical solutions of MG
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equation, we will first analyze stationary GSs solution of
Gardner equation (23) [with ν = 0]. To do so, we first in-
troduce a transformation ξ = ζ − U0τ which allows us to
write Eq. (23), under the steady state condition, as

1

2

(
dψ

dξ

)2

+ V (ψ) = 0, (26)

where the pseudo-potential V (ψ) is

V (ψ) = − U0

2B
ψ2 + c1s

6
ψ3 + α

12
ψ4. (27)

It would be mentioned here that U0 and B are always posi-
tive. It is obvious from Eq. (27) that

V (ψ)
∣∣
ψ=0 = dV (ψ)

dψ

∣∣∣∣
ψ=0

= 0, (28)

d2V (ψ)

dψ2

∣∣∣∣
ψ=0

< 0. (29)

The conditions Eqs. (28) and (29) imply that SW solutions
of Eq. (26) exist if

V (ψ)|ψ=ψm = 0. (30)

The latter can be solved as

U0 = c1sB

3
ψm1,2 + αB

6
ψ2

m1,2, (31)

ψm1,2 = ψm

[
1 ∓

√

1 + U0

V0

]
, (32)

where ψm = −c1s/α, and V0 = c2
1s

2B/6α. Now, using Eqs.
(27) and (32) in Eq. (26) we have

(
dψ

dζ

)2

+ γψ2(ψ − ψm1)(ψ − ψm2) = 0, (33)

where γ = α/6. The SW solution of Eq. (26) or Eq. (33) is,
therefore, directly given by

ψ =
[

1

ψm2
−

(
1

ψm2
− 1

ψm1

)
cosh2

(
ξ

δ

)]−1

, (34)

where ψm1,2 are given in Eq. (32), and SWs width δ is

δ = 2√−γψm1ψm2
. (35)

We note that Eq. (34) represents a SW solution of Eq. (23).
It is clear from Eqs. (14) and (17) that the solitary potential
profile is negative (positive) if A < 0 (A > 0). Therefore,
A(μ1 = μc) = 0, where μc is the critical value of μ1 above
(below) which the SWs with a positive (negative) potential
exists. To find the parametric regimes for which the positive

Fig. 1 Variation of μc [obtained from A(μ1 = μc) = 0] with σ2 and β

Fig. 2 Variation of μc [obtained from A(μ1 = μc) = 0] with σ1 and β

and negative solitary potential profiles exist, we have nu-
merically analyzed A, and obtain A(μ1 = μc) = 0 surface
plots. The A(μ1 = μc) = 0 surface plots are shown in Figs.
1 and 2. From Fig. 1, it is observed that the critical value μc

increases with the increase of nonthermal parameter β , but
gradually decreases with the increase of relative temperature
ratio σ2. From Fig. 2, it is seen that μc gradually increases
with the increase of relative temperature ratio σ1. Therefore,
for typical plasma parameters μ2 = 0.7, σ1 = 3, σ2 = 1.5,
and β = 0.7, we found the existence of the small amplitude
SWs with a positive potential for μ1 > μc, and with a nega-
tive potential for μ1 < μc.

We now turn to Eq. (23) with the term ν
2τ

ψ , which is
due to the effects of the nonplanar (cylindrical or spheri-
cal) geometry. An exact analytical solution of Eq. (23) is not
possible. Therefore, we have numerically solved Eq. (23),
and studied the effects of cylindrical and spherical geome-
tries on time-dependent PA GSs, as well as nonthermal dis-
tributed electrons and nonthermal distributed hot positrons
on PA GSs. The results are depicted in Figs. 3–8. The initial
condition, that we have used in our numerical analysis, is in
the form of the stationary solution of Eq. (23) without the
term ν

2τ
ψ .
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Fig. 3 Effects of cylindrical (ν = 1) geometry on PA positive GSs for
μ1 = 0.12, μ2 = 0.7, σ1 = 3, σ2 = 1.5, β = 0.7, s = 1, and U0 = 0.06

Fig. 4 Effects of cylindrical (ν = 1) geometry on PA negative GSs for
μ1 = 0.1, μ2 = 0.7, σ1 = 3, σ2 = 1.5, β = 0.7, s = −1, and U0 = 0.06

Fig. 5 Effects of spherical (ν = 2) geometry on PA positive GSs for
μ1 = 0.12, μ2 = 0.7, σ1 = 3, σ2 = 1.5, β = 0.7, s = 1, and U0 = 0.06

Figures 3 and 4 show the effects of cylindrical geometry
on the PA positive and negative GSs and Figs. 5 and 6 show
the effects of spherical geometry on the PA positive and neg-
ative GSs. We have also observed (in Figs. 7 and 8) that the
amplitude of the positive GSs decreases with the increase of
nonthermal parameter β and the amplitude of the negative
GSs increases with the increase of relative number density
ratio μ2.

Fig. 6 Effects of spherical (ν = 2) geometry on PA negative GSs for
μ1 = 0.1, μ2 = 0.7, σ1 = 3, σ2 = 1.5, β = 0.7, s = −1, and U0 = 0.06

Fig. 7 Variation of amplitude of the positive GSs with β for
μ1 = 0.12, μ2 = 0.7, σ1 = 3, σ2 = 1.5, and s = 1. The upper (red)
curve is for β = 0.1, the middle (blue) one is for β = 0.2, and the
lower (pink) one is for β = 0.3

Fig. 8 Variation of amplitude of the negative GSs with μ2 for
μ1 = 0.1, β = 0.7, σ1 = 3, σ2 = 1.5, and s = −1. The upper (red)
curve is for μ2 = 0.5, the middle (blue) one is for μ2 = 0.6, and the
lower (pink) one is for μ2 = 0.7

5 Discussions

We have considered an unmagnetized four-component
plasma system [consisting of nonthermal electrons, nonther-
mal hot positrons, mobile cold positrons, and immobile pos-
itive ions] and studied the nonplanar (cylindrical and spher-
ical) geometry effects on the nonlinear propagation of PA
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GSs. We have derived the MG equation by using the re-
ductive perturbation method, and numerically analyzed that
MG equation. The results that have been found from our
investigation can be summarized as follows:

1. The plasma system under consideration supports finite
amplitude GSs, whose basic features (viz. amplitude, po-
larity, speed, and thickness) strongly depend on different
plasma parameters, particularly, μ1, μ2, σ1, σ2, and β .

2. The GSs are shown to exist around μ1 = μc, and are
found to be different from the K-dV solitons, which do
not exist around μ1 = μc.

3. The positive GSs exist when μ1 > μc and negative GSs
exist when μ1 < μc.

4. The amplitude of the positive GSs decreases with the in-
crease of nonthermal parameter β as depicted in Fig. 7
and the amplitude of the negative GSs increases steeply
with the increase of relative number density ratio μ2 as
displayed in Fig. 8.

5. Equation (23) shows that ν
2τ

ψ goes to infinity when
τ → 0. Therefore, this term is singular at τ = 0. For large
values of τ , this term vanishes, and we have usual Gard-
ner equation. In the direction of time, we can start from a
sufficient large τ (like τ = −20) where the term ν

2τ
ψ is

negligible. It is obvious from Eq. (23) that the nonplanar
geometrical effect is important when τ → 0 and weaker
for larger value of τ .

6. The numerical solutions of Eq. (23) reveal that for a large
value of τ (e.g. τ = −20), the planar and nonplanar PA
GSs are identical, but the amplitude of both cylindrical
and spherical PA GSs increases with the decrease of the
value of τ . However, as the value of τ decreases, the term
ν

2τ
ψ becomes dominant, and cylindrical and spherical

GSs differ from 1D planar ones. It is found that the am-
plitude of cylindrical PA GSs is larger than those of 1D
planar ones, but smaller than that of the spherical ones.
The amplitudes of both cylindrical and spherical PA GSs
increase with the decrease of τ (displayed in Figs. 3–6).

In our considered plasma system, cylindrical and spher-
ical geometries as well as electron and positron nonther-
mality effects play a significant role in the basic proper-
ties (viz. amplitude, width, polarity, etc.) of PA GSs. The
amplitude of the positive GSs decreases with the increase
of nonthermal parameter β , whereas the amplitude of the
negative GSs increases steeply with the increase of relative
number density ratio μ2. In case of positive GSs, ampli-
tude decreases gradually with the increase of nonthermal
parameter β . The nonplanar geometry effect for PA GSs
is very strong for a small value of τ and there are differ-
ences between the cylindrical and spherical PA GSs. The
amplitude decreases with increase in τ . In conclusion, we
note that our present theory is valid only for small but fi-
nite amplitude solitary structures, but not arbitrary ampli-
tude solitary structures. It may be stressed that the results

of our present investigation should be useful for under-
standing the basic nonlinear features of PA perturbations in
various interstellar space plasmas [viz. ionosphere (Bremer
et al. 1996), auroral acceleration regions (Ergun et al. 1998;
Franz et al. 1998), supernovas, pulsar environments, clus-
ter explosions, active galactic nuclei, etc.] as well as labo-
ratory plasmas [viz. semiconductor plasmas (Shukla et al.
1986), intense laser fields (Berezhiani et al. 1992)] in which
nonthermal electrons, nonthermal hot positrons, mobile cold
positrons, and immobile positive ions are the major plasma
species.
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