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Abstract We investigate the bounce cosmology induced by
inhomogeneous viscous fluids in FRW space-time (non nec-
essarily flat), taking into account the early-time acceleration
after the bounce. Different forms for the scale factor and sev-
eral examples of fluids will be considered. We also analyze
the relation between bounce and finite-time singularities and
between the corresponding fluids realizing this scenarios. In
the last part of the work, the study is extended to the frame-
work of f (R)-modified gravity, where the modification of
gravity may also be considered as an effective (viscous) fluid
producing the bounce.
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1 Introduction

The cosmological observations reveal that the universe is ex-
panding in an accelerated way (Komatsu et al. 2009). Apart
the introduction of small and positive Cosmological Con-
stant in the framework of General Relativity, where the ac-
celeration is induced by the negative pressure of the dark en-
ergy with Equation of State parameter ω = −1, several de-
scriptions of the cosmic acceleration have been presented in
the recent literature, making the dark energy issue the “Mys-
tery of the Millennium” (Padmanabhan 2006), with many
implications in fundamental physics. The data constrain ω

to be very close to minus one, but in principle different
forms of dark fluid (phantom, quintessence . . .), satisfying

R. Myrzakulov · L. Sebastiani (B)
Eurasian International Center for Theoretical Physics
and Department of General Theoretical Physics, Eurasian
National University, Astana 010008, Kazakhstan
e-mail: l.sebastiani@science.unitn.it

a suitable Equation of State are allowed. Moreover, the ex-
istence of an accelerated epoch also in the early-time uni-
verse, namely the inflation, which cannot be driven by stan-
dard matter/radiation, adds some new interest in the inves-
tigation of general forms, behaviours and solutions of dark
fluids. We also observe that, despite to the fact that many
macroscopic physical systems, like the large scale struc-
ture of matter, can be approximated like perfect fluids (with
Equation of State parameter ω = const), we cannot exclude
non-perfect fluid representation for the dark components of
the universe (whose origin remains unknown) like inhomo-
geneous and/or viscous fluid representation. Namely, the
Equation of Steate parameter of the dark energy may be
not a constant or its pressure may depend on the expansion
rate of the universe due to some viscosity. The investiga-
tion of such a kind of fluids is motivated by several rea-
sons. For example, in the last years the interest in modi-
fied theories of gravity, where some combination of curva-
ture invariants (Riemann tensor, Weyl tensor, Ricci tensor
and so on) replaces or is added into the classical Hilbert-
Einstein action of General Relativity, has grown up (see No-
jiri and Odintsov 2006, 2011; Capozziello and Faraoni 2010;
Capozziello and De Laurentis 2011; Clifton et al. 2012;
De la Cruz-Dombriz and Saez-Gomez 2012; Myrzakulov
et al. 2013; Setare and Momeni 2011; Hendi and Momeni
2011; Jamil et al. 2012a, 2012b, 2012c, 2012d; Bamba et al.
2012a, 2012b), and it is worth considering that this theo-
ries have a corresponding description in the fluid-like form,
so that the study of inhomogeneous viscous fluids is one of
the easiest way to understand some of the general aspects
of modified theories also (for a recent review of inhomoge-
neous fluids as an equivalent description of different theo-
retical models, see Bamba et al. 2012a, 2012b).

When we consider universe contents different from the
standard matter ones, we may find several interesting cos-
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mological solutions with a great varieties of features like os-
cillations, singularities etc. Among them, the bounce solu-
tions (where a cosmological contraction is followed by an
expansion at a finite time) are interesting to analyze (see
Novello and Bergliaffa 2008 for a review). The idea that, in-
stead from an initial singularity, the universe has emerged
from a cosmological bounce furnishes an alternative sce-
nario to the Big Bang theory. In the so-called matter bounce
scenario (Brandenberger 2010a, 2010b, 2011, 2012), in the
initial contraction the universe is in a matter-dominated
stage, after that a bounce without any singularity appears,
and the expanding universe with the correct observed mat-
ter spectrum is generated: in such a case, the precision of
the anisotropies predicted by the model are well confirmed
by the observations of the Cosmic Microwave Background
(CMB) anisotropies. Many different aspects of bounce cos-
mology have been analyzed in the literature (see Belin-
sky et al. 1970) for BKL instability, Khoury et al. (2001)
for the Ekpyrotic scenario, Piao et al. (2004), Liu et al.
(2013) for confrontation of bounce universe with Planck ob-
servations and Casadio (2000), Xue and Steinhardt (2010,
2011), Xue et al. (2013), Bars et al. (2013), Cai et al. (2012,
2013a, 2013b), for other works. Finally, in the recent work
of Bamba et al. (2014), the bounce solutions have been con-
sidered in the framework of modified gravity and massive
bigravity.

The aim of this work is to investigate the bounce
cosmology induced by inhomogeneous viscous fluids in
Friedmann-Robertson-Walker space-time (not necessarily
flat). We will discuss different bounce solutions and the fea-
tures of the related dark fluids, taking into account the ne-
cessity to have a cosmic (inflationary) acceleration after the
bounce. In particular, we are interested in the relation be-
tween bounce and singular solutions, and in the correspond-
ing relation between the dark fluids realizing such scenarios.
In the last part of the work, we also will extend the study to
f (R)-modified gravity, where the modification to Einstein’s
gravity can be viewed as an (effective) viscous fluid: in this
case, the realization of bounce solutions will be considered
in flat FRW space-time.

The paper is organized as follows. In Sect. 2, the for-
malism of inhomogeneous viscous fluids in FRW universe
is presented. In Sect. 3, we will analyze the bounce solu-
tions in fluid cosmology with exponential scale factor, we
will study the feature of the models and we will analyze the
appearance of singular solutions. Some explicit examples of
fluid realizing such a bounce will be presented. In Sect. 4,
the same investigation will be carried out for the bounce so-
lutions with power-law scale factor. Section 5 is devoted to
bounce solutions in f (R)-gravity by using a fluid-like rep-
resentation. Conclusions and remarks are given in Sect. 6.

We use units of kB = c = � = 1 and denote the gravi-
tational constant, GN , by κ2 ≡ 8πGN , such that G

−1/2
N =

MPl, MPl = 1.2 × 1019 GeV being the Planck mass.

2 Inhomogeneous viscous fluids in FRW space-time

Let us start by recalling the Friedmann Equations of Motion
(EOMs) for the Friedmann-Robertson-Walker (FRW) met-
ric in spherical coordinates r, θ,φ,

ds2 = −dt2 + a2(t)

[
dr2

1 − k2r2
+ r2dΩ2

]
,

dΩ2 = (
dθ2 + sin2 θdφ2),

(1)

which read

H 2 + k

a2
= κ2ρ

3
, − (2Ḣ + 3H 2)

κ2
= p. (2)

In the above expressions, a(t) is the scale factor of the uni-
verse (r = r ′/

√|a(t)|2, r ′ being the physical radial coor-
dinate), k = −1,0,1 is the spatial curvature which corre-
sponds to the hyperbolic, flat or spherical space, respec-
tively, and H = ȧ(t)/a(t) is the Hubble parameter where the
dot denotes the derivative with respect to the cosmological
time t . The cosmological parameter reads

Ω = 1 + k

a2H 2
, (3)

and in general can be different to one.
In the Friedmann equations, p and ρ are the pressure and

the energy density of the fluid contents of the universe which
must satisfy the conservation law,

ρ̇ + 3H(ρ + p) = 0. (4)

In this work, we will consider the general form for the Equa-
tion of State (EoS) of inhomogeneous viscous fluids, namely
(Capozziello et al. 2006; Nojiri and Odintsov 2005, 2006)

p = ω(ρ)ρ − B
(
a(t),H, Ḣ , . . .

)
, (5)

where the EoS parameter, ω(ρ), may depend on the energy
density, and the bulk viscosity B(a(t),H, Ḣ , . . .) is a gen-
eral function of the scale factor, the Hubble parameter and its
derivatives. On thermodynamical grounds, in order to have
the positive sign of the entropy change in an irreversible pro-
cess, the bulk viscosity must be a positive quantity (Brevik
and Gorbunova 2005; Brevik et al. 2005). The stress-energy
tensor of fluid Tμν is given by

Tμν = ρuμuν

+ [
ω(ρ)ρ + B

(
ρ,a(t),H, Ḣ , . . .

)]
(gμν + uμuν),

(6)

where uμ = (1,0,0,0) is the four velocity vector. The fluid
energy conservation law (4) finally leads to

ρ̇ + 3Hρ
(
1 + ω(ρ)

) = 3HB
(
ρ,a(t),H, Ḣ , . . .

)
. (7)
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In the next sections, we will revisit some simple bounce so-
lutions discussing the general features of the fluids which
realize them and the possibility to have an early-time ac-
celeration after the bounce. Some explicit examples of this
fluids will be furnished.

3 Bounce solutions with exponential scale factor

We start by examining the bounce scenario where the scale
factor and therefore the Hubble parameter behave as

a(t) = a0eα(t−t0)
2n

, H(t) = 2nα(t − t0)
2n−1,

n = 1,2,3, . . . (8)

where a0, α are positive (dimensional) constants and n is
a positive natural number from which depends the feature
of the bouncing. Moreover, t0 > 0 is the fixed bounce time.
When t < t0, the scale factor decreases and we have a con-
traction with negative Hubble parameter, at t = t0 we have
the bounce, such that a(t = t0) = a0, and when t > t0 the
scale factor increases and the universe expands with posi-
tive Hubble parameter.

It is worth to spending some words on the case of n non
positive natural number. First of all, the special choice n =
1/2 corresponds to the de Sitter solution (H(t) = const).
Then, when n < 1/2 or n is a positive non-natural number,
the bounce is changed in a finite-time singularity occurring
at t = t0. It means, that the Hubble parameter or some of
its derivatives (and therefore the curvature) diverge at that
time, and we may describe two different expansion (or con-
traction) cosmological histories, but the two branches with
t > t0 (H(t) < 0) and t < t0 (H(t) > 0) are not connected
respect to each other: in other words, the universe starts or
finish with a singularity. In the specific, the finite-time sin-
gularities can be classified in the following way (Nojiri et al.
2005):

• Type I (Caldwell et al. 2003; McInnes 2002; Faraoni
2002; Nojiri and Odintsov 2003; Elizalde et al. 2004;
Gonzalez-Diaz 2004; Nesseris and Perivolaropoulos 2004;
Sami and Toporensky 2004; Stefancic 2004; Chimento
and Lazkoz 2004): for t → t0, a(t),H(t), Ḣ (t) → ∞,
namely the scale factor, the effective energy density and
the effective pressure of the universe diverge. It corre-
sponds to the case n < 0.

• Type II (sudden Barrow et al. 1986; Barrow 1990, 2004;
Nojiri and Odintsov 2004a): for t → t0, a(t) → const,
H(t) → const and Ḣ (t) → ∞, namely the effective pres-
sure of the universe diverges. It corresponds to the case
0 < n < 1/2.

• Type III (Nojiri and Odintsov 2004b): for t → t0, a(t) →
const, H(t) → ∞ and |Ḣ (t)| → ∞, namely the effec-
tive energy density and pressure of the universe diverge.
It corresponds to the case 1/2 < n < 1.

• Type IV (Nojiri et al. 2005): for t → t0, only the higher
derivatives of H(t) diverge. It corresponds to the case n >

1, but n �= m/2, where m is an integer number.

Finally, when n = m/2, m odd integer number, the scale fac-
tor possesses a saddle point at t = t0, but the bounce is ab-
sent.

The presence of an initial singularity suggests the Big
Bang scenario, while the bounce solution brings to a con-
tracting/expanding universe. In such a case,

ä

a
= H 2 + Ḣ

= 2nα(t − t0)
2(n−1)

[
2nα(t − t0)

2n + (2n − 1)
]
, (9)

and we have an acceleration. In particular, after the bounce,
the universe expands in an accelerated way and the inflation-
ary scenario may be suggested.

Let us return to the bounce solution (8). From the first
EOM in (2) we obtain

ρ = 3

κ2

[
4n2α2(t − t0)

2(2n−1) + k

a2
0e2α(t−t0)

2n

]
. (10)

It is easy to see that for the flat universe (k = 0) or for the
spherical universe (k = 1), this quantity is positive defined,
but in the hyperbolic space (k = −1) we have a region where
the fluid possesses a negative energy density (in particular,
ρ = −3/(a0κ)2 at t = t0). For this reason, we will concen-
trate on the first two (physical) cases.

In the flat universe, the energy density of fluid decreases
with the contraction, is equal to zero at t = t0, and increases
with the subsequent expansion.

In the spherical universe, if n > 1, there is a region
around the bounce where the energy density of fluid in-
creases during the contraction and decreases during the ex-
pansion, reaching the value of ρ = 3/(a0κ

2) at t = t0. This
is clear if we analyze the time derivative of the energy den-
sity,

ρ̇ = 3

κ2

[
8n2(2n − 1)α2(t − t0)

4n−3

− 4nα(t − t0)
2n−1 k

a2
0e2α(t−t0)

2n

]
, (11)

for k = 1. Let us consider n > 1. We see that, when t � t0,
since (t − t0) < 0 and (t − t0)

4n−3 � (t − t0)
2n−1, the first

negative term is dominant and the energy density decreases.
However, when t approaches to t0, the second positive term
becomes dominant and the energy density starts to increase
until t0 where has a local maximum. After that, energy den-
sity decreases as soon as t remains close to t0, but, when
t � t0, the energy density increases again. This mechanism
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is interesting if we consider that after the bounce the cosmo-
logical parameter (3), namely

Ω = 1 + k

a2
0α2(t − t0)2(2n−1)e2α(t−t0)

2n
, (12)

decreases as a consequance of the acceleration of the uni-
verse. In this way, the solution (8) with n > 1 may give rise
to an accelerated universe, whose energy density decreases
with the cosmological parameter. This scenario may be com-
patible with the inflation, whose effective energy density de-
creases making possible the exit from this period, at the end
of whose the cosmological parameter is close to one: it is
clear that to reproduce such cosmology other fluid contents
which become dominant during this phase must be added to
the model to produce a subsequent deceleration.

In the case n = 1 with spherical geometry, expression
(11) is equal to zero only for t = t0: the energy density of
fluid decreases before the bounce and always increases after
that.

We will analyze now the fluids producing the bounce us-
ing the conservation law (7). In order to do it, we must con-
sider the general form (5) of such a kind of fluids, since it
is well known that standard perfect fluids with constant EoS
parameter cannot reproduce this kind of cosmology. Firstly,
we will investigate inhomogeneous non-viscous fluids, and
afterwards we will introduce the viscosity.

3.1 Fluids realizing the bounce with exponential scale
factor

As a first example, we analyze the case of non viscous flu-
ids, namely B(a(t),H, Ḣ , . . .) = 0 in (5). In the simplest
case of k = 0 (flat topology), we immediately have from the
conservation law,

p = −ρ − ρ
(n−1)
(2n−1)

[
3

κ2
(2nα)2

] 2n
4n−2

(
2n − 1

3nα

)
, (13)

and the EoS parameter reads

ω(ρ) = −1 − ρ
−n

(2n−1)

[
3

κ2
(2nα)2

] 2n
4n−2

(
2n − 1

3nα

)
. (14)

This kind of fluid in flat FRW space-time has been often an-
alyzed in the literature. In particular, in Nojiri and Odintsov
(2010), Astashenok et al. (2012), Myrzakul et al. (2014) its
behaviour connected with the presence of singularities has
been discussed. As we stressed at the beginning of the sec-
tion, the occurrence of the bounce scenario for positive inte-
ger values of n finds some correspondence in the emerging
of singular solutions in the same fluid models where n is
negative or positive non integer number. In the specific, if
the power law of ρ in (14) is negative, the bounce is real-
ized, but if it is positive, a singularity appears.

We can also rewrite the fluid by using other forms of
Equation of State and by introducing the bulk viscosity.
A simple example is given by a constant EoS parameter
(here, ω = −1) and a bulk viscosity depending on Hubble
parameter only, namely

B
(
a(t),H, Ḣ , . . .

) = 3Hζ(H), (15)

where ζ(H) > 0 is the bulk viscosity. In our specific case,
for k = 0, the fluid Equation of State assumes the form

p = −ρ − 3Hζ(H),

ζ(H) =
(

3

κ2

) 2n−1
2n−1

(2nα)
1

2n−1

(
2n − 1

3

)
H− 1

2n−1 .

(16)

When we introduce the spatial curvature and k �= 0, the EoS
of the fluid becomes more complicate and we need a viscos-
ity depending on the scale factor also. A simple formulation
for solution (8) is

p = −ρ − 3Hζ
(
H,a(t)

)
, (17)

where

ζ
(
H,a(t)

) =
(

3

κ2

) 2n−1
2n−1

(2nα)
1

2n−1

(
2n − 1

3

)
H− 1

2n−1

− 2k

(3H)κ2a(t)2
. (18)

When the scale factor becomes large, this expression coin-
cides with (16) and we can treat the viscous fluid like a fluid
in the flat space.

4 Bounce solutions with power-law scale factor

In this section, we will analyze the following form for the
scale factor and Hubble parameter,

a(t) = a0 + α(t − t0)
2n, H(t) = 2nα(t − t0)

2n−1

a0 + α(t − t0)2n
,

n = 1,2,3, . . . (19)

where a0, α are positive (dimensional) constants and n is a
positive natural number. The time of the bounce is fixed at
t = t0. When t < t0, the scale factor decreases and we have
a contraction with negative Hubble parameter, at t = t0 we
have the bounce, such that a(t = t0) = a0, and when t >

t0 the scale factor increases and the universe expands with
positive Hubble parameter.

If a0 = 0 we obtain a bounce solution with singularity,
namely the universe contracts until a(t = t0) = 0, where the
Hubble parameter and therefore the curvature diverge. How-
ever, the scale factor does not become singular and starts to
increase after t0 realizing the bounce.
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When n is a negative number, the scale factor diverges
at t = t0 and we can set a0 = 0 without loss of generality.
In this case, we encounter the so called Big Rip singularity,
where H(t) = −2n/(t0 − t), H being positive for t < t0 and
diverging with the scale factor at t = t0. This is an important
solution of the Friedmann equations in the case of phantom
perfect fluids with ω < −1 (Caldwell et al. 2003), and in
fact it is a possible scenario for the dark energy epoch of the
universe today.

Let us return to the bounce solution (19). We get

ä

a
= 2n(2n − 1)α(t − t0)

2(n−1)

a0 + α(t − t0)2n
, (20)

and we have an acceleration before and after the bounce.
Moreover, from the first EOM in (2) we derive

ρ = 3

κ2[a0 + α(t − t0)2n]
[

4n2α2(t − t0)
4n−2 + k

a0 + α(t − t0)2n

]
. (21)

It is easy to see that in the flat (k = 0) or spherical (k = 1)
universe, this quantity is positive defined. In the hyper-
bolic space (k = −1), always exist a region where the
fluid possesses a negative energy density (in particular, ρ =
−3/(a0κ)2 at t = t0), and, as in the previous section, we will
concentrate on the first two cases only.

The time derivative of the fluid energy density reads

ρ̇ = − 4n(t − t0)
2n−3ακ2

3(a0 + α(t − t0)2n)3

× [
2n(t − t0)

2nα
(
a0(1 − 2n) + (t − t0)

2nα
)

+ k(t − t0)
2]. (22)

When t is close to t0, this expression leads to

ρ̇(t → t0) 	 8n2(t − t0)
4n−3α2(2n − 1)

3a2
0

κ2, (23)

such that the energy density decreases before the bounce and
increases after it. However, when |t | � t0, one has

ρ̇
(|t | � t0

)

= −4n(t − t0)
−4n−3[2n(t − t0)

4nα2 + k(t − t0)
2]κ2

3α2
,

(24)

and the energy density increases in the region before (but
far from) the bounce and decreases after it. This behaviour
could be interesting in the attempt to reproduce the inflation
with an alternative scenario with respect to the standard Big
Bang one. In the cases of spherical or flat spatial topology,
the energy density of the universe starts to decreases after
some times from the bounce making possible an exit from

inflation. Note that the cosmological parameter reads

Ω = 1 + k

4n2α2(t − t0)4n−2
, (25)

and decreases with the acceleration.

4.1 Fluids realizing the bounce with power-law scale factor

In order to reproduce the bounce cosmology with power-law
scale factor we need a viscosity in the EoS of the fluids. For
a generic spatial topology we obtain

p = −ρ

3
− 3Hζ

(
a(t),H

)
, (26)

where

ζ
(
a(t),H

) = (2n − 1)a(t)

3n(a(t) − a0)κ2
. (27)

When a(t) � a0 the bulk viscosity reads

ζ
(
H,a(t) � a0

) 	 (2n − 1)

3nκ2
, (28)

and it is quite a constant. We see that this expression is pos-
itive for n > 1/2 but also for n < 0, when, as we have seen
at the beginning of the section, the fluid realizes the Big
Rip scenario. If the viscosity ζ is such that 0 < ζ < 2/3
(it means, n > 1/2) the bounce solution can be realized, but
if 2/3 < ζ the fluid may bring the universe evolution to the
Big Rip singularity.

5 Bounce solutions in modified theories of gravity

In principle, one may encode any modification of gravity in
the fluid-like form. In this section, following the first pro-
posal of (Bamba et al. 2014), we will investigate the case
of f (R)-gravity realizing the bounce cosmology and whose
action (in vacuum) is given by

I =
∫
M

d4x
√−g

[
R + f (R)

2κ2

]
, (29)

where g is the determinant of the metric tensor, gμν , M
is the space-time manifold and f (R) is a function of the
Ricci scalar R and represents the correction to the Einstein’s
gravity. In this section, for the sake of simplicity, we will
consider the flat FRW metric only, namely (1) with k = 0.
In this case, the equations of motion read

ρeff = 3

κ2
H 2, peff = − 1

κ2

(
2Ḣ + 3H 2), (30)

where ρeff and peff are the effective energy density and pres-
sure of the modified gravity model, namely
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ρeff ≡ 1

2κ2

[(
f ′(R)R − f (R)

)

− 6H 2f ′(R) − 6Hḟ ′(R)
]
, (31)

peff ≡ 1

2κ2

[−(
f ′(R)R − f (R)

)

+ (
4Ḣ + 6H 2)f ′(R) + 4Hḟ ′(R) + 2f̈ ′(R)

]
. (32)

Here, the prime denotes the derivative with respect to R and
the dot (as usually) is the derivative with respect to the time.
Thus, we recover the Friedmann equations (2), where the
modification of gravity is treated like a fluid whose EoS can
be written in the form of (5). We have many possibilities.
For example, we may take ω(ρF) = ω, where ω is a con-
stant (usually one chooses ω = −1), and identify the bulk
viscosity as

B(H, Ḣ , . . .) = − 1

2κ2

{
(1 + ω)

(
f (R) − Rf ′(R)

)

+ f ′(R)
[
6H 2(1 + ω) + 4Ḣ

]
+ Hḟ ′(R)(4 + 6ω) + 2f̈ ′(R)

}
. (33)

In order to reconstruct modified gravity models realizing the
bounce solutions, one can take the time derivative of ρeff,

ρ̇eff = 1

2κ2

[
6H 2ḟ ′(R) − 12HḢf ′(R) − 6Hf̈ ′(R)

]
, (34)

and insert this expression in the derivative of the first
Friedmann-like equation, such that, given the bounce so-
lution, we obtain an equation for f ′(R) only,

6HḢ

κ2
= 1

2κ2

[
6H 2ḟ ′(R) − 12HḢf ′(R) − 6Hf̈ ′(R)

]
.

(35)

From this equation it is possible to derive the on-shell form
of f ′(R) and then, by replacing the time with the corre-
sponding expression of the Ricci scalar, get the model f (R)

from f ′(R).
Let us see some examples of modified gravity model re-

alizing the bounce. The Ricci scalar reads

R = 12H 2 + 6Ḣ . (36)

We can start from solution (8) with n = 1. The Hubble pa-
rameter and the Ricci scalar are given by

H(t) = 2α(t − t0), R = 48α2(t − t0)
2 + 12α. (37)

The solution of (35) is

f ′(R) = c0

[
1 − 2α(t − t0)

2 − 1

c0

]
, (38)

namely

f ′(R) = c0

[(
3

2
− 1

c0

)
− R

24α

]
,

f (R) = c0

[(
3

2
− 1

c0

)
R − R2

48α

]
+ c1,

(39)

where c0, c1 are generic constants. By using the first
Friedmann-like equation (30), one obtains

c1 = −3αc0. (40)

This result is in agreement with Bamba et al. (2014). In order
to recover the Einstein gravity term in the action, we must
put

c0 = 2

3
, f (R) = − R2

72α
− 2α. (41)

Some comments are in order. It is well know that the γR2-
term with positive γ > 0 (Starobinsky 1980) or f (R) =
γR2 + λ, where γ,λ > 0 (Sebastiani et al. 2014) admit ac-
celerated non-singular solutions and are used in the theories
for inflation. Here, we see that if the coefficient in front of
R2 and the “cosmological” constant of the model are nega-
tive, we still obtain an accelerated solution, but back into the
past the bounce appears.

An other example simple to solve is given by (19) with
a0 = 0. In such a case,

H(t) = 2n

(t − t0)
, R(t) = 48n2 − 12n

(t − t0)2
, (42)

and the reconstruction leads to

f ′(R) = −1 + c0

(
R

48n2 − 12n

)λ±
,

f (R) = −R + c0

(λ± + 1)

(
R

48n2 − 12n

)λ±
R + c1,

(43)

where

λ± = −1

4

(
1 + 2n ±

√
1 + 20n + 4n2

)
. (44)

Here, c0 is a free parameter and c1 is fixed by the first
Friedmann-like equation as

c1 = 0, (45)

such that the final Lagrangian of the theory results to be a
power-law of the Ricci scalar,

L = c0R
λ±+1, (46)

where we have redefined the constant c0. If n < 0, we find a
model for the Big Rip (Bamba et al. 2008, 2010), such that
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for this kind of modified power law-models the appearance
of the Big Rip or the bounce solution must be carefully in-
vestigated. Note that in our case, making the choice a0 = 0
in (19), the Hubble parameter diverges at t = t0 like for the
Big Rip: however, the scale factor does not diverge and real-
izes the bounce. We also observe that λ± + 1 �= 1 indepen-
dently on n, according with the fact that the pure Einstein
gravity is free of bounce or singularity solutions.

6 Conclusions

The study of inhomogeneous viscous fluids in FRW uni-
verse is important under many points of view. This kind
of fluids has a very general form of Equation of State and
can be used in many different contexts, like the descrip-
tion of current dark energy epoch or the primordial inflation.
Then, many dark energy models have a corresponding fluid-
representation, and the modified theories of f (R)-gravity
are an example of it.

In this paper, we have analyzed the bounce cosmology
realized in Friedmann-Robertson-Walker space-time by vis-
cous fluids considering two specific forms of the bounce,
namely bounce with exponential scale factor, and bounce
with power-law scale factor. In the both cases, we have
found some examples of fluids which bring to such solu-
tions. Since the bounce has been proposed as an alterna-
tive scenario for the Big Bang, our investigation has taken
into account the necessity to have an acceleration after the
bounce in the context of inflation. For this reason, we have
considered different topologies (non necessarily flat) for the
FRW metric and we have payed attention to the evolution
of the cosmological parameter Ω also. Generally speaking,
the bounce solutions bring to an accelerated universe, but
the behaviour of the related fluid energy densities can be
different. It is reasonable to expect a decreasing of the en-
ergy density during the contraction phase, and an increasing
of it in the expanding universe: however, we have seen that
in some case it may exist a region around the bounce where
this behaviour is inverted. This fact is quite interesting, since
it gives the possibility to reproduce after the bounce an ac-
celerating universe whose energy density decreases, making
possible an exit from this stage, but it is clear that to obtain a
realistic inflation other universe contents must be considered
in the theory in order to bring the universe to a decelerated
expansion. An other interesting point analyzed in this work
is the relation between bounce and singular solutions: since
the form of the scale factors is the same, also the related flu-
ids present the same structure of Equation of State, and the
occurrence of one solution instead to the other one typically
depends on the coefficients of the bulk viscosity only.

In the final part of the paper, following the first proposal
of Bamba et al. (2014), we have analyzed f (R)-modified

gravity realizing the bounce and some explicit examples
have been derived and discussed for flat FRW space-time.

For more detailed analysis on the bounce scenario (in the
specific, instabilities and ghosts) see Biswas et al. (2006,
2010, 2012a, 2012b). Other relevant works on inhomoge-
neous viscous fluids and the dark energy issue have been
presented in Cardone et al. (2006), Nojiri and Odintsov
(2007), Brevik et al. (2010), Brevik and Odintsov (2002),
Youm (2002), Majd and Momeni (2011), Myrzakulov et al.
(2013), in Barrow (1986, 1988, 1989) for the inflationary
scenario and in Brevik et al. (2011) for viscous fluids ap-
plied to the study of Little Rip cosmology.
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