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Abstract Using the explicit form of the functions to de-
scribe the monopole and dipole spectra of the Cosmic Mi-
crowave Background (CMB) radiation, the exact expres-
sions for the temperature dependences of the radiative and
thermodynamic functions, such as the total radiation power
per unit area, total energy density, number density of pho-
tons, Helmholtz free energy density, entropy density, heat
capacity at constant volume, and pressure in the finite range
of frequencies v1 ≤ v ≤ v2 are obtained. Since the depen-
dence of temperature upon the redshift z is known, the ob-
tained expressions can be simply presented in z represen-
tation. Utilizing experimental data for the monopole and
dipole spectra measured by the COBE FIRAS instrument in
the 60–600 GHz frequency interval at the temperature T =
2.72548 K, the values of the radiative and thermodynamic
functions, as well as the radiation density constant a and
the Stefan-Boltzmann constant σ are calculated. In the case
of the dipole spectrum, the constants a and σ , and the ra-
diative and thermodynamic properties of the CMB radiation
are obtained using the mean amplitude Tamp = 3.358 mK. It
is shown that the Doppler shift leads to a renormalization of
the radiation density constant a, the Stefan-Boltzmann con-
stant σ , and the corresponding constants for the thermody-
namic functions. The expressions for new astrophysical pa-
rameters, such as the entropy density/Boltzmann constant,
and number density of CMB photons are obtained. The ra-
diative and thermodynamic properties of the Cosmic Mi-
crowave Background radiation for the monopole and dipole
spectra at redshift z ≈ 1089 are calculated.
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1 Introduction

In many areas of astrophysics and physics associated with
the Far InfraRed Absolute Spectrophotometry (FIRAS),
Fourier Transform InfraRed (FTIR) spectroscopy, radiation
pyrometry, or any other area of study of electromagnetic ra-
diation, the spectrum of a real body in the finite frequency
interval needs to be measured.

In FIRAS, for example, only a small region of the elec-
tromagnetic spectrum is of present concern; 2–20 cm−1

frequency interval for the measurement of the cosmic mi-
crowave background (CMB) radiation (Fixsen et al. 1994) or
5–80 cm−1 frequency interval to observe the spectrum of the
extragalactic far infrared background radiation (Fixsen et al.
1998). This instrument has been developed to determine the
spectral radiation intensity seen through these short radia-
tion windows. The theoretical experiments utilizing a com-
puter require the calculation of the total radiation, number
density of photons, as well as the thermodynamic functions,
as seen through these short windows. A numerical solution
for the computer calculation of these functions should be
obtained over a specified range of the spectrum. The impor-
tance of the use of a finite frequency range in astrophysics
and physics was noted by Michels (1968).

The present work is devoted to the construction of the
exact expressions for the radiative and thermodynamic func-
tions of the CMB radiation in the finite range of frequencies,
which can be used for the computer calculation.

It is well-known that the discovery of the cosmic mi-
crowave background (CMB) radiation by Penzias and Wil-
son (1965) provides a strong observational foundation
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for confirming the Gamow’s primordial-fireball hypothe-
sis (Sunyaev and Zel’dovich 1980). The theoretical predic-
tion that the CMB spectrum is so close to a blackbody was
confirmed by the COBE FIRAS observation (Mather et al.
1990). However, the perfect fitting of the measured spec-
trum with the spectrum of a blackbody was achieved only at
the peak of the blackbody in the 2–20 cm−1 frequency inter-
val. This range belongs to the Planck part of the total spec-
trum. In the Rayleigh-Jeans approximation at low frequency,
most experiments are consistent with T = 2.72548 K, but
some are not (Kogut et al. 1990, 1996). With respect to the
Wien part of the total spectrum, the spectral distortions of
the spectrum are difficult to measure due to the foreground
signal from interstellar dust at high frequencies (Gawiser
and Silk 2000). Above a few hundred GHz, the detected an
isotropic far infrared background dominates the cosmic mi-
crowave background (Fixen et al. 1998; Puget et al. 1996;
Dwek et al. 1998; Schlegel et al. 1998; Burigana and Popa
1998).

As a result, the theoretical prediction that the CMB spec-
trum has a blackbody one in the semi-infinite range of fre-
quencies should be confirmed by new experiments, espe-
cially in Wien’s part of the spectrum.

In order to construct the thermodynamics of the CMB ra-
diation, knowledge of integral characteristics of a system,
such as the total energy density and the number density of
photons, is necessary. In this case, the experimental data of
the CMB radiation spectrum in a wide range of frequen-
cies should be used. Currently, only the data measured by
the COBE FIRAS instrument within a finite range of fre-
quencies, ranging from 2 cm−1 to 20 cm−1, which cover the
Planck region, is reliable for the calculation of the thermo-
dynamic functions of the CMB radiation.

In previous studies (Fisenko and Ivashov 2009; Fisenko
and Lemberg 2012, 2013), the thermodynamics of the ther-
mal radiation of real bodies, such as molybdenum, lumi-
nous flames, stoichiometric carbides of hafnium, titanium
and zirconium, and ZrB2-SiC-based ultra-high temperature
ceramics in the finite range of frequencies at high temper-
atures were constructed. The calculated values of radiative
and thermodynamic functions were in good agreement with
experimental data.

In the present work, the exact expressions for the tem-
perature dependences of the radiative and thermodynamic
functions, such as the total radiation power per unit area,
total energy density, radiation density constant a, Stefan-
Boltzmann’s constant σ , number density of photons,
Helmholtz free energy density, entropy density, heat capac-
ity at constant volume, and pressure for the monopole and
dipole spectra in the finite range of frequencies are con-
structed. These results can be presented in the redshift z

representation. For the monopole spectrum, the values of
the radiative and thermodynamic functions at the mean tem-
perature T = 2.72548 K are calculated. In the case of the

dipole spectrum, the calculated values of the radiative and
thermodynamic functions were obtained using the mean
amplitude Tamp = 3.358 mK. It is shown that the Doppler
shift leads to a renormalization of the radiation density con-
stant, the Stefan-Boltzmann constant, and the corresponding
constants for the thermodynamic functions. The radiative
and thermodynamic functions of the CMB radiation for the
monopole and dipole spectra at the redshift z ≈ 1089 are
presented.

2 General relationships for monopole and dipole
spectra

According to Fixsen et al. (1994), Mather et al. (1994), the
cosmological anisotropy is predicted to have a Planckian
spectrum of the following form

I0(ṽ) ≈ Bṽ(T0) + ∂Bṽ(T )

∂T

∣
∣
∣
∣
T =T0

�T. (1)

Here two terms are the monopole and dipole spectra with
the temperature T0. T0 = 2.72548 K is the mean temper-
ature of the CMB radiation (Mather et al. 2013; Fixsen
2009). The temperature fluctuation �T = T − T0 is the
temperature anisotropy in a given direction in the sky and
can be presented in the form �T ≈ (υ

c
)Tamp cos(θ). Here

υ is a velocity of moving observer with respect to the
rest frame of the blackbody radiation, θ is the angle be-
tween the direction of observation and the dipole direction
(l, b) = (264.◦26,+48.◦22) (Bennett et al. 1996, 2003), and
the dipole mean amplitude Tamp = 3.358 mK (Hinshaw et al.
2007; Robitaille 2007). Bṽ(T ) at the temperature T is given
by the Planck law

Bṽ(T ) = 2hc2 ṽ3

e
hcṽ
kBT − 1

, (2)

were h is the Planck constant and c is the speed of light.
Let us note that in Mather et al. (1994), the variable

ṽ = vc calls as the frequency with the unit [cm−1], where
v is the frequency [Hz]. However, according to (http://en.
wikipedia.org/wiki/Wavenumber), the variable ṽ is called as
wavenumber. Further, we will call ṽ as the wavenumber and
v as the frequency.

According to Eq. (1), the total energy density of the CMB
radiation in the wavenumber domain received in the fre-
quency interval from ṽ1 to ṽ2 has the following structure:

B0(ṽ1, ṽ2, T )

= 4π

c

{∫ ν̃2

ν̃1

Bṽ(T0)dṽ + �T

∫ ν̃2

ν̃1

∂Bṽ(T )

∂T

∣
∣
∣
∣
T =T0

dν̃

}

(3)

For constructing the thermodynamics of the CMB radi-
ation, using the COBE FIRAS instrument data in the fi-
nite range of wavenumbers, hereinafter, it is convenient to
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present the Planck function Eq. (2) in the frequency domain.
Using the relationship

Bṽ(T )dṽ = Bv(ṽ)(T )dv, (4)

where ṽ stands for wavenumber, that can be related to the
frequency v via the transformation v(ṽ), then

Bv(T ) = Bṽ(T )
dṽ

dv
= 2h

c2

v3

e
hv

kBT − 1
. (5)

Equation (5) is called the Planck function in the frequency
domain.

Using the following relationship between the spectral en-
ergy density Iv(T ) and Eq. (5)

Iv(T ) = 4π

c
Bv(T ), (6)

we obtain

Iv(T ) = 8πh

c3

v3

e
hv

kBT − 1
. (7)

Then, according to Eq. (3), the total energy density of the
CMB radiation in the frequency domain has the form

I0(v1, v2, T ) =
∫ ν2

ν1

Iv(T )dν + �T

∫ ν2

ν1

∂Iv(T )

∂T

∣
∣
∣
∣
T =T0

dν.

(8)

The first term is the total energy density for the monopole
spectrum IM

0 (T ) and the second one for the dipole spectrum
ID

0 (T ).
The thermodynamic functions of the CMB radiation is

determined as follows (Landau and Lifshitz 1980):

(1) Helmholtz free energy density f = F
V

:
(a) Monopole:

f = 8πkBT

c3

∫ v2

v1

v2 ln
(

1 − e
hv

kbT
)

dv (9)

(b) Dipole

f ′ = 3

2
Tamp

∂f

∂T
(10)

(2) Entropy density s = S
V

:
(a) Monopole

s = − ∂f

∂T
(11)

(b) Dipole

s = −∂f ′

∂T
(12)

(3) Heat capacity at constant volume per unit volume cV =
CV

V
:

(a) Monopole

cV =
(

∂IM
0 (v1, v2, T )

∂(T )

)

V

(13)

(b) Dipole

cV =
(

∂ID
0 (v1, v2, T )

∂(T )

)

V

(14)

(4) Pressure of photons P:
(a) Monopole

P = −f (15)

(b) Dipole

P = −f ′ (16)

(5) The number density of photons n = N
V

:
(a) Monopole:

n = 8π

c3

∫ v2

v1

v2

ex − 1
dv (17)

(b) Dipole

n = 8π

c3
Tamp

∂

∂T

∫ v2

v1

v2

ex − 1
dv (18)

Here T is the temperature for the monopole spec-
trum, Tamp is the dipole amplitude and V is the vol-
ume of emitted object.

Equations (8)–(18) describe the temperature depen-
dences of the radiative and thermodynamic properties of
the CMB radiation. To convert to the redshift dependences,
the following relationships T (z) = T0(1 + z), Tamp(z) =
Tamp(1 + z) and v(z) = v(1 + z) should be used.

3 Monopole spectrum

Now let us construct the thermodynamics of the CMB radia-
tion for the monopole spectrum. In this case, the total energy
density of the CMB radiation received in the finite range of
frequencies from v1 to v2 is described by the first term in
Eq. (8). Substituting Eq. (7) in Eq. (8) and after computing
the integral, we obtain

IM
0 (x1, x2, T ) =

∫ ν2

ν1

Iv(T )dν = 8πh

c3

∫ ν2

ν1

ν3

e
hν

kBT − 1
dν

= 48π(kBT )4

c3h3

[

P3(x1) − P3(x2)
]

. (19)

Here x = hv
kBT

. P3(x) is defined as

P3(x) =
3

∑

s=0

(x)s

s! Li4−s

(

e−x
)

, (20)

where

Li4−s

(

e−x
) =

∞
∑

k=1

e−kx

k4−s
(21)
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is the polylogarithm function (Abramowitz and Stegun
1972).

In the semi-infinite range (0 ≤ v ≤ ∞), Eq. (16) can be
re-written as

IM
0 (0,∞, T ) = 48πk4

B

c3h3
T 4(P3(0) − P3(∞)

)

. (22)

Since P3(0) = Li4(1) = ξ(4) = π4

90 and P3(∞) = 0, Eq. (19)
transforms to the well-known expression for the total en-
ergy density of the blackbody radiation (Landau and Lifshitz
1980)

IM
0 (0,∞, T ) = aT 4. (23)

Here a is the radiation density constant

a = 8π5k4
B

15c3h3
. (24)

The numerical value of a is a = 7.5657 × 10−16 J
m3 K4 .

The Stefan-Boltzmann constant σ can be determined using
the following relationship σ = ac

4 and, in accordance with
Eq. (24), takes the value σ = 5.67037 × 10−8 W

m2 K4 (Lan-
dau and Lifshitz 1980). Then, the Stefan-Boltzmann law or
the total radiation power per unit area received in the semi-
infinite frequency range has the well-known form

I ′M
0 (0,∞, T ) = σT 4. (25)

Let us note that according to Eq. (25), the total radiation
power IM

total(T ) emitted from the area A of the early uni-
verse, which is presented in the form of a spherical shell of
finite thickness at distance of almost 15 billion light years,
is defined as follows

IM
total(T ) = AI ′M

0 (0,∞, T ). (26)

Here it is important to note that the area A may be obtained
from experiment data by measuring the total radiation power
IM

Measured(T ) = IM
total(T ), and then using the Eq. (26). In this

case, we have

A = IM
Measured(T )

I ′M
0 (0,∞, T )

. (27)

For this purpose, an optical device for measuring the total
radiation power emitted from the area A of a surface at low
temperature will be useful.

Let us Eq. (19) present in the form

IM
0 (x1, x2, T ) = a′(x1, x2)T

4, (28)

where

a′(x1, x2) = 48πk4
B

c3h3

[

P3(x1) − P3(x2)
]

. (29)

a′(x1, x2) can be called as the radiation density constant in
the finite range of frequencies v1 ≤ v ≤ v2. Then, the Stefan-
Boltzmann law has the following form

I ′M
0 (x1, x2, T ) = σ ′(x1, x2)T

4. (30)

Here

σ ′(x1, x2) = a′(x1, x2)c

4
= 12πk4

B

c2h3

[

P3(x1) − P3(x2)
]

. (31)

σ ′(x1, x2), as in the case of the radiation density constant,
can be named as the Stefan-Boltzmann constant in the finite
range of frequencies.

Importantly, the Eq. (27) has the same structure, within a
finite range of frequencies in which values IM

Measured(T ) and
I ′M

0 (0,∞, T ) should be replaced by IM
Measured(x1, x2, T ) and

I ′M
0 (x1, x2, T ).

In accordance with Eq. (17), the number density of pho-
tons of the CMB radiation with a photon energy from hv1 to
hv2, defined as

n = 16πk3
B

c3h3
T 3[P2(x1) − P2(x2)

]

. (32)

In the case of the semi-infinite range of frequencies, Eq. (29)
simplifies to

n = 16πk3
B

c3h3
T 3[P2(0) − P2(∞)

]

. (33)

Since P2(0) = Li3(1) = ξ(3) and P2(∞) = 0, Eq. (30)
transforms to the well-known expression (Landau and Lif-
shitz 1980)

n ≈ 0.244

(
2πkBT

hc

)3

. (34)

According to Eqs. (9), (11), (13), (15), the thermodynamic
functions of the CMB radiation for the monopole spectrum
in the finite frequency range have the following structure:

(1) Helmholtz free energy density f :

f = −16πk4
B

c3h3
T 4

[
(

P3(x1) − P3(x2)
) − 1

6

(

x3
1Li1

(

e−x1
)

− x3
2Li1

(

e−x2
))

]

(35)

(2) Entropy density s:

s = 64πk4
B

c3h3
T 3

[
(

P3(x1) − P3(x2)
) − 1

24

(

x3
1Li1

(

e−x1
)

− x3
2Li1

(

e−x2
))

]

(36)

(3) Heat capacity at constant volume per unit volume, cV

cV = 192πk4
B

c3h3
T 3

[
(

P3(x1) − P3(x2)
)

+ 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

]

(37)

(4) Pressure P :

P = 16πk4
B

c3h3
T 4

[
(

P3(x1) − P3(x2)
) − 1

6

(

x3
1Li1

(

e−x1
)

− x3
2Li1

(

e−x2
))

]

(38)
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Table 1 Calculated values of
the radiative and
thermodynamic state functions
for the monopole and dipole
spectra in the 60–600 GHz
frequency interval at
T = 2.72548 K and
Tamp = 3.358 mK

Quantity Monopole
0 ≤ ṽ ≤ ∞

Monopole
v1 ≤ v ≤ v2

Dipole
v1 ≤ v ≤ v2

Dipole
0 ≤ ṽ ≤ ∞

a′, a′′
[J m−3 K−4]

7.5657 × 10−16 7.2167 × 10−16 2.9263 × 10−15 3.0263 × 10−15

σ ′, σ ′′
[W m−3 K−4]

5.6704 × 10−8 5.4088 × 10−8 2.1932 × 10−7 2.2681 × 10−7

IM
0 (ν1, ν2, T )

ID
0 (ν1, ν2, T )

[J m−3]

4.1902 × 10−14

–
3.9845 × 10−14

–
–
1.9894 × 10−16

–
2.0571 × 10−16

I ′M
0 (ν1, ν2, T )

I ′D
0 (ν1, ν2, T )

[W m−2]

3.1404 × 10−6

–
2.9845 × 10−6

–
–
1.4910 × 10−8

–
1.5420 × 10−8

f [J m−3] −1.3967×10−14 −1.2260×10−14 −9.6252×10−17 −1.0287×10−16

s [J m−3 K−1] 2.0478 × 10−14 1.9109 × 10−14 1.0652 × 10−16 1.1323 × 10−16

P [J m−3] 1.3967 × 10−14 1.2260 × 10−14 9.6252 × 10−17 1.0287 × 10−16

cV [J m−3 K−1] 6.1439 × 10−14 5.9244 × 10−14 2.1219 × 10−16 2.2542 × 10−16

n [m−3] 4.1186 × 108 3.4404 × 108 1.3787 × 106 1.5180 × 106

It is not difficult to show that Eqs. (35)–(38) in the semi-
infinite range of frequencies are converted to the well-known
expressions for the thermodynamic functions (Landau and
Lifshitz 1980).

By definition (Landau and Lifshitz 1980), the chemical
potential density μ = (

∂f
∂n

)T ,V , as clearly seen from Eq. (35),
is equal to zero.

Now let us apply obtained expressions for calculating the
radiative and thermodynamic functions of the CMB radi-
ation for the monopole spectrum at the temperature T =
2.72548 K (Mather et al. 2013). Using the data obtained by
the COBE FIRAS instrument in the 60–600 GHz frequency
interval, the radiative and thermodynamic properties of the
CMB radiation are calculated and presented in Table 1. As
seen in Table 1, the calculated values in the finite range
slightly differ from the corresponding values for the semi-
infinite range. For example, the radiation density constant in
the range from v1 = 60 GHz to v2 = 600 GHz is 95 % from
the corresponding value for the semi-infinite interval. As for
entropy density, we have 97 %. It means that observed part
of spectrum from v1 = 60 GHz to v2 = 600 GHz covers a
significant portion of the total spectrum.

One of the interesting questions is the following. What
contribution to the radiative and thermodynamic proper-
ties of the CMB radiation gives the Wien part to the total
spectrum? The obtained above expressions allow us to an-
swer this question. Indeed, if we assume that the Rayleigh-
Jeans region is described by the Planck formula, we have
to calculate the radiative and thermodynamic functions of
the CMB radiation in the range 0 ≤ v ≤ 60 GHz. Then,
the radiative and thermodynamic properties in Wien’s re-
gion 600 GHz ≤ v ≤ ∞ can be calculated by subtracting
the range 0 ≤ v ≤ 60 GHz of the Rayleigh-Jeans part and

the Planck part of the spectrum 60 GHz ≤ v1 ≤ 600 GHz
from the total spectrum in the semi-infinite frequency range.
Performing the calculation for the Wien part of the spectrum
600 GHz ≤ v ≤ ∞, we obtain a = 4.8203×10−18 J

m3 K4 and

s = 3.8661 × 10−16 J
m3 K

. Then, the contribution of Wien’s
part of the spectrum to the radiation density constant a is
0.64 %. As for the contribution to entropy density, we have
1.79 %. As seen, the Wien part gives a small contribution
to the radiative and thermodynamic properties of the CMB
radiation.

4 Dipole spectrum

The first anisotropy discovered was the dipole anisotropy.
The dipole spectrum of the CMB radiation is generally in-
terpreted as a Doppler shift due to the Earth’s motion rela-
tive to the CMB radiation field. The Cobe Firas instrument
was used for the measurement of the dipole spectrum in the
wavenumber range between 2 and 20 cm−1 (Fixsen et al.
1994, 1996). The observed dipole spectrum, a second term
in Eq. (1), was fitted by the following expression

ID(ṽ, T ) = I0(ṽ)

( υ
c
) cos(θ)

= Tamp
∂Bṽ(T )

∂T

∣
∣
∣
∣
T =T0

. (39)

Here Tamp = 3.358 mK is the mean dipole amplitude (Ro-
bitaille 2007; Hinshaw et al. 2007).

According to Eq. (3), the total energy density is defined
as

ID(ṽ1, ṽ2, T ) = 4π

c
Tamp

∫ ṽ2

ṽ1

∂Bṽ(T )

∂T
dṽ

= 4π

c
Tamp

∂

∂T

∫ ṽ2

ṽ1

Bṽ(T )dṽ. (40)
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To convert to the redshift dependences, the following re-
lationships: T (z) = T0(1 + z), Tamp(z) = Tamp(1 + z), and
ṽ(z) = ṽ(1 + z) should be used.

Using a similar procedure to switch to the frequency do-
main, as in the case of the monopole spectrum, the expres-
sion for the total energy density of the CMB radiation for
the dipole spectrum in the finite frequency range has the fol-
lowing form:

ID
0 (x1, x2, T )

= Tamp
∂

∂T

∫ ν2

ν1

Iv(T )dν

= Tamp
48πkB

c3h3

∂

∂T

[

T 4(P3(x1) − P3(x2)
)]

. (41)

After differentiating Eq. (41) is presented as follows

ID
0 (x1, x2, T )

= Tamp
192πk4

B

c3h3
T 3

[
(

P3(x1) − P3(x2)
)

+ 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

]

. (42)

Since P3(0) = Li4(1) = ξ(4) = π4

90 ,P3(∞) = 0, and
x4

1Li0(e−x1)|x1=0 = x4
2Li0(e−x2)|x2=∞ = 0 in the semi-

infinite range of frequencies, Eq. (42) takes the form

ID
0 (0,∞, T ) = 32π5k4

B

15c3h3
TampT

3. (43)

Here

a′′ = 4a′ (44)

can be named as the radiation density constant for the dipole
spectrum in the semi-infinite range of frequencies. The nu-
merical value is a′′ = 3.0263 × 10−15 J

m3K4 . The Stefan-
Boltzmann constant for the dipole spectrum is determined
by the following relationship σ ′′ = a′′c

4 . Then, σ ′′ has the
following structure:

σ ′′ = 4σ ′. (45)

The numerical value is σ ′′ = 2.2681 × 10−7 J m−2 s−1 K−4.
The Stefan-Boltzmann law or the total radiation power

per unit area I ′D
0 (T ) for the dipole spectrum is defined as

I ′D
0 (0,∞, T ) = 8π5k4

B

15c2h3
TampT

3. (46)

According to Eq. (46), the total radiation power emitted
from the area A′ of the universe for the dipole spectrum can
be determined as follows

I ′D
total(T ) = A′I ′D

0 (0,∞, T ). (47)

Therefore, as in the case of the monopole spectrum, the area
A′ may be obtained from the experiment data by the mea-
surement of the total radiation power ID

Measured(v1, v2, T ).
Then, in accordance with Eq. (47), we have

A′ = ID
Measured(T )

I ′D
0 (0,∞, T )

. (48)

Here it is important to note that the radiation density con-
stant and the Stefan-Boltzmann constant for the dipole spec-
trum, Eq. (44) and Eq. (45), in the semi-infinite range of
frequencies differ from the corresponding constants for the
monopole spectrum. This means that Doppler shift leads to a
renormalization of the corresponding constants. This situa-
tion is similar for the radiative and thermodynamic functions
of the CMB radiation for the dipole spectrum.

Let us Eq. (42) present in the form

ID
0 (x1, x2, T ) = a′′(x1, x2)TampT

3, (49)

where

a′′(x1, x2) = 192πk4
B

c3h3

[
(

P3(x1) − P3(x2)
)

+ 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

]

(50)

can be called as the radiation density constant for the dipole
spectrum in the finite range of frequencies. The Stefan-
Boltzmann constant σ ′′(v1, v2, T ) is defined as

σ ′′(x1, x2) = 4πa′′(x1, x2)

c

= 48πk4
B

c2h3

[
(

P3(x1) − P3(x2)
)

+ 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

]

(51)

Then, the Stefan-Boltzmann law or the total radiation
power per unit area in the finite range of frequencies for the
dipole spectrum has the structure

I ′D
0 (x1, x2, T ) = σ ′′(x1, x2)TampT

3. (52)

According to Eq. (18), the number density of photons
with photon energy from hv1 to hv2 is defined as follows

n = 16πk3
B

c3h3
Tamp

∂

∂T

[

T 3(P2(x1) − P2(x2)
)]

. (53)

After differentiating Eq. (53) takes the form

n = 48πk3
B

c3h3
TampT

2
{
[

P2(x1) − P2(x2)
] + 1

6

(

x2
1Li1

(

e−x1
)

− x2
2Li1

(

e−x21
))

}

. (54)

In the case of the semi-infinite range 0 ≤ v ≤ ∞, Eq. (54) is
simplified as

n = 48πk3
B

c3h3
TampT

2[P2(0) − P2(∞)
]

. (55)

Since P2(0) = Li3(1) = ς(3) and P2(∞) = 0, Eq. (55) is
defined as

n = 57.696πk3
B

c3h3
TampT

2. (56)
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Using Eqs. (10), (12), (14), (16) and Eq. (42), the ther-
modynamic functions of the CMB radiation for the dipole
spectrum in the finite v1 ≤ v ≤ v2 and the semi-infinite
0 ≤ v ≤ ∞ ranges of frequencies have the following struc-
ture:

(1) Helmholtz free energy density f ′:
(a) v1 ≤ v ≤ v2

f ′ = −96πk4
B

c3h3
TampT

3
[
(

P3(x1) − P3(x2)
)

− 1

24

(

x3
1Li1

(

e−x1
) − x3

2Li1
(

e−x2
))

]

(57)

(b) 0 ≤ v ≤ ∞

f ′ = −16π5k4
B

15c3h3
TampT

3 (58)

(2) Entropy density s:
(a) v1 ≤ v ≤ v2

s = 288πk4
B

c3h3
TampT

2
[
(

P3(x1) − P3(x2)
)

+ 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

]

(59)

(b) 0 ≤ v ≤ ∞

s = 16π5k4
B

5c3h3
TampT

2 (60)

(3) Heat capacity at constant volume per unit volume cV :
(a) v1 ≤ v ≤ v2

cV = 576πk4
B

c3h3
TampT

2
[
(

P3(x1) − P3(x2)
)

+ 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

+ 1

72

(

x5
1Li−1

(

e−x1
) − x5

2Li−1
(

e−x2
))

]

(61)

(b) 0 ≤ v ≤ ∞

cV = 32π5k4
B

5c3h3
TampT

2 (62)

(4) Pressure P :
(a) v1 ≤ v ≤ v2

P = 96πk4
B

c3h3
TampT

3
[
(

P3(x1) − P3(x2)
)

− 1

24

(

x4
1Li0

(

e−x1
) − x4

2Li0
(

e−x2
))

]

(63)

(b) 0 ≤ v ≤ ∞

P = 16π5k4
B

15c3h3
TampT

3 (64)

Now let us calculate the thermodynamic and radiative
properties of the CMB radiation for the dipole spectrum
using Cobe FIRAS instrument data (Fixsen et al. 1994,
1996). In Table 1, the values for the thermodynamic and ra-
diative functions for the dipole spectrum in the finite and
semi-infinite ranges of frequencies at T = 2.72548 K and
Tamp = 3.358 mK are presented. As seen in Table 1, the ra-
diation density constant a′′ and the Stefan-Boltzmann con-
stant σ ′′ for the dipole spectrum differ from those of the
constants a′ and σ ′ for the monopole spectrum. This means
that Doppler shift leads to a renormalization of these con-
stants, as well as the corresponding constants for the ther-
modynamic and radiative functions.

The obtained expressions for radiative and thermody-
namic functions are important for obtaining new astro-
physical parameters. Indeed, in accordance with the ta-
ble of astrophysical constants and parameters (Groom
2013), three fundamental constants and parameters for the
monopole spectrum, such as the present day CMB tem-
perature, entropy density/Boltzmann constant, and number
density of CMB photons are presented. The entropy den-
sity/Boltzmann constant parameter, for example, has the
form

s

kB
= 2.8912

(
T

T0

)3

cm−3, (65)

where T0 = 2.72548 K is present day CMB temperature.
As for the dipole spectrum, only the present day CMB

dipole amplitude is the fundamental constant. However, as
in the case of monopole spectrum, the expressions for the
entropy density/Boltzmann constant parameter and number
density of CMB photons for the dipole spectrum can be con-
sidered as additional parameters to the astrophysical param-
eters. In accordance with Eq. (56) and Eq. (60), their analyt-
ical expressions are presented in the form:

(1) Entropy density/Boltzmann constant

s

kB
= 8.2012

(
T

T0

)2( Tamp

Tamp0

)

cm−3 (66)

(2) Number density of CMB photons for the dipole spec-
trum

n = 1.5180

(
T

T0

)2( Tamp

Tamp0

)

cm−3. (67)

Here Tamp0 = 3.358 × 10−3 K is the present day CMB
dipole amplitude.

Let us note that when T0 = 2970.77 K and Tamp =
3.66 K, the Eq. (66) has a value that is shown in Table 2
for the entropy density at redshift z = 1089.

It is important to note that the exact expressions for the
radiative and thermodynamic functions obtained above can
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Table 2 Calculated values of
the radiative and
thermodynamic state functions
for the monopole and dipole
spectra in the 65.4–654 THz
frequency interval at the redshift
z ≈ 1089 and at T = 2970.77 K
and Tamp = 3.660 K

Quantity Monopole
0 ≤ ṽ ≤ ∞

Monopole
v1 ≤ v ≤ v2

Dipole
v1 ≤ v ≤ v2

Dipole
0 ≤ ṽ ≤ ∞

a′, a′′
[J m−3 K−4]

7.5657 × 10−16 7.2169 × 10−16 2.9261 × 10−15 3.0263 × 10−15

σ ′, σ ′′
[W m−3 K−4]

5.6704 × 10−8 5.4089 × 10−8 2.1930 × 10−7 2.2681 × 10−7

IM
0 (ν1, ν2, T )

ID
0 (ν1, ν2, T )

[J m−3]

5.9149 × 10−2

–
5.6212 × 10−2

–
–
2.8079 × 10−4

–
2.9040 × 10−4

I ′M
0 (ν1, ν2, T )

I ′D
0 (ν1, ν2, T )

[W m−2]

4.4331 × 106

–
4.2129 × 106

–
–
2.1044 × 104

–
2.1765 × 104

f [J m−3] −1.9716 × 10−5 −1.7309 × 10−5 −1.3587 × 10−7 −1.4520 × 10−7

s [J m−3 K−1] 2.6522 × 10−5 2.4748 × 10−5 1.3796 × 10−7 1.4663 × 10−7

P [J m−3] 1.9716 × 10−5 1.7309 × 10−5 1.3587 × 10−7 1.4520 × 10−7

cV [J m−3 K−1] 7.9567 × 10−5 7.6718 × 10−5 2.7471 × 10−7 2.9191 × 10−7

n [m−3] 5.3338 × 1017 4.4563 × 1017 1.7763 × 1015 1.9658 × 1015

be used to construct the thermodynamics of the CMB radi-
ation for the quadrupole and higher-order contributions. In-
deed, in the case of the quadrupole spectrum, for example,
we need to include in Eq. (1) the quadrupole term

IQ(ṽ, T ) = 1

2
(�T )2 ∂2Bṽ(T )

∂T 2

∣
∣
∣
∣
T =T0

.

Using Eq. (42), for

∂2Bṽ(T )

∂T 2

∣
∣
∣
∣
T =T0

,

we get

∂2Bṽ(T )

∂T 2

∣
∣
∣
∣
T =T0

= ∂ID
0 (v1, v2, T )

∂T

∣
∣
∣
∣
T −T0

.

After differentiating, the thermodynamics of the CMB radia-
tion for the quadrupole spectrum will be constructed and the
radiative properties will be determined. New renormalized
values of the radiation density a and the Stefan-Boltzmann
σ will be obtained. As a result, the contributions of the
quadrupole and higher-order contributions to the total spec-
trum of the CMB radiation will be obtained.

In conclusion, it should be noted that the cosmic mi-
crowave background radiation is the largest observed red-
shift, which corresponds to the greatest distance. According
to the Cosmic Detectives (2013), this value of the redshift
is around z = 1089 and it shows the state of the Universe
about 13.8 billion years ago. Now we calculate the radia-
tive and thermodynamic functions for the monopole and
dipole spectra in the finite and semi-infinite ranges of fre-
quencies at the redshift z = 1089. It is well known that
in an expanding universe the temperature T and the fre-
quency v depends on the redshift z (Sunyaev and Zel’dovich

1980), in accordance with the formulas v = v0(1 + z) and
T = T0(1 + z). In this case, the obtained expressions for
the radiative and thermodynamic functions of the CMB ra-
diation for the monopole and dipole spectra have the same
structure, in which the temperatures T = 2.72548 K and
Tamp = 3.358 mK should be replaced by T = 2970.77 K
and Tamp = 3.660 K, and the frequencies v1 = 60 GHz and
v2 = 600 GHz by v1 = 65.4 THz and v2 = 654 THz. In Ta-
ble 2, the radiative and the thermodynamic functions for the
monopole and dipole spectra in the finite and semi-infinite
frequency ranges at z = 1089 are presented.

5 Conclusions

In this paper, the exact expressions for the calculation of
the temperature dependences of the radiative and thermo-
dynamic functions of the cosmic microwave background
(CMB) radiation, such as the total radiation power per
unit area, total energy density, number density of photons,
Helmholtz free energy density, entropy density, heat capac-
ity at constant volume, and pressure in the finite range of
frequencies are obtained.

Utilizing the experimental data for the monopole spec-
trum measured by the COBE FIRAS instrument in the finite
range of frequencies 60 GHz ≤ v ≤ 600 GHz at the temper-
ature T = 2.72548 K, the values of the radiative and thermo-
dynamic functions, as well as the radiation density constant
a′ and the Stefan-Boltzmann constant σ ′ are calculated. For
the dipole spectrum, the constants a′′ and σ ′′, and the ra-
diative and thermodynamic properties of CMB radiation are
obtained using the mean amplitude Tamp = 3.358 mK. The
results are presented in Table 1. It is shown that the Doppler
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shift leads to a renormalization of the radiation density con-
stant, the Stefan-Boltzmann constant, and the corresponding
constants for the thermodynamic functions.

Knowing the dependence of the temperature T on the
redshift z allows us to study the thermodynamic and radia-
tive state of the Universe many years ago. As an example,
the thermodynamic and radiative functions, which belong to
the state of the Universe at redshift z = 1089, corresponding
to the state of Universe about 13.8 billion years ago, for the
monopole and dipole spectra in the semi-infinite 0 ≤ v ≤ ∞
and finite 64.5 THz ≤ v ≤ 654 THz ranges of frequencies
are calculated. The calculated values are presented in Ta-
ble 2. These values differ significantly from corresponding
values at present day z = 0.

The analytical expressions for the radiative and thermo-
dynamic functions for the dipole spectrum allow us to con-
struct new astrophysical parameters, such as the entropy
density/Boltzmann constant, and number density of CMB
photons.

It well-know that in cosmological models of heat transfer
is typically used Stephan-Boltzmann law in the form σT 4.
Nevertheless, we must also take into account the contribu-
tion of the dipole component. As a result, in accordance with
Eq. (25) and Eq. (46), the total radiation power per unit area
should have the following structure σ ′T 4 +σ ′′T 3Tamp. This
fact should be taken into account in the construction of cos-
mological models.

The results of the present paper allow estimating the con-
tribution of the radiative and thermodynamic properties of
the thermal continuum radiation (photon gas) to the total ra-
diation of other particles (protons, alpha and beta particles
etc.).

In conclusion, it is important to note the following direc-
tions for the future research:

(a) It is desirable to investigate the contributions of the
quadrupole and higher-order contributions to the total
spectrum of the CMB radiation (Eq. (1)). In this case,
we obtain new temperature dependencies of the radia-
tive and thermodynamic properties of the CMB radia-
tion.

(b) One important issue is the construction of the thermody-
namic and radiative functions of galactic radiation us-
ing the far infrared spectrum. The latter has the form
vnBv(Tdust ). The index n changes from 1.65 to 2. Fixen
et al. (1996) studied the FIRAS Galaxy spectrum and
found that it was fitted using n = 2. As a result, the
exact expressions for the thermodynamic and radiative
properties of the far infrared galactic radiation can be
obtained.

(c) Particular attention should be paid to the investigation of
the radiative and thermal properties of the extragalactic
far infrared background (FIRB) radiation (Fixen et al.
1998). In this case, the radiative and thermodynamic

functions of the FIRB radiation in the frequency inter-
val ṽ = 5–80 cm−1 at T = 18.5 ± 1.2 K can be defined.

(d) In the future, it is of interest in the study of the tempera-
ture T and redshift z dependences of the Wien displace-
ment law for the dipole spectrum of the CMB radiation.
As a result, different law of the relationships between
the position of the maximum of the spectral energy den-
sity and temperature will be established (Fisenko and
Ivashov 1999).

(e) Developed in this work approach can be useful to con-
sider the Hawking radiation. This radiation is predicted
to be released by black holes that emit exactly black-
body radiation.

These and other topics will be points of discussion in sub-
sequent publication.
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