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Abstract In the gravity field of an asteroid with the second
order and degree harmonics C20 and C22, the attitude sta-
bility of a spacecraft with two flexible solar arrays on a sta-
tionary orbit subjected to the fourth-order gravity gradient
torque is investigated in this paper. The sufficient conditions
of attitude stability of the spacecraft are obtained, the effect
of the direction of the flexible solar arrays and some spe-
cial cases are discussed. Taking the asteroids 4769 Castalia,
25143 Itokawa and the imaginary asteroids as examples,
the attitude stability domains, determined by the sufficient
conditions, of the spacecrafts moving on stationary orbits
around them are presented. It is found that the attitude stabil-
ity domains of the spacecraft with two flexible solar arrays
are evidently different when the solar arrays are installed in
different directions; the effect of the harmonics C20 and C22

of the asteroids has the significant influence on the attitude
stability domains of the spacecrafts with flexible appendages
moving on stationary orbits; in the certain case, the effect
of the harmonics C20 and C22 of the asteroids has no influ-
ence on the attitude stability domains of the rigid spacecrafts
moving on stationary orbits, but in the other cases, the effect
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of the harmonics C20 and C22 of the asteroids has also the
significant influence on the attitude stability domains of the
rigid spacecrafts moving on stationary orbits; whether the
harmonics C20 and C22 of the asteroids are considered or
not, the effect of flexible appendages decreases the attitude
stability domains.
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Sufficient conditions of stability · Stability domain

1 Introduction

The modern spacecrafts often have flexible appendages. The
attitude dynamics of the spacecrafts has received extensive
attention in the space technology, and many achievements
have been obtained (Hughes 1973; Modi 1974; Ibrahim and
Misra 1982; Liu 1994; Ge and Liu 1999; Riverin and Misra
2002; Misra and Panchenko 2006; Kumar 2008; Wang and
Xu 2012). Liu and Ge discussed the attitude stability of an
unsymmetrical spacecraft with a flexible plate and a space-
craft with two flexible solar arrays in the Earth’s central
gravity field (Liu 1994; Ge and Liu 1999). At present, the
spacecraft mission to asteroids is one of hot spots in the deep
space exploration. The attitude dynamics of the spacecraft
around the asteroids is a fundament problem in the mission,
and it can be studied by means of the previous methods in
the Earth’s spacecraft. But the results of the Earth’s space-
craft cannot be applied to the spacecraft around the aster-
oids directly for the fast rotational state and distinctive non-
spherical mass distribution of the asteroids. Wang and Xu
presented a full fourth-order gravity gradient torque model
of spacecraft around asteroids (Wang and Xu 2013a), and
used this model to analyze the equilibrium attitude and sta-
bility of a spacecraft on a stationary orbit around an asteroid
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in the second order and degree gravity field (Wang and Xu
2013b, 2013c). Wang and Xu also investigated the nonlin-
ear attitude stability of the spacecraft in a modified energy-
Casimir method (Wang and Xu 2013d). However, they con-
sidered a rigid spacecraft merely in their works.

Based on the methodology stated in Liu (1994) and Ge
and Liu (1999), we further investigate the attitude stability
of a spacecraft with two flexible solar arrays on a stationary
orbit subjected to the fourth-order gravity gradient torque in
the gravity field of an asteroid with the second order and
degree harmonics C20 and C22 in this paper. The sufficient
conditions of attitude stability of the spacecraft are derived,
the effect of the direction of the flexible solar arrays and
some special cases are discussed. Taking the specific exam-
ples, the attitude stability domains determined by the suffi-
cient conditions are analyzed.

2 Attitude dynamic equations of the spacecraft

Similar to Wang and Xu (2013b) and Ge and Liu (1999), we
present the sketch map of a spacecraft B with two flexible
solar arrays moving on a stationary orbit around the asteroid
P in Fig. 1 and the structural representation of the spacecraft
B in Fig. 2. Three configurations of the spacecraft B are
considered, in which the flexible solar arrays are installed in
different directions. We first investigate the attitude stability

of the spacecraft B with the configuration (I) in the text, and
then discuss that with the configurations (II) and (III).

The reference frames O–XYZ and o–xyz are the body-
fixed ones of the asteroid P and the spacecraft B respec-
tively, with their origins O and o are fixed at the mass cen-
ters and their coordinate axes are aligned along the principal
axes of inertia. Meantime, the mass center of the asteroid is
supposed to be stationary in the inertial space. The reference
frame o–x0y0z0 is the orbital one fixed at the mass center of
the spacecraft. The y0-axis is along the positive normal to
the orbital plane (i.e. in the direction of the orbital angular
momentum) and parallel to the Z-axis, the z0-axis is in the
direction of the Y -axis, and the x0-axis is determined by the
right hand rule and builds the orthogonal triad. We can easily
obtain the coordinate transformation matrix from O–XYZ

to o–x0y0z0 is Rz(π)Rx(−π/2). Introduce yaw, pitch and
roll angles (φyaw, θpitch,ψroll) to describe the attitude mo-
tion of the spacecraft with respect to o–x0y0z0, and the co-
ordinate transformation matrix from o–x0y0z0 to o–xyz is
Rx(ψroll)Ry(θpitch)Rz(φyaw). Here Rx , Ry and Rz refer to
the axis rotation matrixes. The asteroid P with their princi-
pal moments of inertia Ip,zz > Ip,yy > Ip,xx rotates about
Z-axis uniformly, and the rotation angular rate is ωc. The
spacecraft B is composed of a primary rigid body and two
same rectangular flexible solar arrays and moves on a stable
stationary orbit of the asteroid P lying on Y -axis with the
radius RS . The mass of the primary rigid body is far more

Fig. 1 A spacecraft B with two
flexible solar arrays moving on a
stationary orbit around the
asteroid P (similar to Wang and
Xu 2013b)

Fig. 2 The spacecraft with two flexible solar arrays (similar to Ge and Liu 1999), in which three configurations are considered
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than the solar arrays, and hence the mass center displace-
ment arising from the elastic deformation of the solar arrays
can be neglected. These two flexible solar arrays are thin
cantilever plates and fixed at the primary rigid body sym-
metrically. For the spacecraft B with the configuration (I),
the direction of elastic displacement of the solar arrays is
along the x-axis of o–xyz, the fixed edges of the solar ar-
rays are parallel to the y-axis, and the middle plane of the
solar arrays without deformation is just the yz-coordinate
plane (see Fig. 2). The coordinate of an arbitrary point in
this middle plane can be expressed as yj + zk, and the elas-
tic displacement of this point is u1i or u2i (u1 corresponds
to the point in the left solar array, while u2 corresponds to
the point in the right solar array) (Ge and Liu 1999). Here i,
j and k are unit vectors of o–xyz. In addition, the distance
of the middle point of the solar arrays’ fixed end from the
mass center o of the spacecraft is a, and the length, width,
thickness and density of the arrays are b, c, h and ρ respec-
tively.

The attitude motion of the spacecraft B is assumed to be
subjected to gravity gradient torque of the asteroid P only.
But the second order and degree gravity field of the asteroid
with the harmonic coefficients C20 and C22 is considered in
the text. Using the full fourth-order gravity gradient torque
(Wang and Xu 2013a) and noting that the spacecraft with-
out deformation has three symmetrical planes, the third- and
fourth-order inertia integrals of the spacecraft are then all
zero except these fourth-order inertia integrals Jxxxx , Jyyyy ,
Jzzzz, Jxxyy , Jxxzz and Jyyzz (Wang and Xu 2013b). Ne-
glect the tiny effect of elastic deformation of the solar arrays
on the principal moments of inertia Ixx , Iyy and Izz of the
spacecraft, but its effect on the products of inertia Ixy , Ixz,
Iyx and Izx of the spacecraft with the configuration (I) must
be considered in the attitude motion (Liu 1994). Moreover,
the third- and fourth-order inertia integrals associated with
the terms u2

i , u
3
i , . . . (i = 1,2) arising from the elastic defor-

mation of the solar arrays are also neglected for the elastic
displacement is small. Here the inertia integrals arising from
the elastic deformation of the solar arrays of the spacecraft
with the configuration (I) are defined by

J ′
x · · ·x
︸ ︷︷ ︸

p-t imes

y · · ·y
︸ ︷︷ ︸

q-t imes

z · · · z
︸ ︷︷ ︸

r-t imes

= hρ

[∫∫

S1

(u1)
p(y)q(z)rdydz

+
∫∫

S2

(u2)
p(y)q(z)rdydz

]

. (1)

The fields of integration S1 is a ≤ z ≤ a + b and −c/2 ≤
y ≤ c/2; while S2 is −a −b ≤ z ≤ −a and −c/2 ≤ y ≤ c/2.
Namely, the S1 and S2 are middle planes of those two solar
arrays without deformation.

Under the assumptions that the attitude motion is small
and the orbital motion is unaffected by changes in the atti-
tude, using the similar deductions stated in Liu (1994), Ge

and Liu (1999), Curtis (2005) and Wang and Xu (2013b),
we obtain the linearized equations of attitude motion of the
spacecraft B with the configuration (I):
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Ixxψ̈roll + (Ixx + Izz − Iyy)ωcφ̇yaw

+ [(ω2
c + 3μ

R3
S

)(Iyy − Izz)

− μ

2R5
S

(Iyy − Izz)(21τ0 + 102τ2)

+ 5μ

2R5
S

(3Jxxyy − 3Jxxzz + 3Jyyyy

− 21Jyyzz + 4Jzzzz)]ψroll

− 2ωchρ(
∫∫

S1

∂u1
∂t

ydydz

+ ∫∫

S2

∂u2
∂t

ydydz) = 0,

Iyy θ̈pitch + [ 3μ

R3
S

(Ixx − Izz) − 5μ

2R5
S

(Ixx − Izz)(3τ0

+ 114
5 τ2)

+ 5μ

2R5
S

(3Jxxxx + 3Jxxyy − 21Jxxzz − 3Jyyzz

+ 4Jzzzz)]θpitch + hρ(
∫∫

S1

∂2u1
∂t2 zdydz

+ ∫∫

S2

∂2u2
∂t2 zdydz) + 3μ

R3
S

hρ(
∫∫

S1
u1zdydz

+ ∫∫

S2
u2zdydz)

+ 3μ

2R4
S

hρ[∫∫
S1

u1(y
2 − 4z2)dydz

+ ∫∫

S2
u2(y

2 − 4z2)dydz]
+ 5μ

2R5
S

hρ[∫∫
S1

u1(4z3 − 3y2z)dydz

+ ∫∫

S2
u2(4z3 − 3y2z)dydz] = 0,

Izzφ̈yaw + (Iyy − Izz − Ixx)ωcψ̇roll

+ [ω2
c (Iyy − Ixx) − 3μ

R5
S

× (Iyy − Ixx)(τ0 − 2τ2)]φyaw

− hρ(
∫∫

S1

∂2u1
∂t2 ydydz + ∫∫

S2

∂2u2
∂t2 ydydz)

+ ω2
chρ(

∫∫

S1
u1ydydz + ∫∫

S2
u2ydydz) = 0.

(2)

In Eq. (2), μ is the product of the gravitational constant by

the mass of the asteroid P , τ0 = a2
eC20, τ2 = a2

e

√

C2
22 + S2

22,
ae is mean equatorial radius of the asteroid P , C20, C22 and
S22 are the spherical harmonic coefficients of the asteroid’s
gravitational field. Due to the reference frame O–XYZ is
fixed at the mass center and their coordinate axis are aligned
along the principal axes of inertia of the asteroid, S22 = 0
and τ2 = a2

eC22 virtually. Similar to Liu (1994) and Ge and
Liu (1999), we derive the elastic deformation of flexible
solar arrays of the spacecraft B with the configuration (I)
meets the forced vibration equations:

D∇4ui + hρ
∂2ui

∂t2
+ hρ

[(

θ̈pitch + 3μ

R3
S

θpitch

)

z

− (

φ̈yaw − 2ωcψ̇roll − ω2
cφyaw

)

y

]

= 0,

(i = 1,2), (3)
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where D is flexural stiffness of the solar arrays. It is pointed
out that the coordinate references chose in the text are dif-
ferent from the ones in Liu (1994), Ge and Liu (1999)
and Wang and Xu (2013b), but consistent with Curtis
(2005).

3 Sufficient conditions of attitude stability

Similar to Liu (1994) and Ge and Liu (1999), adopting
Galerkin’s method (Barton 1951; Meirovitch 1967) and us-
ing the free vibration modes Φj(y, z) and the mode coor-
dinates qij (t) (i = 1,2; j = 1,2, . . . , n) of thin cantilever
plates fixed at the primary rigid body, from Eqs. (2) and
(3) we derive the discrete attitude dynamic equations of the
spacecraft B with the configuration (I):
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Ixxψ̈roll + (Ixx + Izz − Iyy)ωcφ̇yaw + [(ω2
c

+ 3μ

R3
S

)(Iyy − Izz)

− μ

2R5
S

(Iyy − Izz)(21τ0 + 102τ2)

+ 5μ

2R5
S

(3Jxxyy − 3Jxxzz + 3Jyyyy − 21Jyyzz

+ 4Jzzzz)]ψroll − 2ωc

∑n
j=1 αj (q̇1j + q̇2j ) = 0,

Iyy θ̈pitch + [ 3μ

R3
S

(Ixx − Izz) − 5μ

2R5
S

(Ixx − Izz)(3τ0

+ 114
5 τ2) + 5μ

2R5
S

(3Jxxxx + 3Jxxyy − 21Jxxzz

− 3Jyyzz + 4Jzzzz)]θpitch

+ ∑n
j=1 βj (q̈1j + q̈2j )

+ 3μ

R3
S

∑n
j=1 βj (q1j + q2j )

+ 3μ

2R4
S

∑n
j=1 ξj (q1j + q2j )

+ 5μ

2R5
S

∑n
j=1 ηj (q1j + q2j ) = 0,

Izzφ̈yaw + (Iyy − Izz − Ixx)ωcψ̇roll

+ [ω2
c (Iyy − Ixx)

− 3μ

R5
S

(Iyy − Ixx)(τ0 − 2τ2)]φyaw

− ∑n
j=1 αj (q̈1j + q̈2j )

+ ω2
c

∑n
j=1 αj (q1j + q2j ) = 0,

δjk(q̈1j + σ 2
j q1j ) + βj (θ̈pitch + 3μ

R3
S

θpitch)

− αj (φ̈yaw − 2ωcψ̇roll − ω2
cφyaw) = 0,

δjk(q̈2j + σ 2
j q2j ) + βj (θ̈pitch + 3μ

R3
S

θpitch)

− αj (φ̈yaw − 2ωcψ̇roll − ω2
cφyaw) = 0,

(4)
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αj = hρ
∫∫

S1
Φj(y, z)ydydz

= hρ
∫∫

S2
Φj(y, z)ydydz,

βj = hρ
∫∫

S1
Φj(y, z)zdydz

= hρ
∫∫

S2
Φj(y, z)zdydz,

ξj = hρ[∫∫
S1

Φj(y, z)(y2 − 4z2)dydz

= hρ[∫∫
S2

Φj(y, z)(y2 − 4z2)dydz,

ηj = hρ[∫∫
S1

Φj(y, z)(4z3 − 3y2z)dydz

= hρ[∫∫
S2

Φj(y, z)(4z3 − 3y2z)dydz,

δjk = ∫∫

S1
Φj(y, z)Φk(y, z)dydz

= ∫∫

S2
Φj(y, z)Φk(y, z)dydz,

(j, k = 1,2, . . . n),

σ 2
j δjk = D

∫∫

S1
[∇4Φj(y, z)]Φk(y, z)dydz

= D
∫∫

S2
[∇4Φj(y, z)]Φk(y, z)dydz.

(5)

Equations (5) are based on the corresponding formula in
Ge and Liu (1999), and the last two equations in Eqs.
(5) are the orthogonality conditions of vibration mode vir-
tually. σj is the j -th natural frequency of free vibration
of the solar arrays. Note that the assumption that these
two flexible solar arrays of the spacecraft have the same
mode functions is used in Eqs. (4) and (5). The above dis-
crete attitude dynamic equations can be further expressed
as Mq̈ + Gq̇ + K = 0, which is similar to the linear
model of the gyrosystem without damping forces. Here
q = [ψroll, θpitch, φyaw, q1j , . . . , q1n, q2j , . . . , q2n]T , and M ,
G and K are 2n + 3 order matrixes. The matrix M is sym-
metrical and just the so-called mass matrix. Moreover, it is
easy to derive that the matrix M must be positive definite
(Ge and Liu 1999). With the aid of the analysis of stabil-
ity of the gyrosystem, if the matrix K is also symmetrical,
i.e. corresponds to the so-called stiffness matrix, the atti-
tude stability of the spacecraft is determined by the positive
definiteness of the symmetrical stiffness matrix based on
the Kelvin-Tait-Chetayev theorem (Zajac 1964; Liu 1994;
Ge and Liu 1999). However, the specific expression of K

is

K =

⎡
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⎢
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Q1 0 0 0 · · · 0 0 · · · 0
0 Q2 0 γ1 · · · γn γ1 · · · γn

0 0 Q3 ω2
cα1 · · · ω2

cαn ω2
cα1 · · · ω2

cαn

0 3μ

R3
S

β1 ω2
cα1 σ 2

1 0 0 0 0 0

...
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... 0
. . . 0 0 0 0

0 3μ

R3
S

βn ω2
cαn 0 0 σ 2

n 0 0 0

0 3μ

R3
S

β1 ω2
cα1 0 0 0 σ 2

1 0 0

...
...

... 0 0 0 0
. . . 0

0 3μ

R3
S

βn ω2
cαn 0 0 0 0 0 σ 2
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where
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Q1 = (ω2
c + 3μ

R3
S

)(Iyy − Izz) − μ

2R5
S

(Iyy − Izz)(21τ0

+ 102τ2) + 5μ

2R5
S

(3Jxxyy − 3Jxxzz + 3Jyyyy − 21Jyyzz

+ 4Jzzzz),

Q2 = 3μ

R3
S

(Ixx − Izz) − 5μ

2R5
S

(Ixx − Izz)(3τ0 + 114
5 τ2)

+ 5μ

2R5
S

(3Jxxxx + 3Jxxyy − 21Jxxzz − 3Jyyzz + 4Jzzzz),

Q3 = ω2
c (Iyy − Ixx) − 3μ

R5
S

(Iyy − Ixx)(τ0 − 2τ2),

(7)

and

γj = 3μ

R3
S

βj + 3μ

2R4
S

ξj + 5μ

2R5
S

ηj , (j = 1,2, . . . , n). (8)

It is seen that the matrix K is not symmetrical formally.
However, because the inertia integrals of the flexible solar
arrays are small and RS is a big number, 3μ

R3
S

βj is often

larger than 3μ

2R4
S

ξj and 5μ

2R5
S

ηj virtually. We can approxima-

tively regard as γj ≈ 3μ

R3
S

βj , i.e. further neglect the third-

and fourth-order inertia integrals arising from the elastic
deformation of the flexible solar arrays. Then the matrix
K becomes symmetrical, and now the attitude stability of
the spacecraft is determined by the positive definiteness of
the symmetrical stiffness matrix K (Zajac 1964; Liu 1994;
Ge and Liu 1999). After a serious of elementary transfor-
mations of matrix K , we derive the sufficient conditions of
attitude stability of a spacecraft B with the configuration (I)
moving on a stationary orbit around the asteroid P :
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⎪
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Q1 > 0,

Q2 > 18(
μ

R3
S

)2 ∑n
j=1(

βj

σj
)2,

Q3 > 2ω4
c

∑n
j=1(

αj

σj
)2 + 36ω4

c (
μ

R3
S

)2(
∑n

j=1
αj βj

σ 2
j

)2/[Q2

− 18(
μ

R3
S

)2 ∑n
j=1(

βj

σj
)2].

(9)

4 Discussion

4.1 The effect of the direction of the flexible solar arrays

In the above analysis, the direction of elastic displacement
of the solar arrays is along the x-axis of o–xyz, the fixed
edges of the solar arrays is parallel to the y-axis, and the
middle plane of the solar arrays without deformation is just
the yz-coordinate plane (i.e. the configuration (I) in Fig. 2).
In this section, we further investigate the attitude stability of
the spacecraft B with the configurations (II) and (III) (see

Fig. 2), in which the solar arrays are installed in other direc-
tions of o–xyz. Note that the reference frames O–XYZ and
o–x0y0z0 are unchanged in the analysis, and the direction
of the flexible solar arrays does not change the j -th natural
frequency σj of free vibration of the solar arrays.

For the spacecraft B with the configuration (II), the direc-
tion of elastic displacement of the solar arrays is along the
y-axis of o–xyz, the fixed edges of the solar arrays is par-
allel to the x-axis, and the middle plane of the solar arrays
without deformation is just the xz-coordinate plane. The co-
ordinate of an arbitrary point in this middle plane can be
expressed as xi + zk, and the elastic displacement of this
point is u′

1j or u′
2j (u′

1 corresponds to the point in the left
solar array, while u′

2 corresponds to the point in the right
solar array). The corresponding linearized equations of atti-
tude motion of the spacecraft B with the configuration (II)
are
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Ixxψ̈roll + (Ixx + Izz − Iyy)ωcφ̇yaw + Q1ψroll

− (ω2
c + 3μ

R3
S

)hρ(
∫∫

S′
1
u′

1zdxdz + ∫∫

S′
2
u′

2zdxdz)

− hρ(
∫∫

S′
1

∂2u′
1

∂t2 zdxdz + ∫∫

S′
2

∂2u′
2

∂t2 zdxdz)

− 3μ

2R4
S

hρ[∫∫
S′

1
u′

1(x
2 − 4z2)dxdz + ∫∫

S′
2
u′

2(x
2

− 4z2)dxdz] − 5μ

2R5
S

hρ[∫∫
S′

1
u′

1(4z3 − 3x2z)dxdz

+ ∫∫

S′
2
u′

2(4z3 − 3x2z)dxdz] = 0,

Iyy θ̈pitch + Q2θpitch = 0,

Izzφ̈yaw + (Iyy − Izz − Ixx)ωcψ̇roll + Q3φyaw

+ hρ(
∫∫

S′
1

∂2u′
1

∂t2 xdxdz + ∫∫

S′
2

∂2u′
2

∂t2 xdxdz)

+ ω2
chρ(

∫∫

S′
1
u′

1xdxdz + ∫∫

S′
2
u′

2xdxdz) = 0,

D∇4u′
i + hρ

∂2u′
i

∂t2 + hρ[(φ̈yaw + ω2
cφyaw)x − (ψ̈roll

+ ω2
cψroll + 3μ

R3
S

ψroll)z] = 0, (i = 1,2),

(10)

where the fields of integration S′
1 is −a − b ≤ z ≤ −a and

−c/2 ≤ x ≤ c/2; while S′
2 is a ≤ z ≤ a + b and −c/2 ≤

x ≤ c/2. Using the same deduction as stated above, we then
derive the following sufficient conditions of attitude stability
of a spacecraft B with the configuration (II) moving on a
stationary orbit around the asteroid P :
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Q1 > 2(ω2
c + 3μ

R3
S

)2 ∑n
j=1(

β ′
j

σj
)2,

Q2 > 0,

Q3 > 2ω4
c

∑n
j=1(

α′
j

σj
)2 + 4ω4

c (ω
2
c

+ 3μ

R3
S

)2(
∑n

j=1
α′

j β ′
j

σ 2
j

)2/[Q1 − 2(ω2
c

+ 3μ

R3
S

)2 ∑n
j=1(

β ′
j

σj
)2],

(11)
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where

{

α′
j = hρ

∫∫

S′
1
Φj(x, z)xdxdz = hρ

∫∫

S′
2
Φj(x, z)xdxdz,

β ′
j = hρ

∫∫

S′
1
Φj(x, z)zdxdz = hρ

∫∫

S′
2
Φj(x, z)zdxdz.

(12)

For the spacecraft B with the configuration (III), the direc-
tion of elastic displacement of the solar arrays is along the
z-axis of o–xyz, the fixed edges of the solar arrays is par-
allel to the y-axis, and the middle plane of the solar arrays
without deformation is just the xy-coordinate plane. The co-
ordinate of an arbitrary point in this middle plane can be
expressed as xi + yj , and the elastic displacement of this
point is u′′

1k or u′′
2k (u′′

1 corresponds to the point in the left
solar array, while u′′

2 corresponds to the point in the right
solar array). The corresponding linearized equations of atti-
tude motion of the spacecraft B with the configuration (III)
are
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Ixxψ̈roll + (Ixx + Izz − Iyy)ωcφ̇yaw + Q1ψroll

− (ω2
c + 3μ

R3
S

)hρ(
∫∫

S′′
1
u′′

1ydxdy

+ ∫∫

S′′
2
u′′

2ydxdy)

+ hρ(
∫∫

S′′
1

∂2u′′
1

∂t2 ydxdy

+ ∫∫

S′′
2

∂2u′′
2

∂t2 ydxdy)

+ 15μ

2R5
S

hρ[∫∫
S′′

1
u′′

1(y
3 + x2y)dxdy

+ ∫∫

S′′
2
u′′

2(y
3 + x2y)dxdy] = 0,

Iyy θ̈pitch + Q2θpitch − hρ(
∫∫

S′′
1

∂2u′′
1

∂t2 xdxdy

+ ∫∫

S′′
2

∂2u′′
2

∂t2 xdxdy) + 3μ

R3
S

hρ(
∫∫

S′′
1
u′′

1xdxdy

+ ∫∫

S′′
2
u′′

2xdxdy) − 15μ

2R5
S

hρ[∫∫
S′′

1
u′′

1(x
3

+ xy2)dxdy + ∫∫

S′′
2
u′′

2(x
3 + xy2)dxdy] = 0,

Izzφ̈yaw + (Iyy − Izz − Ixx)ωcψ̇roll + Q3φyaw

− 2ωchρ(
∫∫

S′′
1

∂u′′
1

∂t
ydxdy

+ ∫∫

S′′
2

∂u′′
2

∂t
ydxdy) = 0,

D∇4u′′
i + hρ

∂2u′′
i

∂t2 + hρ[(ψ̈roll

+ 2ωcφ̇yaw − ω2
cψroll

− 3μ

R3
S

ψroll)y − (θ̈pitch − 3μ

R3
S

θpitch)x] = 0,

(i = 1,2),

(13)

where the fields of integration S′′
1 is −a − b ≤ x ≤ −a and

−c/2 ≤ y ≤ c/2; while S′′
2 is a ≤ x ≤ a + b and −c/2 ≤

y ≤ c/2. Using the same deduction as stated above, we then
derive the following sufficient conditions of attitude stability
of a spacecraft B with the configuration (III) moving on a
stationary orbit around the asteroid P :
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Q1 > 2(ω2
c + 3μ

R3
S

)2 ∑n
j=1(

α′′
j

σj
)2,

Q2 > 18(
μ

R3
S

)2 ∑n
j=1(

β ′′
j

σj
)2 + 36(ω2

c

+ 3μ

R3
S

)2(
μ

R3
S

)2(
∑n

j=1
α′′

j β ′′
j

σ 2
j

)2

/[Q1 − 2(ω2
c + 3μ

R3
S

)2 ∑n
j=1(

α′′
j

σj
)2],

Q3 > 0,

(14)

where

{

α′′
j = hρ

∫∫

S′′
1
Φj(x, y)ydxdy = hρ

∫∫

S′′
2
Φj(x, y)ydxdy,

β ′′
j = hρ

∫∫

S′′
1
Φj(x, y)xdxdy = hρ

∫∫

S′′
2
Φj(x, y)xdxdy.

(15)

From Eqs. (9), (11) and (14), it is seen that the sufficient
conditions of attitude stability of a spacecraft B with two
flexible solar arrays moving on a stationary orbit around the
asteroid P are evidently different when the solar arrays are
installed in different directions.

4.2 Some special cases

According to the above analysis, we present some special
cases as follows:

(1) Let all those fourth-order inertia integrals in Eqs. (7) be
zero, Eqs. (9), (11) and (14) are respectively reduced to:
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[1 − 3C20(
ae

RS
)2 − 15C22(

ae

RS
)2](Ipitch − Iyaw) > 0,

[1 − 5
2C20(

ae

RS
)2 − 19C22(

ae

RS
)2](Iroll − Iyaw)

> 6 μ

R3
S

∑n
j=1(

βj

σj
)2,

[1 − 9
2C20(

ae

RS
)2 − 3C22(

ae

RS
)2](Ipitch − Iroll)

> 2 μ

R3
S

[1 − 3
2C20(

ae

RS
)2 − 9C22(

ae

RS
)2]2 ∑n

j=1(
αj

σj
)2

+
12(

μ

R3
S

)2[1− 3
2 C20(

ae
RS

)2−9C22(
ae
RS

)2]2(
∑n

j=1
αj βj

σ2
j

)2

[1− 5
2 C20(

ae
RS

)2−19C22(
ae
RS

)2](Iroll−Iyaw)−6 μ

R3
S

∑n
j=1(

βj
σj

)2
,

(16)
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[1 − 3C20(
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RS
)2 − 15C22(
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RS
)2](Ipitch − Iyaw) > 8 μ

R3
S

[1 − 3
8C20(

ae

RS
)2 − 9

4C22(
ae

RS
)2]2 ∑n

j=1(
β ′

j

σj
)2,

[1 − 5
2C20(

ae

RS
)2 − 19C22(

ae

RS
)2](Iroll − Iyaw) > 0,

[1 − 9
2C20(

ae

RS
)2 − 3C22(

ae

RS
)2](Ipitch − Iroll) > 2 μ

R3
S

[1 − 3
2C20(

ae

RS
)2 − 9C22(

ae

RS
)2]2 ∑n

j=1(
α′

j

σj
)2

+
16(

μ

R3
S

)2[1− 3
2 C20(

ae
RS

)2−9C22(
ae
RS

)2]2[1− 3
8 C20(

ae
RS

)2− 9
4 C22(

ae
RS

)2]2(
∑n

j=1

α′
j
β′
j

σ2
j

)2

[1−3C20(
ae
RS

)2−15C22(
ae
RS

)2](Ipitch−Iyaw)−8 μ

R3
S

[1− 3
8 C20(

ae
RS

)2− 9
4 C22(

ae
RS

)2]2
∑n

j=1(
β′
j

σj
)2

,

(17)

and
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[1 − 3C20(
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)2 − 15C22(
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[1 − 3
8C20(
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RS
)2 − 9

4C22(
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RS
)2]2 ∑n

j=1(
α′′

j

σj
)2,

[1 − 5
2C20(

ae

RS
)2 − 19C22(

ae

RS
)2](Iroll − Iyaw) > 6 μ

R3
S

∑n
j=1(

β ′′
j

σj
)2

+
48(

μ

R3
S

)2[1− 3
8 C20(

ae
RS

)2− 9
4 C22(

ae
RS

)2]2(
∑n

j=1

α′′
j
β′′
j

σ2
j

)2

[1−3C20(
ae
RS

)2−15C22(
ae
RS

)2](Ipitch−Iyaw)−8 μ

R3
S

[1− 3
8 C20(

ae
RS

)2− 9
4 C22(

ae
RS

)2]2
∑n

j=1(
α′′
j

σj
)2

,

[1 − 9
2C20(

ae

RS
)2 − 3C22(

ae

RS
)2](Ipitch − Iroll) > 0.

(18)

In Eqs. (16)–(18), the equation on the radius of stationary
orbit R5

S − μ

ω2
c
(R2

S − 3
2τ0 − 9τ2) = 0 (Hu 2002; Wang and

Xu 2013b) is used, and Ixx = Iroll, Iyy = Ipitch and Izz =
Iyaw.

Actually, through magnitude comparison, we can neglect
the effect of the third- and fourth-order inertia integrals of
the spacecraft based on the conclusion of Wang and Xu
(2013b) in the analysis, even though they appear in the full
fourth-order gravity gradient torque. Equations (16)–(18)
are the more immediate sufficient conditions of attitude sta-
bility of a spacecraft B with two flexible solar arrays mov-
ing on a stationary orbit around the asteroid P . In addi-
tion, the elastic displacement of the flexible solar arrays is
small, and the third- and fourth-order inertia integrals arising
from the elastic deformation of the solar arrays are smaller
than the corresponding third- and fourth-order inertia inte-
grals of the spacecraft. Hence the above approximate treat-
ment on the third- and fourth-order inertia integrals arising
from the elastic deformation of the solar arrays is reason-
able, and the sufficient conditions of attitude stability are
valid.

It is worth noting that why we do not neglect these third-
and fourth-order inertia integrals in the model from the start:
on the one hand, the model with these third- and fourth-order
inertia integrals is more precise evidently in theory; on the
other hand, we aim to reveal this approximate treatment, and
explain its rationality clearly.

(2) Let all those fourth-order inertia integrals in Eqs. (7) be
zero, and C20 = C22 = 0 (i.e. the spacecraft B is subjected

to the central gravity gradient torque merely), Eqs. (9), (11)

and (14) or Eqs. (16)–(18) respectively reduce to the suffi-

cient conditions of attitude stability of a spacecraft B with

two flexible solar arrays moving on a stationary orbit around

the asteroid P in the central gravity field:
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Ipitch > Iyaw,
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R3
S

∑n
j=1(

βj

σj
)2,

Ipitch > Iroll + 2 μ

R3
S

∑n
j=1(

αj

σj
)2

+ 12(
μ

R3
S

)2(
∑n

j=1
αj βj

σ 2
j

)2/[Iroll

− Iyaw − 6 μ

R3
S

∑n
j=1(

βj

σj
)2],
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S

∑n
j=1(
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j

σj
)2

+ 16(
μ

R3
S

)2(
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j β ′
j

σ 2
j

)2/[Ipitch − Iyaw

− 8 μ
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S
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and
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j
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)2,

Iroll > Iyaw + 6 μ

R3
S

∑n
j=1(

β ′′
j

σj
)2

+ 48(
μ

R3
S

)2(
∑n

j=1
α′′

j β ′′
j

σ 2
j

)2/[Ipitch − Iyaw

− 8 μ

R3
S

∑n
j=1(

α′′
j

σj
)2],

Ipitch > Iroll.

(21)

And then the stability conditions can be applied to the space-
craft with two flexible solar arrays moving on a circular orbit
in the Earth’s central gravity field. Equation (21) is just con-
sistent with the result in Ge and Liu (1999) essentially.

(3) Let all those fourth-order inertia integrals in Eqs. (7) be
zero, and αj = α′

j = α′′
j = 0 (j = 1,2, . . . , n) (i.e. those two

flexible solar arrays reduce to flexible levers), Eqs. (9), (11)
and (14) or Eqs. (16)–(18) respectively reduce to the suffi-
cient conditions of attitude stability of a spacecraft B with
two flexible levers moving on a stationary orbit around the
asteroid P in the gravity field with the second order and de-
gree harmonics C20 and C22:
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RS
)2 − 19C22(
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RS
)2](Iroll − Iyaw)

> 6 μ

R3
S
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S

[1 − 3
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RS
)2 − 9

4C22(
ae

RS
)2]2 ∑n

j=1(
β ′

j

σj
)2,
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)2 − 19C22(
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and
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σj
)2,

[1 − 9
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RS
)2 − 3C22(
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RS
)2](Ipitch − Iroll) > 0.

(24)

(4) Let all those fourth-order inertia integrals in Eqs. (7)
be zero, C20 = C22 = 0 and αj = α′

j = α′′
j = 0 (j =

1,2, . . . , n), Eqs. (9), (11) and (14) or Eqs. (16)–(18) re-
spectively reduce to the sufficient conditions of attitude sta-
bility of a spacecraft B with two flexible levers moving on a
stationary orbit around the asteroid P in the central gravity

field:

Ipitch > Iroll > Iyaw + 6
μ

R3
S

n
∑

j=1

(

βj

σj

)2

, (25)
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Ipitch > Iyaw + 8 μ

R3
S
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j=1(

β ′
j

σj
)2,

Ipitch > Iroll > Iyaw,
(26)

and

Ipitch > Iroll > Iyaw + 6
μ

R3
S

n
∑

j=1

(

β ′′
j

σj

)2

. (27)

And then the stability conditions can be applied to the space-
craft with two flexible levers moving on a circular orbit in
the Earth’s central gravity field. Equation (27) is just con-
sistent with the result in Liu (1995) and Ge and Liu (1999)
essentially.

(5) Let all those fourth-order inertia integrals in Eqs. (7)
be zero, αj = α′

j = α′′
j = 0 and βj = β ′

j = β ′′
j = 0 (j =

1,2, . . . , n) (i.e. the spacecraft B reduces to a rigid one),
Eqs. (9), (11) and (14) or Eqs. (16)–(18) reduce to the same
sufficient conditions of attitude stability of a rigid spacecraft
B moving on a stationary orbit around the asteroid P in the
gravity field with the second order and degree harmonics
C20 and C22:

⎧

⎪
⎨

⎪
⎩

[1 − 3C20(
ae

RS
)2 − 15C22(

ae

RS
)2](Ipitch − Iyaw) > 0,

[1 − 5
2C20(

ae

RS
)2 − 19C22(

ae

RS
)2](Iroll − Iyaw) > 0,

[1 − 9
2C20(

ae

RS
)2 − 3C22(

ae

RS
)2](Ipitch − Iroll) > 0.

(28)

And then the stability conditions can be applied to the space-
craft stated in Wang and Xu (2013b) evidently, and they are
consistent with the nonlinear stability conditions derived in
Wang and Xu (2013d).

(6) Let all those fourth-order inertia integrals in Eqs. (7) be
zero, C20 = C22 = 0, αj = α′

j = α′′
j = 0 and βj = β ′

j =
β ′′

j = 0 (j = 1,2, . . . , n), Eqs. (9), (11) and (14) or Eqs.
(16)–(18) reduce to the same sufficient condition of attitude
stability of a rigid spacecraft B moving on a stationary or-
bit around the asteroid P in the central gravity field of an
asteroid P :

Ipitch > Iroll > Iyaw. (29)

And then the result is just the well-known condition of at-
titude stability of a rigid spacecraft subjected to the central
gravity gradient torque (Curtis 2005).
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Table 1 The main parameters of the asteroids 4769 Castalia (Scheeres et al. 1996) and 25143 Itokawa (Scheeres et al. 2006)a

Asteroid P μ (km3/s2) IP,xx/Ip,zz IP,yy/Ip,zz ae (km) C20 C22 ωc (s−1) RS (km)

4769 Castalia 9.40 × 10−8 0.37207 0.93805 0.5431 −0.2466 0.1012 4.2883 × 10−4 0.7019

25143 Itokawa (2.36 ± 0.15) × 10−9 0.28501 0.94944 0.1620 −0.3247 0.1416 1.4386 × 10−4 0.4693

aThe coefficients C20 and C22 are calculated by the formula Clm = C̄lm/Nlm (here l = 2;m = 0,2). C̄lm are the normalized gravity field coeffi-

cients, Nlm = [ (l+m)!
(1+δ)(2l+1)(l−m)! ]1/2, δ = 0 for m = 0 and δ = 1 for m �= 0

5 Attitude stability domains and illustrated examples

Just as Curtis (2005), Liu (1994) and Ge and Liu (1999),
introducing the following dimensionless parameters
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(30)

and neglecting the quadratic terms of small parameters δ and
ε (δ′ and ε′, δ′′ and ε′′) for the inertia integrals arising from
the elastic deformation of the solar arrays are small, the suf-
ficient conditions of attitude stability Eqs. (16)–(18) can be
further respectively expressed as:
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and
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With the aid of the parameters kY and kR , we can present
the attitude stability domains determined by Eqs. (31)–(33).
Taking the asteroids 4769 Castalia and 25143 Itokawa as ex-
amples first, we present the attitude stability domains of the
spacecrafts moving on stationary orbits around them. The
main parameters of the asteroids 4769 Castalia (Scheeres
et al. 1996) and 25143 Itokawa (Scheeres et al. 2006) are
listed in Table 1.

Let δ = δ′ = δ′′ = 0.005 and ε = ε′ = ε′′ = 0.0075, the
attitude stability domains of the spacecraft with three dif-
ferent configurations moving on the stationary orbits around
the asteroids 4769 Castalia and 25143 Itokawa are presented
in Fig. 3 respectively. It is seen that the attitude stability do-
mains of the spacecraft are evidently different when the solar
arrays are installed in different directions.

Corresponding to six cases discussed in Sect. 4.2, from
Eqs. (31) the attitude stability domains of the spacecraft with
the configuration (I) moving on a stationary orbit around the
asteroid 4769 Castalia are presented in Fig. 4, in which we
let δ = 0.01 and ε = 0.015 for the corresponding cases. It is
seen that:

(i) Refer to the case (1) vs (2), and the case (3) vs (4)
in Fig. 4, for the spacecrafts with flexible appendages
moving on a stationary orbit, the harmonics C20 and
C22 of the asteroid 4769 Castalia have the significant
influence on the attitude stability domain.

(ii) Refer to the case (5) vs (6) in Fig. 4, for the spacecrafts
without flexible appendages (rigid spacecraft) moving
on a stationary orbit, the harmonics C20 and C22 of the
asteroid 4769 Castalia have no influence on the atti-
tude stability domain, i.e. the attitude stability domains
of the cases (5) and (6) are the same. Moreover, the
attitude stability domains of the cases (5) and (6) are
the classical Lagrange regions and consistent with the
corresponding nonlinear stability domain in the case of
ae/RS = 0.8 presented in Wang and Xu (2013d).

(iii) Whether the effect of the harmonics C20 and C22 of the
asteroid 4769 Castalia is considered (refer to the cases
(1), (3) and (5) in Fig. 4) or not (refer to the cases (2),
(4) and (6) in Fig. 4), the effect of flexible appendages
decreases the attitude stability domains.

Corresponding to six cases discussed in Sect. 4.2, the
attitude stability domains of the spacecraft with the con-
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Fig. 3 The attitude stability domains (shadow areas) of the spacecraft with three different configurations moving on stationary orbits around the
asteroids 4769 Castalia and 25143 Itokawa

figuration (I) moving on a stationary orbit around the as-
teroid 25143 Itokawa are presented in Fig. 5, in which we
let δ = 0.02 and ε = 0.03 for the corresponding cases. The
similar phenomena to the asteroid 4769 Castalia can be ob-
served from Fig. 5, except that the effect of the harmonics
C20 and C22 of the asteroid 25143 Itokawa has not so signif-
icant influence on the attitude stability domain as the 4769
Castalia. In addition, the effect of the harmonics C20 and
C22 of the asteroids is neglected in the cases (2), (4) and (6)
in Figs. 4 and 5, the corresponding attitude stability domains
of the spacecraft with the configuration (I) around the aster-
oids 4769 Castalia and 25143 Itokawa are determined by
the same conditions with different parameters δ and ε asso-
ciated with flexibility actually from Eqs. (31), which can be
regarded as the analysis of attitude stability domains is dis-
connected from the specific asteroid. Then comparing the
cases (2) and (4) in Fig. 4 with that in Fig. 5, it is further
seen that the attitude stability domains decrease with the in-
crease of δ and ε as stated in Liu (1994) and Ge and Liu
(1999). Meantime, for the spacecraft with the configuration
(I) around the asteroids 4769 Castalia and 25143 Itokawa,
even the effect of the harmonics C20 and C22 of the as-
teroids is considered, the attitude stability domains of the

spacecraft with flexible appendages moving on a stationary
orbit around an asteroid also decrease with the increase of δ

and ε, which is verified by the results of the corresponding
spacecraft with two flexible solar arrays and that with two
flexible levers around the asteroids 4769 Castalia and 25143
Itokawa in the gravity field with the second order and degree
harmonics C20 and C22 (Figs. 6 and 7). In Figs. 6 and 7, we
setup different values of δ and ε.

Comparing Eqs. (28) with Eq. (29), the phenomenon that
the harmonics C20 and C22 of the asteroids 4769 Castalia
and 25143 Itokawa have no influence on the attitude stability
domains of the rigid spacecraft moving on a stationary orbit
(refer to the case (5) vs (6) in Figs. 4 and 5) originates from
that the C20, C22 and ae/RS meet the following conditions

⎧
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⎪
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)2 − 15C22(
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)2 > 0,
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)2 − 19C22(

ae
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)2 > 0,

Cast = 1 − 9
2C20(

ae

RS
)2 − 3C22(

ae

RS
)2 > 0.

(34)

Actually, we can further generalize a conclusion: for the
rigid spacecraft moving on a stationary orbit around an as-
teroid, if the conditions Eqs. (34) hold, the harmonics C20

and C22 of the asteroid have no influence on the attitude
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Fig. 4 Corresponding to six
cases discussed in Sect. 4.2, the
attitude stability domains
(shadow areas) of the spacecraft
with the configuration (I)
moving on a stationary orbit
around the asteroid 4769
Castalia

stability domain, i.e. the attitude stability domains deter-
mined with and without C20 and C22 are the same, and
are the classical Lagrange regions. Based on the result of
Wang and Xu (2013c), the conditions Eqs. (34) always hold
in the case of 0.2 < ae/RS < 2/

√
19, −0.5 < C20 < 0 and

−0.25 < C22 < 0.25, and hence the harmonics C20 and C22

of this kind of asteroid have no influence on the attitude sta-
bility domain of its rigid spacecraft moving on the station-
ary orbit. It is exactly because the conditions Eqs. (34) hold
in the attitude stability domains of the cases (5) and (6) in
Figs. 4 and 5 and in the corresponding nonlinear stability do-
main in the case of ae/RS = 0.8 presented in Wang and Xu
(2013d), they seem to be consistent, and are all the classical

Lagrange regions. Here the attitude stability domains of the
cases (5) in Figs. 4 and 5 and the corresponding nonlinear
stability domains in the case of ae/RS = 0.8 presented in
Wang and Xu (2013d) determined by the same formula Eqs.
(28) for the rigid spacecraft actually as stated in Sect. 4.2.

Note that the attitude stability domains of the spacecraft
around the asteroids 4769 Castalia and 25143 Itokawa pre-
sented in Figs. 4–7 are determined by Eqs. (31), i.e. cor-
responding to the spacecraft with the configuration (I). For
the spacecraft with the configurations (II) and (III), the atti-
tude stability domains are determined by Eqs. (32) and (33)
respectively, and the similar phenomena to the configuration
(I) can be observed, except that the attitude stability domains
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Fig. 5 Corresponding to six
cases discussed in Sect. 4.2, the
attitude stability domains
(shadow areas) of the spacecraft
with the configuration (I)
moving on a stationary orbit
around the asteroid 25143
Itokawa

of the spacecraft with flexible appendages moving on a sta-
tionary orbit around an asteroid always decrease with the
increase of δ′′. Under certain cases, the phenomenon that
the variation of δ′′ does not change the attitude stability do-
main of the spacecraft with two flexible solar arrays, and
that the attitude stability domain of the spacecraft with two
flexible solar arrays is the same as that with two flexible
levers may occur. For example, the case (1) in Sect. 4.2 with
δ′′ = 0.012, ε′′ = 0.015 and δ′′ = 0.01, ε′′ = 0.015, and the
cases (2) and (4) in Sect. 4.2 with δ′′ = 0.01, ε′′ = 0.015
and δ′′ = 0, ε′′ = 0.015 respectively for the spacecraft with
the configuration (III) around the asteroid 4769 Castalia;
the case (1) in Sect. 4.2 when δ′′ = 0.012, ε′′ = 0.015 and

δ′′ = 0.01, ε′′ = 0.015, and the cases (2) and (4) in Sect. 4.2
with δ′′ = 0.02, ε′′ = 0.03 and δ′′ = 0, ε′′ = 0.03 respec-
tively for the spacecraft with the configuration (III) around
the asteroid 25143 Itokawa (see Fig. 8). These phenomena
can be explained in theory as described below.

Moreover, according to the results of Wang and Xu
(2013d), in terms of the class conditions:

(a) Aast , Bast and Cast are all positive, i.e. Eqs. (34),
(b) Aast and Cast are positive, and Bast is negative,
(c) Cast is positive and Aast and Bast are negative,

there are three possible types of attitude stability domains
of the spacecraft moving on the stationary orbit, for most
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Fig. 6 The attitude stability domains (shadow areas) of the corre-
sponding spacecraft with two flexible solar arrays (left) and that with
two flexible levers (right) moving on a stationary orbit around the as-
teroid 4769 Castalia in the gravity field with the second order and

degree harmonics C20 and C22, in which different values of δ and ε

are adopted: (a) δ = 0.02 and ε = 0.03; (b) δ = 0.012 and ε = 0.015;
(c) δ = 0.01 and ε = 0.015; (d) δ = 0 and ε = 0.03; (e) δ = 0 and
ε = 0.015

Fig. 7 The attitude stability domains (shadow areas) of the corre-
sponding spacecraft with two flexible solar arrays (left) and that with
two flexible levers (right) moving on a stationary orbit around the as-
teroid 25143 Itokawa in the gravity field with the second order and

degree harmonics C20 and C22, in which different values of δ and ε

are adopted: (a) δ = 0.02 and ε = 0.03; (b) δ = 0.012 and ε = 0.015;
(c) δ = 0.01 and ε = 0.015; (d) δ = 0 and ε = 0.03; (e) δ = 0 and
ε = 0.015

asteroids in our Solar System with the parameters C20, C22

and ae/RS in the ranges of −0.5 < C20 < 0, −0.25 < C22 <

0.25 and 0.2 < ae/RS < 0.8. In fact, we can also reach this
conclusion from another standpoint. We preliminarily in-
fer that there are eight possible types of attitude stability
domains determined by the sufficient conditions in theory,
when the C20, C22 and ae/RS meet the different conditions:
arbitrary combination of the plus-minus of Aast , Bast and
Cast . But for most asteroids in our Solar System with the
parameters in the restrictive ranges stated above, Cast is al-
ways positive (Wang and Xu 2013c). Meantime, the case
of Aast < 0 and Bast > 0 in the above restrictive ranges is
nonexistent by calculation. Then we finally infer that there
are only three possible types of attitude stability domains
determined by the sufficient conditions in theory.

Taking the imaginary asteroid with C20 = −0.2790,
C22 = 0.1850 and ae/RS = 0.7048 satisfying the class con-
dition (b), and the imaginary asteroid with C20 = −0.2500,
C22 = 0.1990 and ae/RS = 0.7004 satisfying the class con-
dition (c) as examples, the attitude stability domains of the
spacecraft with three different configurations moving on
the stationary orbits around them are presented in Fig. 9
respectively, in which we let δ = δ′ = δ′′ = 0.001 and
ε = ε′ = ε′′ = 0.0015. The similar phenomenon to the as-
teroids 4769 Castalia and 25143 Itokawa that the attitude
stability domains of the spacecraft are evidently different
when the solar arrays are installed in different directions can
be observed from Fig. 9. But the attitude stability domains
of the imaginary asteroids are obviously different from the
ones of the asteroids 4769 Castalia and 25143 Itokawa satis-
fying the class condition (a), the attitude stability domains of



520 Astrophys Space Sci (2014) 351:507–524

Fig. 8 The attitude stability
domains (shadow areas) of the
spacecraft with the
configuration (III) moving on
stationary orbits around the
asteroids 4769 Castalia and
25143 Itokawa

the imaginary asteroid satisfying the class condition (b) are
in the isosceles right triangle region above the straight line
kY = kR in the first quadrant of kY –kR plane; while the at-
titude stability domains of the imaginary asteroid satisfying
the class condition (c) are in the second quadrant of kY –kR

plane.
Corresponding to six cases discussed in Sect. 4.2, from

Eqs. (31) the attitude stability domains of the spacecraft with
the configuration (I) moving on stationary orbits around the
imaginary asteroids with the parameters stated above are re-
spectively presented in Figs. 10 and 11. In Fig. 10, we let
δ = 0.01 and ε = 0.015 for the corresponding cases, and in
Fig. 11, we let δ = 0.02 and ε = 0.03 for the corresponding
cases. The attitude stability domains of the cases (2), (4) and
(6) in Figs. 10 and 11 are the same as the corresponding ones
in Figs. 4 and 5 for they are determined by the same attitude
stability conditions without C20 and C22 essentially. The at-
titude stability domains of the case (5) in Figs. 10 and 11
are just the isosceles right triangle region above the straight
line kY = kR in the first quadrant and the second quadrant of
kY –kR plane respectively, and they are consistent with the
corresponding ones of nonlinear stability domain in the case
of ae/RS = 0.8 presented in Wang and Xu (2013d) for they
meet the same class conditions and determined by the same

attitude stability conditions Eqs. (28). From Figs. 10 and 11,
it is also seen that the harmonics C20 and C22 of the imag-
inary asteroids have the significant influence on the attitude
stability domain; whether the effect of the harmonics C20

and C22 of the imaginary asteroids is considered or not, the
effect of flexible appendages decreases the attitude stabil-
ity domains. These phenomena are similar to the asteroids
4769 Castalia and 25143 Itokawa. But the effect of the har-
monics C20 and C22 of the imaginary asteroids makes the
attitude stability domains be completely changed. The atti-
tude stability domains determined without C20 and C22 are
in the classical Lagrange region (in the isosceles left triangle
region below the straight line kY = kR in the first quadrant
of kY –kR plane); while the attitude stability domains deter-
mined with C20 and C22 are in the isosceles right triangle
region above the straight line kY = kR in the first quadrant
or the second quadrant of kY –kR plane. Moreover, the har-
monics C20 and C22 of the imaginary asteroids satisfying the
class conditions (b) and (c) have also significant influence on
the attitude stability domain of the spacecrafts without flex-
ible appendages (rigid spacecraft) moving on a stationary
orbit, i.e. the attitude stability domains of the cases (5) and
(6) in Figs. 10 and 11 are evidently different, for the con-
ditions Eqs. (34) do not hold now. The similar phenomena
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Fig. 9 The attitude stability domains (shadow areas) of the spacecraft
with three different configurations moving on stationary orbits around
the imaginary asteroids, in which (1)–(3) correspond to the imaginary

asteroid satisfying the class condition (b) and (4)–(6) correspond to the
imaginary asteroid satisfying the class condition (c)

stated above can be also observed for the spacecraft with the
configurations (II) and (III) moving on the stationary orbits
around these imaginary asteroids. In addition, the attitude
stability domains of the cases (1) and (2) in Fig. 10 are the
same, i.e. the variation of δ does not change the attitude sta-
bility domain of the spacecraft with two flexible solar arrays,
which can be explained in theory as described below.

According to the internal relations of three inequalities in
the attitude stability conditions Eqs. (31)–(33), we can fur-
ther analyze the effect of δ, δ′ and δ′′ on the attitude stability
domains in theory. It is found that:

For the spacecraft with the configuration (I), if

{

− 3ε
Bast

> Dast δ
Cast

, (Aast > 0,Cast > 0,Bast < 0),

Dast = [1 − 3
2C20(

ae

RS
)2 − 9C22(

ae

RS
)2]2,

(35)

the variation of δ does not change the attitude stability do-
main of the spacecraft with two flexible solar arrays, and the
attitude stability domain of the spacecraft with two flexible
solar arrays is the same as that with two flexible levers. The
cases (1) and (2) in Fig. 10 just satisfy Eqs. (35), so the cor-
responding phenomenon can be observed.

For the spacecraft with the configuration (II), if

⎧

⎪
⎨

⎪
⎩

4East ε
′

Aast
> Dast δ

′
Cast

, (Aast > 0,Cast > 0,Bast < 0),

East = [1 − 3
8C20(

ae

RS
)2 − 9

4C22(
ae

RS
)2]2,

(36)

the variation of δ′ does not change the attitude stability do-
main of the spacecraft with two flexible solar arrays, and the
attitude stability domain of the spacecraft with two flexible
solar arrays is the same as that with two flexible levers.

For the spacecraft with the configuration (III), if

3ε′′

Bast

>
4East δ

′′

Aast

, (Aast > 0,Bast > 0,Cast > 0), (37)

the variation of δ′′ does not change the attitude stability do-
main of the spacecraft with two flexible solar arrays, and the
attitude stability domain of the spacecraft with two flexible
solar arrays is the same as that with two flexible levers. The
cases presented in Fig. 8 just satisfy Eq. (37), so the corre-
sponding phenomena can be observed.
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Fig. 10 Corresponding to six
cases discussed in Sect. 4.2, the
attitude stability domains
(shadow areas) of the spacecraft
with the configuration (I)
moving on a stationary orbit
around the imaginary asteroid
satisfying the class condition (b)

6 Conclusions

In this paper, the attitude stability of a spacecraft with two
flexible solar arrays on a stationary orbit subjected to the
fourth-order gravity gradient torque is investigated in the
gravity field of an asteroid with the second order and de-
gree harmonics C20 and C22. The sufficient conditions of
attitude stability of the spacecraft are derived. The results
obtained are generalized and encompass some special cases.
The attitude stability domains determined by the sufficient
conditions are analyzed, and some conclusions can be ob-
tained:

(1) The attitude stability domains of the spacecraft with two

flexible solar arrays are evidently different when the so-

lar arrays are installed in different directions.

(2) For the spacecrafts with flexible appendages moving on

a stationary orbit, the harmonics C20 and C22 of the as-

teroids have the significant influence on the attitude sta-

bility domains. Especially, for the asteroids satisfying

the class conditions (b) and (c), the effect of the har-

monics C20 and C22 of the asteroids makes the attitude

stability domains be completely changed from the ones

without C20 and C22 in the classical Lagrange region to

the ones in the isosceles right triangle region above the
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Fig. 11 Corresponding to six
cases discussed in Sect. 4.2, the
attitude stability domains
(shadow areas) of the spacecraft
with the configuration (I)
moving on a stationary orbit
around the imaginary asteroid
satisfying the class condition (c)

straight line kY = kR in the first quadrant or the second

quadrant of kY –kR plane.

(3) For the rigid spacecraft moving on a stationary orbit

around an asteroid satisfying the class condition (a), i.e.

Eqs. (34) holding, the harmonics C20 and C22 of the

asteroid have no influence on the attitude stability do-

main, i.e. the attitude stability domains determined with

and without C20 and C22 are the same and both the clas-

sical Lagrange regions. The asteroids 4769 Castalia and

25143 Itokawa just belong to this kind of asteroid. How-

ever, the harmonics C20 and C22 have also significant

influence on the attitude stability domains of the rigid

spacecrafts moving on stationary orbits for the asteroids

satisfying the class conditions (b) and (c).

(4) Whether the harmonics C20 and C22 of the asteroids are

considered or not, the effect of flexible appendages de-

creases the attitude stability domains. Moreover, the at-

titude stability domains often decrease with the increase

of δ and ε (δ′ and ε′, δ′′ and ε′′) associated with flex-

ibility. The large values of δ and ε (δ′ and ε′, δ′′ and

ε′′) can even make the stability domain vanish. But note

that under certain conditions, the variation of δ, δ′ and

δ′′ does not change the attitude stability domain of the

spacecraft with two flexible solar arrays, and the attitude
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stability domain of the spacecraft with two flexible solar
arrays is the same as that with two flexible levers.

This paper expands the work of Ge and Liu (1999) and
Wang and Xu (2013b; 2013c; 2013d). In comparison to Ge
and Liu (1999), the attitude stability of the spacecraft with
two flexible solar arrays moving on a circular orbit in the
Earth’s gravitational field is generalized to the spacecraft
with two flexible solar arrays moving on a stationary orbit
around an asteroid subjected to the fourth-order gravity gra-
dient torque in the gravity field with the second order and
degree harmonics C20 and C22. Due to the significant effect
of C20 and C22 of the asteroid, the sufficient conditions of at-
titude stability and attitude stability domains determined by
the conditions are different from that of the Earth’s space-
craft evidently. In addition, the effect of the direction of the
flexible solar arrays is analyzed in this paper. In compari-
son to Wang and Xu (2013b; 2013c; 2013d), the effect of
the flexible appendages of the spacecraft is considered in
the analysis of attitude stability in this paper, and the suffi-
cient conditions of attitude stability are derived through the
different approach. In sum, the effects of C20 and C22 of the
asteroid and the flexible appendages of the spacecraft should
be considered in the analysis of attitude motion of the mod-
ern spacecraft mission to asteroids.
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