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Abstract Bifurcations of dust acoustic solitary waves and
periodic waves in an unmagnetized plasma with q-non-
extensive velocity distributed ions are studied through non-
perturbative approach. Basic equations are reduced to an or-
dinary differential equation involving electrostatic potential.
After that by applying the bifurcation theory of planar dy-
namical systems to this equation, we have proved the ex-
istence of solitary wave solutions and periodic wave solu-
tions. Two exact solutions of the above waves are derived
depending on the parameters. From the solitary wave solu-
tion and periodic wave solution, the effect of the parame-
ter (q) is studied on characteristics of dust acoustic solitary
waves and periodic waves. The parameter (q) significantly
influence the characteristics of dust acoustic solitary and pe-
riodic structures.

Keywords Solitary wave · Periodic wave · Unmagnetized
plasma · Bifurcation theory

1 Introduction

Nonlinear wave propagation in dusty plasma is one of the
most interesting research topics of modern plasma physics
because of its huge existence in different areas such as
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planetary rings, asteroid zones, magnetosphere, coating of
thin films (Selwyn 1993), plasma crystals (Thomas et al.
1994), cometary tails and atmosphere of lower part of
the earth (Goertz 1989). Due to the presence of differ-
ent types of dust charged grains in a plasma, a number of
different wave modes are introduced, for examples, dust
acoustic mode (Rao et al. 1990), dust ion acoustic mode
(Kourakis and Shukla 2004), dust lattice mode (Melandso
1996), shukla-varma mode (Shukla and Varma 1993), dust
Berstain-Green-Kruskal mode (Tribeche and Zerguini 2004)
and dust drift mode (Shukla et al. 1991). Rao et al. (1990)
investigated the existence of a new extremely low-phase ve-
locity dust acoustic waves (DAW) in an unmagnetized dusty
plasma. Shukla and Silin (1992) studied the nonlinear dust-
ion acoustic waves (DIAW) in a dusty plasma. Many experi-
mental and theoretical observations performed by D’Angelo
(1995), Barkan et al. (1995, 1996), Nakamura et al. (1999),
Duan et al. (2001) have confirmed the linear and nonlin-
ear phenomena of both DAW and DIAW. Recently, Saini
and Kohli (2013) studied dust-acoustic solitary waves and
double layers with two temperature ions in a nonextensive
dusty plasma. Bains et al. (2013) investigated dust-acoustic
wave modulation in the presence of q-nonextensive elec-
trons and ions in dusty plasma. More recently, Ali Shan and
Akhtar (2014) studied large amplitude acoustic solitons in
a warm electronegative dusty plasma with q-nonextensive
distributed electrons.

It is important to note that Maxwell distribution is valid
for the macroscopic ergodic equilibrium state. However,
Maxwell distribution may not be adequate to describe
the long range interactions in unmagnetized collision less
plasma in which the non-equilibrium stationary state ex-
ists. This state may occur because of a number of physical
mechanisms such as external force field present in natural
space plasma environments, wave-particle interaction, tur-
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bulence, etc. Space plasma observations clearly indicate the
presence of ion and electron populations that are far away
from their thermodynamic equilibrium (Shukla et al. 1986;
Pakzad 2009). Renyi proposed a new statistical approach
(Renyi 1955), namely non-extensive statistics or Tsallis
statistics based on the derivation of Boltzmann-Gibbs-
Shannon (BGS) ex tropic measure (Tsallis 1988) to study
the cases where Maxwell distribution is not suitable. This
was first acknowledged by Renyi (1955) and afterward
proposed by Tsallis (1988), where the entropic index q

that characterized the degree of non extensivity of the
considered system. The Tsallis distribution is also known
as q-Gaussian which is a probability distribution arising
from the optimization of the Tsallis entropy. Tsallis (1988)
has modeled nonextensivity by considering a composi-
tion law in the sense that the entropy of the composition
(A + B) of two independent systems A and B is equal to
S

(A+B)
q = S

(A)
q + S

(B)
q + (1 − q)S

(A)
q S

(B)
q , where the pa-

rameter q which underpins the generalized entropy of Tsal-
lis is linked to the underlying dynamics of the system and
gives a measure of the degree of its correlation. In statis-
tical mechanics and thermodynamics, systems which are
characterized by the property of nonextensivity, are sys-
tems for which the entropy of the whole is different from
the sum of the entropies of the respective parts. In other
words, the generalized entropy of the whole is greater than
the sum of the entropies of the parts if q < 1 which is
known as superextensivity, whereas the generalized entropy
of the system is smaller than the sum of the entropies of
the parts if q > 1 which is known as subextensivity. The
q-entropy may represent a suitable frame for the analysis of
many astrophysical scenarios (Amour and Tribeche 2010;
Bains et al. 2011), for examples, stellar polytropes, so-
lar neutrino problem, and peculiar velocity distribution of
galaxy cluster. It should be noted that the q-distribution is
unnormalizable when q < −1. In the extensive limiting case
when q → 1, the q-distribution reduces to the best known
Maxwell-Boltzmann velocity distribution.

Recently, by using bifurcation theory of planar dynam-
ical systems, Samanta et al. (2013a, 2013b, 2013c) inves-
tigated nonlinear traveling waves in plasmas in the frame-
works of KP and ZK equations obtained by reductive pertur-
bation technique (RPT). Saha and Chatterjee (2013a) stud-
ied nonlinear electron acoustic traveling waves in an unmag-
netized quantum plasma with cold and hot electrons in the
framework of KdV equation obtained by reductive pertur-
bation technique (RPT) by using bifurcation theory of pla-
nar dynamical systems. Very recently, Saha and Chatterjee
(2013b) studied nonlinear dust ion acoustic traveling waves
in the framework of MKP equation obtained by reductive
perturbation technique (RPT) in a magnetized dusty plasma
with superthermal electrons by using bifurcation theory of
planar dynamical systems.

In the present work, our intention is to study dust acous-
tic solitary and periodic waves in an unmagnetized plasma
with q-nonextensive velocity distributed ions through non-
perturbative approach by applying the bifurcation theory of
planar dynamical systems. Two exact solutions of the dust
acoustic solitary and periodic waves are obtained depend-
ing on the system parameters q and v. From the dust acous-
tic solitary wave and periodic wave solutions, we have pre-
sented the significant effect of the parameter q on the char-
acteristics of dust acoustic solitary and periodic waves.

The remaining part of the paper is organized as follows:
In Sect. 2, we consider basic equations. In Sect. 3, we study
bifurcations of phase portraits. Two exact solutions are de-
rived in Sect. 4. We present the parametric effect in Sect. 5
and Sect. 6 is kept for conclusions.

2 Basic model equations

In this paper, we consider a two component unmagne-
tized dusty plasma whose constituents are dust particles
and q-nonextensive velocity distributed ions. The normal-
ized model equations for one-dimensional low velocity dust
acoustic oscillations (Tribeche and Merriche 2011) are given
by

∂nd

∂t
+ ∂(ndud)

∂x
= 0, (1)

∂ud

∂t
+ ud

∂ud

∂x
= ∂φ

∂x
, (2)

∂2φ

∂x2
= nd − ni. (3)

In order to model ions, we use the following distribution
function (Ghosh et al. 2012):

fi(v) = Cq

{
1 + (q − 1)

[
miv

2

2Ti

− eφ

Ti

]} 1
(q−1)

,

where φ denotes the electrostatic potential and the remain-
ing variables or parameters obey their usual meaning. It is
really important to note that fi(v) is the particular distri-
bution which maximizes the Tsallis entropy and, thus, con-
forms to the laws of thermodynamics. In this case, the con-
stant of normalization is given by

Cq = ni0

Γ ( 1
1−q

)

Γ ( 1
1−q

− 1
2 )

√
mi(1 − q)

2πTi

for − 1 < q < 1,

and

Cq = ni0
1 + q

2

Γ ( 1
q−1 + 1

2 )

Γ ( 1
q−1 )

√
mi(q − 1)

2πTi

for q > 1.
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Integrating fi(v) over all velocity space, we obtain the fol-
lowing nonextensive ion number density as:

ni(φ) = ni0

{
1 − (q − 1)

eφ

Ti

}1/(q−1)+1/2

.

Therefore, the normalized ion number density (Ghosh et al.
2012) is given by

ni(φ) = {
1 − (q − 1)φ

}1/(q−1)+1/2
. (4)

where the parameter q is a real number greater than −1, and
it stands for the strength of nonextensivity.

Here nd and ni denote the number densities of the dust
particles and ions, respectively, normalized by their unper-
turbed densities nd0 and ni0. In this case, ud and φ are
the dust fluid velocity and electrostatic wave potential, re-
spectively, normalized by the dust acoustic speed Cd =
(ZdTi/md)1/2 and Ti/e, where e is the electron charge,
md is the mass of dust particles and Zd is the number
of the charge residing on the dust grains. The time t and
space variable x are normalized by the dust plasma fre-
quency ω−1

pd = (md/4πe2nd0Zd)1/2 and the Debye length

λd = (Ti/4πe2nd0Zd)1/2, respectively, by using the charge
neutrality condition ni0 = nd0Zd .

To investigate all traveling wave solutions of our system,
we consider the traveling wave transformation ξ = x − vt ,
where v is the speed of the traveling wave. Using this trans-
formation and the initial condition ud = 0, nd = 1 and φ = 0
in Eqs. (1) and (2), we obtain

nd = v√
v2 + 2φ

. (5)

Substituting Eqs. (4) and (5) into Eq. (3) and considering the
terms of φ up to second degree, we have

d2φ

dξ2
=

[
(1 + q)

2
− 1

v2

]
φ

−
[
(1 + q)(3 − q)

8
− 3

2v4

]
φ2. (6)

Then Eq. (6) is equivalent to the following dynamical sys-
tem:{

dφ
dξ

= z,

dz
dξ

= [ (1+q)
2 − 1

v2 ]φ − [ (1+q)(3−q)
8 − 3

2v4 ]φ2.
(7)

The system Eq. (7) is a planar Hamiltonian system and inte-
grating the system (7) we obtain the Hamiltonian function:

H(φ, z) = z2

2
+

[
(1 + q)(3 − q)

8
− 3

2v4

]
φ3

3

−
[
(1 + q)

2
− 1

v2

]
φ2

2
= h. (8)

The system Eq. (7) is a planar dynamical system with pa-
rameters q and v. It is really important to note that the phase
orbits defined by the vector fields of Eq. (7) will determine
all traveling wave solutions of Eq. (6). We investigate the
bifurcations of phase portraits of Eq. (7) in the (φ, z) phase
plane depending on the parameters q and v. A solitary wave
solution of Eq. (6) corresponds to a homoclinic orbit of
Eq. (7). A periodic orbit of Eq. (7) corresponds to a peri-
odic traveling wave solution of Eq. (6).

3 Bifurcations of phase portraits of Eq. (7)

In this section, we search for all possible periodic orbits
and homoclinic orbits defined by the vector field Eq. (7)
when the parameters q and v are changed. When a �= 0, and
b �= 0, the dynamical system (7) has two equilibrium points
at E0(φ0,0) and E1(φ1,0), with φ0 = 0 and φ1 = b

a
, where

a = [ (1+q)(3−q)
8 − 3

2v4 ] and b = [ (1+q)
2 − 1

v2 ]. Let M(φi,0)

be the coefficient matrix of the linearized system of Eq. (7)
at an equilibrium point Ei(φi,0). Then we obtain

J = detM(φi,0) = −b + 2aφi. (9)

By applying the theory of planar dynamical systems (Saha
2012; Guckenheimer and Holmes 1983), it should be noted
that an equilibrium point Ei(φi,0) of the planar dynamical
system (7) is a saddle point for J < 0 and the equilibrium
point Ei(φi,0) of the planar dynamical system (7) is a center
for J > 0.

With the help of systematic analysis, we have shown the
different phase portraits of Eq. (7) depending on the param-
eters q and v, shown in Figs. 1 and 2.

Fig. 1 Phase portrait of Eq. (7) for q = 1.723 and v = 3.5 (here “phi”
denotes “φ”)
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Fig. 2 Phase portrait of Eq. (7) for q = −0.81 and v = 0.8 (here “phi”
denotes “φ”)

For the phase portrait given by Fig. 1, the parameters
q and v are connected with the relations (1+q)(3−q)

8 > 3
2v4

and (1+q)
2 > 1

v2 . Figure 1 shows that there exist a homo-
clinic orbit at the equilibrium point E0(φ0,0) and a fam-
ily of periodic orbits at E1(φ1,0). In this case, equilib-
rium point E0(φ0,0) is a saddle point and equilibrium point
E1(φ1,0) is a center. For the phase portrait given by Fig. 2,
the parameters q and v are connected with the relations
(1+q)(3−q)

8 < 3
2v4 and (1+q)

2 < 1
v2 . We get homoclinic orbit

at the equilibrium point E1(φ1,0) and a family of periodic
orbits at E0(φ0,0). Here E0(φ0,0) is a center and E1(φ1,0)

is a saddle point.

4 Exact traveling wave solutions of Eq. (6)

In this section, applying the planar dynamical system given
by Eq. (7) and the Hamiltonian function given by Eq. (8)
with h = 0, we derive solitary wave solution and periodic
traveling wave solution of Eq. (6) depending on different
parameters.

(1) When the parameters q and v satisfy the conditions
(1+q)(3−q)

8 > 3
2v4 and (1+q)

2 > 1
v2 (see Figs. 1 and 3), the

system Eq. (6) has compressive solitary wave solution given
by

φ = 3[ (1+q)
2 − 1

v2 ]
2[ (1+q)(3−q)

8 − 3
2v4 ] sech

2
(

1

2

√[
(1 + q)

2
− 1

v2

]
ξ

)
.

(10)

(2) When the parameters q and v satisfy the conditions
(1+q)(3−q)

8 < 3
2v4 and (1+q)

2 < 1
v2 (see Figs. 2 and 4), the

Fig. 3 Solitary wave solutions of Eq. (6) have been plotted for
v = 0.35 with q = 1.723 (black dashed curve), q = 1.923 (blue solid
curve) and q = 2.123 (long dashed red curve)

Fig. 4 Periodic traveling wave solutions of Eq. (6) have been plotted
for v = 0.8 with q = −0.81 (black dashed curve), q = −0.51 (blue
solid curve) and q = −0.11 (long dashed red curve)

system Eq. (6) has periodic traveling wave solution given by

φ = 3[ (1+q)
2 − 1

v2 ]
2[ (1+q)(3−q)

8 − 3
2v4 ] sec

2
(

1

2

√
−

[
(1 + q)

2
− 1

v2

]
ξ

)
.

(11)

5 Parametric effect

In this section, we have presented the effect of the nonex-
tensive parameter q on the characteristics of dust acoustic
solitary and periodic waves.

Figure 3 shows the variation of solitary wave profile
for different values of the nonextensive parameter q with
fixed value of v. Here φ is ploted against ξ for v = 0.35
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with q = 1.723 (black dashed curve), q = 1.923 (blue solid
curve) and q = 2.123 (long dashed red curve). In this case,
we choose parameters in such a way that they satisfy the
conditions (1+q)(3−q)

8 > 3
2v4 and (1+q)

2 > 1
v2 . The amplitude

and width of the solitary waves increase with increase in q .
Then we can conclude that the dust acoustic solitary waves
are flourished as the electrons evolve far away from their
Maxwell-Boltzmann equilibrium.

In the Fig. 4, we have shown the variation of periodic
traveling wave profile for different values of the nonexten-
sive parameter q with fixed value of v. Here φ is ploted
against ξ for v = 0.8 with q = −0.81 (black dashed curve),
q = −0.51 (blue solid curve) and q = −0.11 (long dashed
red curve). In this case, we choose parameters in such a
way that they satisfy the conditions (1+q)(3−q)

8 < 3
2v4 and

(1+q)
2 < 1

v2 . The amplitude and width of periodic traveling
waves increase with increase in q . Then we can conclude
that the dust acoustic periodic waves are diminished as the
electrons evolve far away from their Maxwell-Boltzmann
equilibrium.

6 Conclusions

We have investigated dust acoustic solitary waves and pe-
riodic waves in an unmagnetized dusty plasma with nonex-
tensive ions through non-perturbative approach. By apply-
ing the bifurcation theory of planar dynamical systems, we
have shown that our model has dust acoustic solitary and
periodic wave solutions. Two exact solutions for dust acous-
tic solitary and periodic waves have been derived with the
help of Hamiltonian function given by Eq. (8) and the trav-
eling wave system given by Eq. (7). From these exact travel-
ing wave solutions, the effect of nonextensive parameter (q)

on the characteristics of dust acoustic solitary and periodic
waves has been shown. Our present study may be helpful in
understanding the salient features of the nonlinear solitary
and periodic structures in mercury, solar wind and in mag-
netosphere of the Earth.
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