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Abstract Various cosmological models in frames of F(T )

gravity are considered. The general scheme of constructing
effective dark energy models with various evolution is pre-
sented. It is showed that these models in principle are com-
patible with ΛCDM model. The dynamics of universe gov-
erned by F(T ) gravity can mimics ΛCDM evolution in past
but declines from it in a future. We also construct some dark
energy models with the “real” (non-effective) equation-of-
state parameter w such that w ≤ −1. It is showed that in
F(T ) gravity the Universe filled phantom field not neces-
sarily ends its existence in singularity. There are two possi-
ble mechanisms permitting the final singularity. Firstly due
to the nonlinear dependence between energy density and H 2

(H is the Hubble parameter) the universe can expands not so
fast as in the general relativity and in fact Little Rip regime
take place instead Big Rip. We also considered the models
with possible bounce in future. In these models the universe
expansion can mimics the dynamics with future singularity
but due to bounce in future universe begin contracts.

Keywords f (T ) Gravity · Bounce cosmology · Dark
energy

1 Introduction

The problem of initial singularity in the cosmological mod-
els based on General Relativity (GR) is one of the puzzles
of modern physics. For resolution of this problem many
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approaches are offered such as null-energy-condition vi-
olating quantum fluctuations (Dutta and Vachaspati 2005;
Dutta 2006), quantum gravity effects, or effective field the-
ory techniques.

The initial singularity can be avoided in frames of non-
singular bouncing cosmological models (Mukhanov and
Brandenberger 1992). The key feature of such models is
modification of standard Einstein-Hilbert action. The Pre-
Big-Bang (Veneziano 1991) and the Ekpyrotic (Khoury
et al. 2001, 2002) models, gravitational actions with higher
order corrections (Brustein and Madden 1998), braneworld
scenarios (Kehagias and Kiritsis 1999; Shtanov and Sahni
2003; Saridakis 2009), loop quantum cosmology (Bojowald
2001) are investigated in detail. For a review on models of
modifying higher derivative gravity, which solve cosmic sin-
gularities in an efficient way, we refer to Nojiri and Odintsov
(2007).

Above mentioned theories also attract attention for ex-
plaining of accelerated expansion of the universe (Riess
et al. 1998; Perlmutter et al. 1999). In frames of standard GR
cosmology for explaining current acceleration one need to
introduce the dark energy phenomena. The dark energy has
negative pressure (for review see Bamba et al. 2012a; Cald-
well and Kamionkowski 2009; Durrer and Maartens 2008;
Frieman and Turner 2008; Silvestri and Trodden 2009; Li
et al. 2011a; Cai et al. 2007, 2010). In frames of ΛCDM
model in which the dark energy is simply cosmological con-
stant (p = −ρ) the observational data require that dark mat-
ter and baryonic matter 27.4 % of universe energy (Kowalski
2008). The equation-of-state parameter wD for dark energy
is negative:

wD = pD/ρD < 0, (1)

where ρD is the dark energy density and pD is the pressure.
If w < −1 the violation of all four energy conditions oc-
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curs. The corresponding phantom field, which is instable as
quantum field theory (Carroll et al. 2003) but could be sta-
ble in classical cosmology may be naturally described by the
scalar field with the negative kinetic term.

Phantom cosmology may lead to so-called Big Rip sin-
gularity (Starobinsky 2000; Caldwell et al. 2003; Frampton
and Takahashi 2003; Nesseris and Perivolaropoulos 2004;
Gonzalez-Diaz 2004a, 2004b; Nojiri and Odintsov 2004).
There are several main ways to avoid the Big Rip singular-
ity:

(i) for some scalar potentials one can consider phantom
acceleration as transient phenomenon.

(ii) probably the accounting of quantum effects may de-
lay/stop the singularity occurrence (Elizalde et al.
2004).

(iii) in theories of modified gravity one can construct cos-
mological models which can mimics phantom acceler-
ation but free from singularities (for review, see Nojiri
and Odintsov 2011; Bamba et al. 2008, 2013a).

Besides the Big Rip singularity another finite-time singu-
larities may occur (for classification see Nojiri et al. 2005;
Nojiri and Odintsov 2005).

Theoretical description of dark energy often use the for-
malism of equation-of-state. For pressure of dark energy one
can choose the general expression

p = −ρ − g(ρ), (2)

where g(ρ) is function of energy density. The case g(ρ) > 0
corresponds to w < −1.

One note that in frames of EoS formalism one can con-
struct phantom energy models with w < −1 but without Big
Rip singularity. There are two possibilities: w asymptoti-
cally tends to −1 and energy density increases with time
(Little Rip, see Frampton et al. 2011, 2012a, 2012b; Brevik
et al. 2011; Liu and Piao 2012) or remains constant (Yurov
2011; Nojiri et al. 2005; Nojiri and Odintsov 2005; Barrow
2004). The key moment is that if w approaches −1 suffi-
ciently rapidly, then it is possible to have a model in which
the time required for singularity is infinite, i.e., singularity
effectively does not occur.

The aim of this article is constructing the phantom mod-
els in frames of f (T ) gravity. This modification of gravity
is more simple than f (R) gravity which lead to fourth-order
field equations. The reconstruction of different cosmological
models in frames of F(T ) gravity can be performed (Bamba
et al. 2012b). In frames of F(T ) theory the null energy con-
dition could be effectively violated and therefore one can ob-
tain the cosmological solutions with acceleration but with-
out dark energy (“effective dark energy model”) and models
with bounce in the early universe or in the future. The initial
or future singularities can be avoided in F(T ) gravity.

This paper is organized as follows. In the next section
we briefly describe the key equations of f (T ) cosmology.
Further the general method of constructing “effective dark
energy” models (i.e. models in which universe expands with
acceleration containing baryon and dark matter only) is pre-
sented. We also consider the phantom energy in frames of
F(T ) gravity with various EoS and investigate the possibil-
ities of avoiding of big rip singularity. The last section is
devoted to conclusions.

2 f (T ) Gravity and cosmology

We consider a flat Friedmann-Robertson-Walker spacetime
with metric

ds2 = dt2 − a2(t)δij dxidxj , (3)

where a(t) is the scale factor. The action in f (T ) gravity
can be written as

S = 1

2

∫
d4xe

[
T + f (T ) + Lm

]
, (4)

where T is the torsion scalar T . For f (T ) = 0 the action (4)
is completely equivalent to GR.

The derivation of the equations is described in detail in
Cai et al. (2011). We follow to this work. In this approach
dynamical variables are vierbein fields eA(xμ). One can
define with these fields an orthonormal basis for the tan-
gent space at each point, i.e. eA · eB = ηAB , where ηAB =
diag(1,−1,−1,−1). The components e

μ
A of vector eA i are

eA = e
μ
A∂μ.

For metric tensor we have the following relation

gμν(x) = ηABeA
μ(x)eB

ν (x). (5)

In F(T ) gravity the curvatureless Weitzenböck connection
is used instead the torsionless connection in GR.

The “teleparallel Lagrangian” is simply torsion scalar,
i.e.

T ≡ Sμν
ρ T ρ

μν, (6)

where

Sμν
ρ = 1

2

(
Kμν

ρ + δμ
ρ T αν

α − δν
ρT αμ

α

)
, (7)

and

Kμν
ρ = −1

2

(
T μν

ρ − T νμ
ρ − T μν

ρ

)
. (8)

is difference between the Weitzenböck and Levi-Civita con-
nections. The torsion tensor is defined as

T λ
μν = w

Γ
λ

νμ − w
Γ

λ

μν = eλ
A

(
∂μeA

ν − ∂νe
A
μ

)
. (9)
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The equations of motion can be obtained by varying the
action (4) with respect to the vierbein:

e−1∂μ

(
eS

μν
A

)[1 + f,T ] − eλ
AT

ρ
μλS

νμ
ρ + S

μν
A ∂μ(T )f,T T

− 1

4
eν
A

[
T + f (T )

] = 1

2
e
ρ
A

em
T

ν

ρ, (10)

where f,T and f,T T are the first and second derivatives of
the function f (T ) with respect to T , and the mixed indices
are used as in S

μν
A = e

ρ
AS

μν
ρ . The energy-momentum tensor

is
em
T

ν

ρ .

For universe filled “perfect fluid” with
em
T μν = diag(ρ,

−p,−p,−p) where ρ and p are the energy density and
pressure of the matter content, one can see that (10) lead
to the Friedmann equations

H 2 = ρ

3
− f (T )

6
− 2f,T H 2 (11)

Ḣ = − ρ + p

2(1 + f,T − 12H 2f,T T )
, (12)

where H is the Hubble parameter H ≡ ȧ/a, where a dot
denotes a derivative with respect to coordinate time t . One
should to mention the useful relation between torsion scalar
and Hubble parameter

T = −6H 2, (13)

which can be easily derived from evaluation of (6). As one
can expect from (11) and (12) the equation of continuity fol-
lows

ρ̇ + 3H(ρ + p) = 0. (14)

For given function f (T ) one can consider the parameter H

as function of dark energy density, H = H(ρ).

3 Dark energy cosmology in F(T ) gravity

Effective dark energy model in frames of F(T ) gravity
Let’s briefly review the possibilities of constructing effec-
tive dark energy models in F(T ) gravity. There are alterna-
tive to ΛCDM model (Wu and Yu 2010; Chen et al. 2011;
Dent et al. 2011; Li et al. 2011b). We assume that universe
contains only cold dark matter with p = 0, neglecting radi-
ation. Then from the (12) one can obtain link between time
and Hubble parameter

t = −1

3

∫
dx

x1/2

d

dx
ln

(
6x + f (x) − 2f ′(x)x

)
, (15)

where x = H 2 and prime designates the derivative on x. If
universe expands so that Ḣ > 0, i.e. 3−f ′(x)−xf ′′(x) < 0

the matter density

ρ = 3x + f (x)/2 − xf ′(x) (16)

decreases with growing H (ρ′(x) < 0) as might have been
expected. Integrating by part we have

t = −1

3

ln(6x + f (x) − 2xf ′(x))

x1/2

∣∣∣∣
x

x0

− 1

6

∫ x

x0

dx

x3/2
ln

(
6x + f (x) − 2xf ′(x)

)
. (17)

From this relation one can see that there are following pos-
sibilities defined by behavior of first term:

(i) the first term converges at x → ∞ (the second integral
in this case also converges) and finite-time singularity
occurs.

(ii) the first term diverges at x → ∞. We have the little
rip: universe expands with increasing acceleration but
singularity effectively does not occur.

(iii) t → ∞ x → xf , i.e. the rate of expansion tends to con-
stant value in future. Asymptotic de Sitter regime real-
izes.

Choosing the dependence 6x + f (x) − 2xf ′(x) one can
define the function f (x) and then matter density as function
of x. Further taking into account that

ρ = ρ0/a
3

one can derive the time evolution of scale factor. For com-
parison with observational data (for example, modulus vs
redshift relation for SNe Ia) one need the dependence
H(z)/H0 from redshift z.

We take example. Let’s 6x + f (x) − 2xf ′(x) = 3(x −
xλ) exp(−βxγ ), β > 0 and x > xλ. Then we have the fol-
lowing relation for determination H as function of redshift:

ρm0

(1 + z)3
= 3

(
H 2 − H 2

λ

)
exp

(−βH 2γ
)
. (18)

For β � H−2γ we have that our equation gives that

H 2 ≈ H 2
λ + ρm0

(1 + z)3
.

This relation corresponds to ΛCDM cosmology. From (17)
one see that for γ ≤ 1/2 finite-time singularity occurs. The
little rip regime realizes if γ > 1/2. We also present the form
of the function f (x) in a case when γ = 1:

f (x) = 6x − 3x1/2

2

√
π

β
erf(

√
βx)

− 3xλ

[√
πβ erf(

√
βx) − x−1/2 exp(−βx)

]
x1/2,

(19)

where erf is error function.
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Phantom energy models in frames of F(T ) gravity Now
let’s consider the features of cosmological models of phan-
tom energy in F(T ) gravity. We will examine the future evo-
lution of our universe from the point at which the pressure
and density are dominated by the dark energy. Using (2)
from (14), one can obtain the following link between time
and f (ρ):

t = 1

3

∫ ρ

ρ0

dρ

H(ρ)f (ρ)
. (20)

The various possibilities of universe evolution in frames
of usual FRLW cosmology are described in detail in As-
tashenok et al. (2012a, 2012b). Here we note the some fea-
tures which can take place in F(T ) background.

1. Avoiding the Big Rip singularity due to “softening” of
EoS Let’s consider the case f (T ) = α(−T/6)β , where α

and β are some constants. Using the relation T = −6H 2 one
can rewrite the equation (11) in the following form:

(
(−2β + 1)α

(
H 2)β−1 + 1

)
H 2 = ρ

3
. (21)

Assuming β > 1, α < 0 one can conclude that if |α| �
(2β − 1)−1H

2(1−β)

0 (H0 is the current Hubble parameter)
than Eq. (21) differs from Friedmann equation negligibly.
But from (12) follows that Hubble parameter grows with
time and the first term in brackets of (21) on late times be-
comes the dominant. We have the following asymptotic for
Hubble parameter:

H ∼ ρ1/2β, t 
 0.

Considering the case g ∼ ργ , γ > 0 one can see that in a
case of GR cosmology the big singularity occurs if 1/2 <

γ ≤ 1. But in a case of F(T ) gravity the condition of non-
singular evolution is milder: γ ≤ 1 − 1/2β . Therefore if
1/2 < γ ≤ 1 − 1/2β we have little rip dynamics in a future
instead big rip singularity as in general relativity. Therefore
the “effective” EoS on late times corresponds to initial with
replacing γ → γ − 1/2 + 1/2β < γ .

For example one consider the case β = 2. From Eq. (21)
it is easy to obtain for Hubble parameter:

H 2 = 1

6α
(1 − √

1 − 4αρ). (22)

For ρ � |α|−1 it follows that H 2 ≈ ρ/3. If ρ 
 |α|−1 we
have H 2 ≈ (1/3)(ρ/α)1/2.

2. Models with bounce Let’s consider Eq. (11) as differen-
tial equation on function f (T ). Using relation (13) one can
rewrite this equation as

f ′(x) − f (x)

2x
= −3 + ρ(x)

x
. (23)

We consider the energy density as function of H 2 in this
equation. For given EoS one can derive the dependence
ρ = ρ(a) and choosing scale factor as function of time we
obtain the dependence ρ = ρ(H 2) (in general case only in
parametric form of course). The solution of (23) is

f (x) = Cx1/2 − 6x − x1/2
∫

ρ(x)dx

x3/2
, (24)

where C is integration constant. Using the continuity equa-
tion (14) we have for f as function of time

f (t) = Cx1/2(t) − 6x(t) + 2ρ(t) − 6x1/2(t)

∫
g
(
ρ(t)

)
dt.

(25)

The generalization of (23) on a case of universe filled
n-component fluid is simple. One note that g(ρ) = −(ρ+p)

and therefore Eq. (23) turns into

f (t) = Cx1/2(t) − 6x(t) + 2
n∑

i=1

ρi(t)

+ 6x1/2(t)

n∑
i=1

∫ (
ρi(t) + pi(t)

)
dt. (26)

Further for simplicity we put C = 1.
One can simply construct the cosmological models with-

out singularities (past or future).

ΛCDM model with bounce in past In Cai et al. (2011) the
simplest version of an f (T ) matter bounce is considered.
One can construct little more complex model following to
methodology (Cai et al. 2011). Let’s consider the universe
filled cold dark matter and vacuum energy with density Λ.
In this case the evolution of scale factor in GR cosmology
can be written in form

a(t) = a0 sinh2/3(t/T ), (27)

where T = 2
√

1/3Λ. Our moment of time is t0 = T ×
arcthΩ

1/2
Λ , ΩΛ = Λ/(ρm0 + Λ). The moment t = 0 cor-

responds to Big Bang singularity. In f (T ) gravity one can
consider the such evolution of scale factor which close to
(27) at t 
 τ , where τ is the moment of time such that
τ � T . For example let’s choose

ab(t) = a0 sinh2/3
(

(t2 + τ 2)1/2

T

)
. (28)

This dynamics mimics ΛCDM model: for � τ < t � T we
have ab ∼ t2/3 and for t 
 T ab(t) ∼ exp(

√
Λ/3t). At the

moment t = 0 the bounce occurs instead Big Bang singular-
ity. The time variable can be varies in interval −∞ < t < ∞.
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Fig. 1 The form of f as a function of the torsion scalar T in ΛCDM
bounce cosmology

For function f (t) the following relation takes place

f (t) = 8

3T 2

τ 2

τ 2 + t2
coth2

(
(t2 + τ 2)1/2

T

)

+ 16t

3T 3(t2 + τ 2)1/2
coth

(
(t2 + τ 2)1/2

T

)

×
∫

sinh−2
(

(t2 + τ 2)1/2

T

)
dt. (29)

Introducing dimensionless time t̃ = t/T one can rewrite this
relation in the form

f (t̃) = 2Λ
σ 2

σ 2 + t̃2
coth2(σ 2 + t̃2)1/2

+ 4Λ
t̃ coth(σ 2 + t̃2)1/2

(t̃2 + σ 2)1/2

∫
sinh−2(σ 2 + t̃2)1/2

dt̃.

(30)

For T as function of t̃ one have

T = −2Λ
t̃2 coth2(σ 2 + t̃2)1/2

(t̃2 + σ 2)
. (31)

In order to present function f (T ) more clearly, in Fig. 1
we depict f (T ) for some values of σ . We also derived the
evolution of the f (T ) and the Hubble parameter as functions
of the dimensionless cosmic time on Figs. 2 and 3 respec-
tively. Our results as expected are close to Cai et al. (2011).

The same method can be applied for constructing cos-
mological models without future singularities. One consider
two examples.

Quasi-rip dynamics with bounce in future Let’s consider
the simplest case of phantom model with constant EoS pa-
rameter w0 = p/ρ = −1 − ε/3 = const (g = ερ/3). In GR
cosmology the evolution of scale factor as well known is

a(t) = t
2/ε
f

(tf − t)2/ε
. (32)

Fig. 2 Evolution of the function f in terms of the dimensionless time
t̃ in ΛCDM bounce cosmology

Fig. 3 Evolution of the Hubble parameter H in terms of the dimen-
sionless time t̃ in ΛCDM bounce cosmology

We put a(0) = 1. The moment of Big Rip singularity is tf =
2ε−1ρ

−1/2
0 (ρ0 is the phantom energy density in the moment

t = 0). Let’s choose the scale factor in form

aB(t) = (t2
f + t2

1 )1/ε

(t2
1 + (tf − t)2)1/ε

, (33)

where t1 is the constant and t1 � tf . For t � tf the aB(t) ∼
a(t) but in the moment t = tf the bounce occurs instead Big
Rip singularity. Phantom energy density is

ρ = ρ0a
ε
B(t) = ρ0

1 + δ2

δ2 + (1 − t/tf )2
, δ = t1/tf . (34)

Substitution (33), (34) into (23) gives the following expres-
sion for f (t):

f (t) = −2ρ0

δ2 + (1 − t/tf )2

×
[(

1 + δ2) + 3(1 − t/tf )2

δ2 + (1 − t/tf )2

+ 2(1 − t/tf )
(
1 + δ2)1

δ
arctan

1 − t/tf

δ

]
. (35)
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Fig. 4 Evolution of the Hubble parameter H in terms of the dimen-
sionless time t̃ in quasi-rip bounce cosmology

Fig. 5 Evolution of the function f in terms of the dimensionless time
t̃ in quasi-rip bounce cosmology

The function f (t) is depicted on Fig. 4 for various δ. In
the moment of bounce f (t) = −2ρ0(1 + δ−2). On Fig. 5
the dependence f from T is presented. The effective EoS
parameter is

weff = −1 − 2Ḣ

3H 2
= −1 − 2H̃ ′

3H̃ 2
, (36)

where comma means differentiation on dimensionless time
t̃ = t/tf and H̃ = Htf is the dimensionless Hubble param-
eter:

H̃ = 2

ε

1 − t̃

δ2 + (1 − t̃ )2
. (37)

The moment of “dephantomization” when weff = −1 is
t̃ = 1 − δ. The moment of null acceleration (weff = −1/3)
corresponds to t̃ = 1 − δε1/2/(2 + ε)1/2.

Little rip dynamics with bounce in future The simple
model with little rip (or sub-quantum potential—g(ρ) =
4α2) in GR cosmology leads to the following evolution:

a(t) = exp
(
α2t2 + ρ0t

)
, (38)

where ρ0 is energy density in the moment t = 0. For energy
density as function of scale factor we have

ρ(a) = ρ0 + 3α2 lna. (39)

One can consider the cyclic model (for simplicity we put
ρ0 = 0):

aB(t) = exp

(
α2t2

b sin2 t

tb

)
. (40)

For t � tb the evolution of such universe coincides with
Little Rip model in GR, but at the moment t = πtf /2 the
bounce occurs and universe begin contracts. The moment
t = πtf corresponds to next bounce and universe expand
again. The function f (t) in interval 0 < t < πtf

f (t) = 24α4t2
f sin

t

tf

(
cos

t

tf
− sin

t

tf
+ 2t

tf
cos

t

tf

)
(41)

It is obviously that f (t + πtf ) = f (t).
One note that described method of constructing non-

singular solutions with bounce can be applied for brane
F(T ) theory (Bamba et al. 2013b) and bounce loop-
quantum cosmology from F(T ) gravity (Amoros et al.
2013). We also can consider the observational data (As-
tashenok and Odintsov 2013; Astashenok et al. 2013) for
constraining model parameters. We plan investigate this is-
sue in a near future.

4 Conclusion

In summary, various cosmological models in frames of
F(T ) gravity are considered. The general scheme of con-
structing effective dark energy models with various evolu-
tion is presented. It is showed that these models in principle
are compatible with ΛCDM model. The dynamics of uni-
verse governed by F(T ) gravity can mimics ΛCDM evolu-
tion in past but declines from it in a future. In addition we
analyzed the some features which can take place in F(T )

gravity for universe filled real phantom energy with given
EoS. It is showed that there are two possible mechanisms of
avoiding final singularities in F(T ) gravity. The first is that
in F(T ) gravity the rate of universe expansion can grows
with energy density more slowly than in GR. Another pos-
sibility is bounce in future similar to that which may occur
at the beginning of the universe.
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