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Abstract In this paper, we employ cut and paste scheme to
construct thin-shell wormhole of a charged black string with
f (R) terms. We consider f (R) model as an exotic matter
source at wormhole throat. The stability of the respective
solutions are analyzed under radial perturbations in the con-
text of R + δR2 model. It is concluded that both stable as
well as unstable solutions do exist for different values of δ.
In the limit δ→0, all our results reduce to general relativity.

Keywords Black strings · f (R) gravity · Stability

1 Introduction

Wormhole (WH) is a hypothetical tunnel, path or bridge
associating two different portions of the spacetime under
which observers may pass freely. Flamm (1916) was the
first who found Schwarzschild solution as non-traversable
WH while Einstein and Rosen (1935) investigated WH solu-
tions with event horizon. Morris and Thorne (1988) claimed
that a WH can be made traversable if it is supported by ex-
otic matter. The existence of exotic matter at the WH throat
made it a burning issue which attracted many researchers.
It is interesting to mention that stability phases of the self-
gravitating bodies lead to different evolutionary processes in
the universe. In this context, the instability investigation for
the collapsing processes has been widely performed (Her-
rera et al. 1989, 2012; Chan et al. 1993, 1994; Herrera and
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Santos 1997; Pinheiro and Chan 2013). Moreover, the sta-
bility analysis of WHs against small perturbations is also a
core issue in astrophysics.

It is argued that exotic matter requirement in WHs can
be refrained in modified theories of gravity (Gravanis and
Willison 2007; Garraffo et al. 2008; Anchordoqui et al.
1997). Thin-shell WHs are built up by cut and paste scheme
from black holes. In this technique, the exotic matter re-
quired to construct WH is settled at the shell and the match-
ing condition is used for its analysis. The surface stresses
in this framework are computed by using the Darmois-
Israel formalism (Israel 1966, 1967; Papapetrou and Hamoui
1968). One can investigate the dynamical stability of thin-
shell WHs either by analyzing a linearized stability pro-
cedure about a static solution (Poisson and Visser 1995;
Lobo 2006), or by considering a particular equation of
state (EoS) (Visser 1990; Kim 1992; Kim et al. 1993).
The stability of this sort of matter distribution is being an-
alyzed in general relativity (Barceló and Visser 2000) as
well as in extended gravity theories (Anchordoqui 1998;
Eiroa and Simeone 2005).

Brady et al. (1991) studied the dynamics of an infinitely
thin massive shell and concluded that such stable shell has
relatively larger surface energy density than pressure. Clé-
ment (1995) presented multi WH solutions in which the
spacetime asymptotically inclines to the conical cosmic
string spacetime. Aros and Zamorano (1997) found a so-
lution which may be regarded as a traversable cylindrical
WH within the global cosmic string core. Eiroa and Romero
(2004) extended their results by invoking electric charge
while Lobo and Crawford (2004) generalized this analysis
with cosmological constant. Eiroa and Simeone (2004) dis-
cussed the dynamics of thin-shell WHs under non-rotating
cylindrical background. The Eiroa and Simeone (2005) ex-
tended this work for charged Lorentzian WHs in the frame-
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work of dilaton gravity and calculated the total quantity of
exotic matter.

Thibeault et al. (2006) investigated 5D thin-shell WHs in
the scenario of modified theory. Rahaman et al. (2007) con-
structed thin-shell WH in the scenario of heterotic string the-
ory and investigated its stability against perturbation. Eiroa
and Simeone (2007) used Chaplygin EoS to study the sta-
bility of thin-shell WHs by introducing a new scheme. They
applied this approach to analyze the stability of WHs con-
structed from the Schwarzschild, Schwarzschild de Sitter,
Schwarzschild anti-de Sitter and Reissner-Nordström space-
times. Sharif and Azam (2013) evaluated unstable and stable
distributions of thin-shell in cylindrical symmetry.

Nojiri et al. (1999a, 1999b) found some induced WH so-
lutions incorporating increasing red-shift function and throat
radius for some specific values of initial conditions. No-
jiri and Odintsov (2007) described late-time (quintessence/
phantom) universe filled with dark sources arising from
modified gravity theories with different choices of generic
functions of f (R) and f (R,G). The Nojiri and Odintsov
(2011) also presented various aspects of f (R) gravity
and claimed that there is a variety of f (R) models that
are well-consistent with local tests and observational data
(Capozziello et al. 2009, 2010; Dev et al. 2008). Bamba
et al. (2012) reviewed different dark energy cosmological
models which may lead to the accelerating expansion of the
universe.

Since exotic matter does not satisfy null energy condi-
tion, so researchers are interested to find realistic sources
that can support WHs. Furey and DeBenedictis (2005) stud-
ied WH throats for R−1 and R2 gravity and concluded that
static WHs respect null energy condition. DeBenedictis and
Horvat (2012) extended these results for a model of the form
f (R) = ∑

αnR
n. Lobo and Oliveira (2009) obtained static

WH solutions for traceless matter by choosing barotropic
EoS in f (R) gravity.

In this paper, we investigate the role of charge in the sta-
bility of thin-shell WH by cut and paste technique with f (R)

terms. In order to check the dynamical stability, we choose
Darmois-Israel matching conditions. The paper is planned
as follows. In Sect. 2, we obtain general formulation re-
quired for the study of thin-shell WH. Section 3 is devoted
to analyze the linearized stability of thin-shell WHs while
in Sect. 4, we apply this formalism on charged black string
with f (R) terms. In the last section, we conclude our results.

2 Thin-shell wormhole and f (R) gravity

The modified form of Einstein-Hilbert action in f (R) grav-
ity can be written as

Af (R) = 1

2κ

∫

d4x
√−gf (R) +AM,

where AM and f (R) are the matter action and a non-linear
real function of the curvature R, respectively. The field equa-
tions are evaluated by giving variation in the above action
with respect to gαβ as follows

fRRαβ − 1

2
fgαβ − ∇α∇βfR + gαβ�fR = κSαβ,

where Sαβ is the energy-momentum tensor, � = ∇α∇α ,
∇α is the covariant derivative and fR = df

dR
. This equation

can be formulated alternatively in the form of general rela-
tivity (GR) field equations as

Gαβ = κ

fR

(
Sαβ + (D)

Sαβ

)
,

with

(D)

Sαβ = 1

κ

{
f − RfR

2
gαβ + ∇α∇βfR −�fRgαβ

}

.

In f (R) gravity, the junction conditions over a timelike
boundary surface Σ in 4D manifold can be found by pro-
jecting the above equations on the boundary surface Σ .

The extrinsic curvature linked with two portions of the
hypersurface Σ is

K±
ij = −n±

σ

(
∂2xσ±

∂ζ i∂ζ j
+ Γ σ

αβ

∂xα±∂x
β
±

∂ζ i∂ζ j

)∣
∣
∣
∣
Σ

, (1)

where ζ j , xσ and Γ σ
αβ are the coordinates of the hypersur-

face, the four dimensional manifold components and con-
nection components related with the metric gαβ respectively,
while

n±
σ =

∣
∣
∣
∣g

αβ ∂f

∂xα

∂f

∂xβ

∣
∣
∣
∣, (2)

are the unit normals (nσ nσ = 1). Consequently, the Lanc-
zos equations (Musgrave and Lake 1996) with f (R) terms
(Capozziello and Laurentis 2011; Sharif and Yousaf 2013a,
2013c, 2013d, 2013e) take the form

κ

αfR

(
αSi

j +
(D)

Si
j

) = −(
ki
j − δi

j k
a
a

)
, (3)

where α2 = Λ
3 , (Λ is the cosmological constant), Si

j and
(D)

Si
j are the energy-momentum tensor of the usual and ef-

fective matter on the hypersurface, respectively and kij =
K+

ij − K−
ij . The GR Lanczos equations (Musgrave and Lake

1996) can be recovered from the above equation under the
limit f (R) → R.

We construct a thin-shell WH of static cylindrically met-
ric whose line element is of the form (Lemos and Zanchin
1996)

ds2 = −G(r)dt2 + G−1(r)dr2 + N(r)
(
dφ2 + α2dz2), (4)
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where

G(r) = r2α2 − 4M

rα
+ 4q2

r2α2
, N(r) = r2, (5)

q and M are the charge density and ADM mass, respec-
tively. The outer and inner charged black string horizons are
given by

rh± = 41/3

2

[√
s ±

{

2

√
√
√
√

s2 − q2

(
2

M

) 4
3 − s

} 1
2
]
M

1
3

α
, (6)

where

s =
(

1

2
− 1

2

√

1 − 64q6

27M4

)1/3

+
(

1

2
− 1

2

√

1 − 64q6

27M4

)1/3

.

(7)

It is worth mentioning here that the given spacetime does
not possess event horizon for q2 > 3

4M4/3 implying that
Eq. (6) is valid only if q2 ≤ 3

4M4/3. For q2 = 3
4M4/3, the

outer and inner horizons merge into each other, representing
extremal black string. We take radius a and choose two 4D

copies W− and W+ with radius r ≥ a and paste them at
the boundary surface Σ defined by r − a = 0, thus giving
a geodesically complete new manifold W = W− ∪ W+. If
the geometry is let to open at Σ , then this leads to a cylin-
drical thin-shell WH with two parts associated by a throat at
hypersurface (flair-out condition). It is mentioned here that
radius a is chosen to be greater than rh such that there are
no singularities and horizons in W .

To investigate this traversable WH, we use the stan-
dard Darmois-Israel formalism (Israel 1966, 1967; Papa-
petrou and Hamoui 1968). The wormhole throat is placed
at the synchronous timelike hypersurface with coordinates
ζ = (τ, φ, z) where τ represents proper time on the bound-
ary surface. Using Eq. (1), we obtain

K±
ττ = ∓ 2ä + G′(a)

2
√

ȧ2 + G(a)
,

K±
φφ = ±a

√
ȧ2 + G(a) = 1

α2
K±

zz.

(8)

The matter quantities Sτ
τ = −σ and S

φ
φ = Sz

z = P turn out
to be

σ = −4fR

aκ

√
ȧ2 + G(a) + 1

ακ

{
f − RfR

2
+ G(a)f ′′

R

+ G(a)f ′
R

(
N ′(a)

N(a)
+ G′(a)

2G(a)

)}

, (9)

P = fR

aκ

(
2aä + 2ȧ2 + 2G(a) + aG′(a)

√
ȧ2 + G(a)

)

− 1

ακ

{
f − RfR

2
+ G(a)f ′′

R

+ G(a)f ′
R

(
N ′(a)

2N(a)
+ G′(a)

G(a)

)}

. (10)

The stability of f (R) models is also a significant is-
sue which is well discussed in the literature (Faraoni 2005;
Faraoni and Nadeau 2005; Capozziello et al. 2004, 2006a,
2006b, 2007). We take a familiar f (R) model proposed by
Starobinsky (1980)

f (R) = R + δR2, (11)

with δ as a positive number. This model can explain the in-
flation period of the universe and is stable for δ > 0 repre-
senting fRR > 0 (Noakes 1983; Sharif and Yousaf 2013b).
Besides substituting for dark energy at cluster and stellar
scales, f (R) gravity can be used to present as an alter-
nate for dark matter (DM) (Capozziello et al. 2004, 2006a,
2006b, 2007). Thus the given f (R) model was claimed both
as DM model with δ = 1

6M2 (Cembranos 2009, 2011) and as
an inflationary prospect. For DM model, M is figured out
as 2.7 × 10−12 GeV with δ ≤ 2.3 × 1022 Ge/V2 (Sotirou
and Faraoni 2010). We are concentrated on this model to
investigate WH solutions in f (R) gravity. Einstein theory
is recovered if δ = 0 thereby giving classically stable black
hole.

The accelerated expanding behavior of the universe trig-
gered to explore new matter that violates the strong energy
condition called dark energy. Pure Chaplygin gas obey EoS
P = −B

σ
(Kamenshchik et al. 2001; Gorini et al. 2004),

where B > 0. Here we are introducing this source just to
solve the cumbersome set of equations. Thus we have used
its simplified version instead of generalized Chaplygin gas
EoS. Some authors (Hochberg et al. 1997; Nojiri et al.
1999a, 1999b) presented numerical and analytical spheri-
cally symmetric WH solution thus suggesting possibility of
inducing WHs at the early universe. Here, we also try to
induce WH solution at the early time universe (in the quan-
tum era) with the help of R + δR2 model. It is well-known
that if WHs are studied in the early universe then quantum
effects (Duff 1994) may play significant anomaly effects.
Using Eqs. (9), (10) and (11) in EoS, we obtain

2aä + 2ȧ2 + 2G(a) + aG′(a)

=
[

XP − Baκ2

aXσ − 4fR

√
ȧ2 + G(a)

]
a
√

ȧ2 + G(a)

fR

,

(12)
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where

Xσ = δ

α

[

−R2(a)

2
+ 2G(a)R′′(a)

+ 2G(a)R′(a)

(
N ′(a)

N(a)
+ G′(a)

2G(a)

)]

,

XP = δ

α

[

−R2(a)

2
+ 2G(a)R′′(a)

+ 2G(a)R′(a)

(
N ′(a)

2N(a)
+ G′(a)

G(a)

)]

,

R(a) = G′′(a) + 2
G′′(a)N(a)

G(a)

+ G′(a)

G(a)

(

2G′(a) − G(a)N ′(a)

2N(a)

)

,

Xσ and XP in Eq. (12) represent f (R) higher curvature
terms. This is the required differential equation that the thin-
shell WH (with throat radius a supported by an exotic mat-
ter) should satisfy. Using EoS, we can also have

P ′ = −P
σ ′

σ
, σ ′ + 2P ′ = σ ′

(

1 − 2P

σ

)

. (13)

These relations will be helpful to eliminate σ ′ as well as P ′
terms from the first and second derivatives of the potential
function.

3 Stability analysis

In this section, we investigate the stability of static config-
urations of the thin-shell WH framed within f (R) gravity.
In this scenario, the surface pressure, energy density and dy-
namical equation with static background yield

P0 = (1 + 2δR0)

κa0

(
2G(a0) + a0G

′(a0)√
G(a0)

)

− XP 0

κ
, (14)

σ0 = −4(1 + 2δR0)

κa0

√
G(a0) + Xσ0

κ
, (15)

2G(a0) + aG′(a0)

= a0
√

G(a0)

(1 + 2δR0)

[

XP 0 − Ba0κ
2

aXσ0 − 4(1 + 2δR0)
√

G(a0)

]

,

(16)

where Xσ0, XP 0 and R0 are evaluated at a = a0. The con-
servation equations help to examine many useful proper-
ties of the WH throat such as variation of the throat in-
ternal energy and work which internal forces in the throat
has done. The energy density of the surface and isotropic

pressure obeying conservation equation can be written
as

d

dτ
(Δσ) + P

dΔ

dτ
= 0,

where Δ = 4πa2, giving

σ ′ = −2

a
(P + σ). (17)

Equation of motion, about a = a0, against radial pertur-
bation provides an efficient way to study the dynamics of
thin-shell WHs. Equations (9) and (11) lead to

ȧ2 + Φ(a) = 0,

where

Φ(a) = G(a) − κ2a2

16(1 + 2δR)2

(
Xσ

κ
− σ

)2

, (18)

is the potential function whose first and second derivatives
can be found by using Eq. (13) as

Φ ′(a) = G′(a) − κ2a2

8(1 + 2δR)2

(
Xσ

κ
− σ

)

×
{

X′
σ

κ
− 1

a

(

2P + σ − Xσ

κ

)

+ 2δR′

(1 + 2δR)3

(
Xσ

κ
− σ

)}

, (19)

Φ ′′(a) = G′′(a) − κ2a

(1 + 2δR)2

[
X′

σ

κ
− 1

a

(

2P + σ − Xσ

κ

)

+ 2δR′

(1 + 2δR)3

(
Xσ

κ
− σ

)][(
Xσ

κ
− σ

)

×
(

1

4
+ 18δR′

(1 + 2δR)

)

+ a

8

{
X′

σ

κ
+ 2

a
(σ + P)

}]

− κ2a2

8(1 + 2δR)2

(
Xσ

κ
− σ

)

×
[

X′′
σ

κ
+ 1

a2

(

2P + σ − Xσ

κ

)

+ 1

a

{
2

a
(P + σ)

(

1 − 2P

σ

)

+ X′
σ

κ

}

+ 2δ

(1 + 2δR)3

{(
Xσ

κ
− σ

)(

R′′ − 3R′2

(1 + 2δR)

)

+ R′
(

X′
σ

κ
+ 2

a
(P + σ)

)}]

. (20)

Evaluating the above equation at a = a0 and inserting the
values of P0 and σ0 from Eqs. (14) and (15) in the above
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equation, it follows that

Φ ′′
0 = G′′

0 − α
√

G0

(1 + δR0)

[

−δR0R
′
0 + 2δ

(
G′

0R
′′
0 + G0R

′′′
0

)

+ 2δ
(
G′

0R
′
0 + G0R

′′′
0

)
(

2

a0
+ G′

0

2G0

)

+ 2δG0R
′′
0

(
G′′

0

2G0
− G′2

0

2G2
0

− 2

a2
0

)

− 2

a0

{
αG′

0√
G0

(1 + 2δR0) + δR2
0

2
− 2δG0R

′′
0

− 2δG0R
′
0

(
G′

0

G0
+ 1

a0

)}

+ 8δα
√

G0R
′
0

a0(1 + 2δR0)2

]

×
[

1 − 8δa0R
′
0

(1 + 2δR0)
− a2

0

α
√

G0(1 + 2δR0)

×
{

−δR0R
′
0 + 2δ

(
G′

0R
′′
0 + G0R

′′
0

)

+ 2δ
(
G′

0R
′
0 + G0R

′′
0

)
(

2

a0
+ G′

0

2G0

)

+ 2δG0R
′
0

(
G′′

0

2G0
− G′2

0

2G2
0

− 2

a2
0

)

+ 2α2

a2
0

(1 + 2δR0)

(
a0G

′
0 − 2G0√
G0

)

+ 2δR′
0

a2
0

(
2G0 − a0G

′
0

)
}]

− a0
√

G0κ

2(1 + 2δR0)

[
2δ

ακ

{

−R′2
0

2
− R0R

′′
0

2

+ G′′
0R

′′
0 + 2G′

0R
′′′
0 + G0R

′′′′
0

+ (
G′′

0R
′
0 + 2G′

0R
′′
0 + G0R

′′′
0

)
(

G′
0

2G0
+ 2

a0

)

+ 2
(
G′

0R
′
0 + G0R

′′
0

)
(

G′′
0

2G0
− G′2

0

2G2
0

− 2

a2
0

)

+ G0R
′
0

(
G′′

0

2G0
+ 20

a3
0

+ G′3
0

G3
0

− 3

2

G′
0G

′′
0

G2
0

)}

+ 2

κa2
0

{
G′

0√
G0

(1 + 2δR0) + δR2
0

2α
− δG0

2R′′
0

α

− 2δG0R
′
0

α

(
G′

0

G0
+ 1

a0

)}

+ 1

a0

[{

+ 2δR′
0

καa2
0

(
2G0 − a0G

′
0

)

× 2(1 + 2δR0)
2

κa2
0

√
G0

(
a0 × G′

0 − 2G0
)
}

[1 − χ0]

− 1

ακ

{

−δR0R
′
0 + 2δ

(
G′

0R
′′
0 + G0R

′′′
0

)

+ 2δ
(
G′

0R
′
0 + G0R

′′′
0

)
(

2

a0
+ G′

0

2G0

)

+ 2δG0R
′′
0

(
G′′

0

2G0
− 2

a2
0

− G′2
0

2G2
0

)}]

+ 8δ
√

G0

a0κ

1

(1 + 2δR0)

(

R′′
0 − 6δR′2

0

(1 + 2δR0)

)

+ 2δR′
0

(1+2δR0)3

{
1

ακ

(

−δR0R
′
0 +2δ

(
G′

0R
′′
0 +G0R

′′′
0

)

+ 2δ
(
G′

0R
′
0 + G0R

′′′
0

)
(

2

a0
+ G′

0

2G0

)

+ 2δG0R
′′
0

(
G′′

0

2G0
− 2

a2
0

− G′2
0

2G2
0

))

+ 2

a2
0κ

(
a0G

′
0 − 2G0√
G0

)

(1 + 2δR0)

+ 2δR′
0

a2
0κα

(
2G0 − a0G

′
0

)
}]

, (21)

where the subscript “0” indicates that the quantities are eval-
uated at a = a0 and χ0 is given by

χ0 = −
[
(1 + 2δR0)(2G0 + a0G

′
0) + a0

√
G0XP 0√

G0{a0Xσ0 + 4
√

G0(1 + 2δR̃0)}
]

.

For R0 = R̃0 = constant and using Eq. (11), Eq. (9) reduces
to

σ0 = −4(1 + 2δR0)

a0κ

√
G0 − δR̃2

0

2ακ
. (22)

This shows that the energy density is negative indicating the
presence of exotic matter at the throat. Moreover, Eq. (21)
turns out to be

Φ ′′
0 = G′′

0 − 2G′
0

(
3

a0
+ a0G

′
0 − 2G0

8a0G0

)

−
(

a0G
′
0 − 2G0

a2
0

√
G0

)

×
[ 3

2α
δa0R̃

2
0

√
G0 + 2(1 + 2δR0)(4G0 + a0G

′
0)

a0
2α

δR̃2
0 + 4

√
G0(1 + 2δR̃0)

]

−
√

G0

a0

(
1

16
+ 3

2

√
G

)
δR̃2

0

(1 + 2δR̃0)
. (23)

4 Charged black string thin-shell WH

Here, we devise thin-shell WH for the charged black string
and investigate its stability with the static background in the
context of f (R) gravity. The surface pressure and energy
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Fig. 1 Wormholes of a charged
black string against radial
perturbation for M = 1 = α,
δ = 0.2 with different charge
values. The dotted and solid
curves indicate unstable and
stable solutions, respectively
whereas the shaded zone
represents non-physical case,
i.e., a0 ≤ rh

density, under constant Ricci scalar condition, are now ob-
tained by using Eqs. (5), (14) and (15) as

P0 = (α3a3
0 − M)(1 + 2δR̃0)

2πa0

√
4q2 − 4Mαa0 + α4a4

0

+ δR̃2
0

2α
, (24)

σ0 = −
(

1 + 2δR̃0

2πa2
0α

)√
4q2 − 4Mαa0 + α4a4

0 − δR̃2
0

2α
. (25)

Equation (16) leads to

4α2a2
0 − 4M

a0α
+ a0δR̃

2
0

α2(1 + 2δR̃0)

√
4q2 − 4Mαa0 + α4a4

0

+ 128a2
0Bπ2

(1 + 2δR̃0)

×
√

4q2 − 4Mαa0 + α4a4
0

{−αδa2
0R̃2

0 −8(1+2δR̃0)

√
4q2 −4Mαa0 +α4a4

0}
= 0. (26)

This is the required dynamical equation which the charged
black string WH threaded by exotic matter with throat radius
a0 must satisfy. In this scenario, Eq. (23) yields

Φ ′′
0 = 1

Y0

[(
256q4

a5
0α4

+ 288M2

a3
0α2

+ 192q2

a0

− 144Mα − 576q2M

α4a3
0

)

(1 + 2δR̃0)

+
2δR̃2

0

√
4q2 − 4Mαa0 + α4a4

0

α3a2
0

(
12q2

a0α
− 9M

)]

+ δR̃2
0

(1 + 2δR̃0)

(
6M

αa2
0

− 6M

α2a3
0

− 3a0α
2

2

−
√

4q2 − 4Mαa0 + α4a4
0

16a2
0α

)

+ 2α2

(4q2 − 4Mαa0 + α4a4
0)
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Fig. 2 Wormholes of a charged
black string for M = 1 = α,
δ = 0.4 with different values of
charge

×
[

4q2
(

5M

a3
0α3

+ 1 − 4q2

a4
0α4

)

− 6Ma0

(

α + 2M

a3
0α2

)]

+ 72q2

a4
0α2

− 32M

a3
0α

− 10α2, (27)

where

Y0 =
√

4q2 − 4Mαa0 + α4a4
0

α

×
[
a0δR̃

2
0

2α
+ 4(1 + 2δR̃0)

√
4q2 − 4Mαa0 + α4a4

0

a0α

]

,

R̃0 = 4α2
(

1 + 2

a0

)

+ 16

αa3
0

(

1 + 1

a0

)(
2q2

αa0
− M

)

.

Now, we investigate the instability and stability of the
static configurations for perturbations preserving the cylin-
drical symmetry which is determined by Φ ′′ < 0 or Φ ′′ > 0.
In all figures, the solid line indicates the stable solution of
WHs due to Φ ′′ > 0 whereas Φ ′′ < 0 points unstable static

WH solutions which is symbolized by dotted lines. The gray
regions correspond to non-physical zone. It is worth men-
tioning here that the charge qc = 0.866025 determines the
behavior of these solutions. This specific value is used to
construct the original metric with no horizon.

In f (R) model, i.e., R + δR2, we take some specific val-
ues of δ and study the stability of black string solutions.

1. When δ = 0.2, 0.4, 0.6.

• For |q| = 0 and |q| = 0.7qc, i.e., |q| is not very much
close to qc, we find that there exist unstable and sta-
ble configurations for some values of Bα2 with δ =
0.2, 0.4 and 0.6 as shown in Figs. 1, 2 and 3.

• For |q| � qc (Figs. 1–3), there is a stable WH static
solution for δ = 0.2, 0.4 and 0.6. Further, it is seen that
horizon radius keeps on decreasing with the increase
in the value of charge.

• When δ = 0.2, 0.4 and 0.6, there exist stable WH con-
figurations corresponding to |q| > qc as implied by
Figs. 1–3.
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Fig. 3 Wormholes of a charged
black string for M = 1 = α,
δ = 0.6 with different values of
charge

2. Now we make our thin-shell WH stability analysis by
reducing the equations from f (R) to GR, i.e., by taking
δ = 0.

• For |q| < qc and |q| � qc , there always exists stable
black string WH solution for each value of Bα2. We
find from Fig. 4 that αa0 decreases upto the horizon
radius of the original manifold, and then solutions can-
not be found. We also see that increment in the charge
makes the radius of the horizon to decrease.

• There exists stable thin-shell WH solution correspond-
ing to |q| > qc when δ → 0 as shown in Fig. 4.

5 Concluding remarks

In this paper, we have studied the stability of WH solu-
tions of charged black string under perturbation with f (R)

terms. We have computed the Darmois-Israel matching con-
ditions on the matter shell. Wormholes are constructed using
cut and paste technique framed within a well-known f (R)

model (as a source of exotic matter). In this scenario, dy-

namical equation is formulated and stability of WH solu-
tions (threaded by exotic matter) are investigated.

The numerical analysis is used to explore Eq. (26) for αa0

with different values of the dark source exponent, i.e., δ =
0, 0.2, 0.4 and 0.6. The results are summarized as follows.

1. Figures 1–4 indicate that the radius of the WH throat
decreases progressively till it reaches the radius of the
charged black string horizon rh for large values of α−2B

and rh disappears for |q| > qc. The shaded portions
in the graphs indicate regions of throat radius smaller
than rh.

2. It is seen that stable and unstable solutions exist for
δ = 0.2, 0.4, 0.6 with |q| = 0, 0.7qc whereas we ob-
tain only stable configurations for |q| = 0.999qc and
|q| = 1.1qc with δ = 0.2, 0.4, 0.6. The radius of horizon
decreases on increasing |q|.

3. It is worth mentioning here that when δ = 0, we find
stable solutions for |q| = 0, 0.7qc, 0.9999qc and |q| =
1.1qc which are the solutions we can expect (Sharif and
Azam 2013). Thus all our results reduce to GR by taking
δ → 0.
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Fig. 4 Wormholes of a charged
black string for M = 1 = α,
δ = 0 with different values of
charge
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