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Abstract Astrophysical compact stars provide a natural
laboratory for testing theoretical models which are other-
wise difficult to prove from an experimental setup. In our
present work we analyse an exact solution to the Einstein-
Maxwell system for a charged anisotropic compact body in
the linear regime. The charged parameter may be set to zero
which gives us the case of neutral solutions. We have tuned
the model parameters for the uncharged case so as to match
with recent updated mass-radius estimates for five different
compact objects. Then we make a systematic study of the
effect of charge for the different parameter set that fits the
observed stars. The effect of charge is clearly illustrated in
the increase of mass. We show that the physical quantities
for the objects PSR J1614-2230, PSR J1903+327, Vela X-1,
SMC X-1, Cen X-3 are well behaved.

Keywords Compact bodies · Relativistic stars ·
Einstein-Maxwell equations

1 Introduction

Exact solutions of the Einstein-Maxwell system are of vi-
tal importance in a variety of applications in relativistic
astrophysics. Bonnor (1965) demonstrated that the electric
charge plays a crucial role in the equilibrium of large bod-
ies which can possibly halt gravitational collapse. The chal-
lenge in astrophysics is to find stable equilibrium solutions
for charged fluid spheres, and to construct models of various
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astrophysical objects of immense gravity by considering the
relevant matter distributions. Such models may successfully
describe the characteristics of compact stellar objects like
neutron stars, quark stars, etc.

One might argue for the occurrence of stable charged
astrophysical compact objects in nature. It is true that all
macroscopic bodies are charge neutral or they can have
a small amount of charge as pointed out by Glendening
(2000), so that it does not affect much in the structure of
the star. However, there are early phases in the evolution
of compact stars, for example right at the birth from the
core collapse supernova, where charge neutrality is not at-
tained immediately and the presence of the electromagnetic
field has been shown to leave a huge effect in the structure
of the star. Having said so, note it has also been shown by
Ray et al. (2003) that from the balance of forces and the
strength of their coupling, this huge charge which can dis-
rupt the structure of the star, however leaves virtually no ef-
fect in the equation of state of the matter. Considering the
protons as the carrier of the charge in the charged star, it
was shown that every extra proton in a sea of 1018 baryons,
can produce a total charge in the star that will change its
structure.

Astrophysical compact stars are generally considered to
be neutron stars. Over the past two decades, there has been
considerable development in observations of compact stars.
Although the mass of many of the compact stars are deter-
mined with a fair precision, the main problem comes in de-
termining its radius. In some recent papers, improved tech-
niques give accurate mass and radius of a few compact stars.
The improved observational information about such com-
pact stars have invoked considerable interest about the in-
ternal composition and consequent spacetime geometry of
such objects.
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As an alternative to neutron star models, strange stars
have been suggested in the studies of compact relativistic as-
trophysical bodies. Similar to neutron stars, strange stars are
considered likely to form from the core collapse of a mas-
sive star during a supernova explosion, or during a primor-
dial phase transition where quarks clump together. Another
hypothesis is that an accreting neutron star in a binary sys-
tem, can accrete enough mass to induce a phase transition at
the centre or the core, to become a strange star. In the litera-
ture, there are numerous models of neutron stars and strange
stars. In this paper we use the most widely studied strange
star model, namely the MIT Bag model. Studies of strange
stars have been mostly performed within the framework of
the Bag model as the physics of high densities is still not
very clear. Chodos et al. (1974) used the phenomenological
MIT Bag model, where they assumed that the quark confine-
ment is caused by a universal bag pressure at the boundary
of any region containing quarks, namely the hadrons. The
equation of state describing the strange matter in the bag
model has a simple linear form from the treatment of Wit-
ten (1984). Weber (2005) has shown that for a stable quark
matter, the bag constant is restricted to a particular range.

It is remarkable to note that a strange matter equation of
state seems to explain the observed compactness of many
astrophysical bodies such as Her X-1, 4U 1820-30, SAX J
1808.4-3658, 4U 1728-34, PSR 0943+10, and RX J185635
as pointed out by Rahaman et al. (2012). Dey et al. (1998)
studied a new approach for strange stars by assuming an in-
terquark vector potential originating from gluon exchange
and a density dependent scalar potential which restores chi-
ral symmetry at a high density. In Dey et al. (1998) formula-
tion, the equation of state can also be approximated to a lin-
ear form. If pulsars are modelled as strange stars, the linear
equation of state appears to be a feature in the composition
of such objects as established in the analysis of Sharma and
Maharaj (2007a). For a given central density or pressure,
the conservation equations can be integrated to compute the
macroscopic features such as the mass and the radius of the
star.

In situations where the densities inside the star are be-
yond nuclear matter density, the matter anisotropy can play
a crucial role, as the conservation equations are modified.
Usov (2004) suggested the consideration of anisotropy in
modelling strange stars in the presence of strong elec-
tric field. The analysis of static spherically symmetric
anisotropic fluid spheres is important in relativistic astro-
physics. Since the first study of Bowers and Liang (1974)
there has been much research in the study of anisotropic rel-
ativistic matter in general relativity. It has been pointed out
that nuclear matter may be anisotropic in high density ranges
of order 1015 g cm−3, where nuclear interactions have to be
treated relativistically, originally in the treatment of Ruder-
man (1972). It has been noted that anisotropy can arise from

different kinds of phase transitions by Sokolov (1980) or
pion condensation by Sawyer (1972). The role of charge in
a relativistic quark star was considered by Mak and Harko
(2004).

In the present work we study the regular exact model
of the Einstein-Maxwell system found by Mafa Takisa and
Maharaj (2013) by testing for consistency and compatibility
with observations in this model. We use this model to find
the maximum mass and physical parameters of observed
compact objects, namely PSR J1614-2230, PSR J1903+327,
Vela X-1, SMC X-1 and Cen X-3, which have been recently
identified by Gangopadhyay et al. (2013) to be strange stars.
In Sect. 2, the Einstein-Maxwell field equations are briefly
reviewed and Mafa Takisa and Maharaj (2013) model is
revisited. Recent observations are presented in Sect. 3. In
Sect. 4, we present and discuss our results obtained for the
uncharged case and compare them to values of masses de-
rived from current accurate observations of compact objects.
In Sect. 5, we apply finite charge to the uncharged systems
presented in Sect. 4, and observe the changes. We discuss
and conclude our results in Sect. 6.

2 The model

The metric of a static spherically symmetric spacetime in
curvature coordinates reads

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2), (1)

where ν = ν(r) and λ = λ(r). The energy momentum tensor
for an anisotropic charged imperfect fluid sphere is of the
form

T ab = diag

(
−ρ − 1

2
E2,pr − 1

2
E2,pt + 1

2
E2,pt + 1

2
E2

)
,

(2)

where ρ, pr , pt and E are the density, radial pressure, tan-
gential pressure and electric field intensity respectively. For
a physically realistic relativistic star we expect that the mat-
ter distribution should satisfy a barotropic equation of state
pr = pr(ρ); the linear case is given by

pr = αρ − β, (3)

where β = αρε . The constant α is constrained by the sound
speed causality condition (α = dpr

dr
≤ 1) and ρε represents

the density at the surface r = ε.
The gravitational interactions on the matter and elec-

tromagnetic fields are governed by a relevant set of field
equations. These interactions are contained in the Einstein-
Maxwell system

Gab = kT ab, (4)
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Fab;c + Fbc;a + Fca;b = 0, (5)

Fab;b = 4πJa, (6)

where the coupling constant k = 8π (G = c = 1) in ge-
ometrised units. The system above is a highly nonlinear sys-
tem of coupled, partial differential equations governing the
behaviour of the gravitating system in the presence of the
electromagnetic field.

For static, charged anisotropic matter with the line el-
ement (1), the Einstein-Maxwell system (4)–(6) takes the
form

8πρ + 1

2
E2 = 1

r2

[
r
(
1 − e−2λ

)]′
, (7)

8πpr − 1

2
E2 = − 1

r2

(
1 − e−2λ

) + 2ν′

r
e−2λ, (8)

8πpt + 1

2
E2 = e−2λ

(
ν′′ + ν′2 + ν′

r
λ′ − λ′

r
− ν

)
, (9)

σ = 1

4πr2
e−λ

(
r2E

)′
, (10)

where σ = σ(r) is called proper charge density and primes
denote differentiation with respect to r . We note that equa-
tions (7)–(9) imply

dpr

dr
= 2

r
(pt − pr) − r(ρ + pr)ν

′ + E

4πr2

(
r2E

)′
, (11)

which is the Bianchi identity representing hydrostatic equi-
librium of the charged anisotropic fluid. Equation (11) indi-
cates that the anisotropy and charge influence the gradient of
the pressure. These quantities may drastically affect quanti-
ties of physical importance such as surface tension as estab-
lished by Sharma and Maharaj (2007b) in the generalised
Tolman-Oppenheimer equation (11). We define the gravita-
tional mass to be

m(r) = 4π

∫ r

0

(
ρ(ω) + E2

8π

)
dω, (12)

in the presence of charge.
In this paper, we utilise the results of Mafa Takisa and

Maharaj (2013), with a linear equation of state. The motiva-
tion for this is that their results are consistent with the ob-
served X-ray binary pulsar SAX J1808.4-3658. It is likely
that the exact solutions of Mafa Takisa and Maharaj (2013)
may be applicable to other observed astronomical bodies.
With the equation of state (3), the solution to the Einstein-
Maxwell system (7)–(10) can be written as

e2λ = 1 + ar2

1 + (a − b)r2
, (13)

e2ν = A2(1 + ar2)2t [1 + (a − b)r2]2n

× exp

[
−ar2[s(1 + α) + 2β]

4(a − b)

]
, (14)

ρ = 2b(3 + ar2) − sa2r4

16π(1 + ar2)2
, (15)

pr = α[2b(3 + ar2) − sa2r4]
16π(1 + ar2)2

− β, (16)

pt = pr + , (17)

8π = −b

(1 + ar2)
− b(1 + 5α)

(1 + α)(1 + ar2)2

+ 2β

1 + α
+ r2[1 + (a − b)r2]

(1 + ar2)

×
{

4

(
a2t (t − 1)

(1 + ar2)2
+ 2a(a − b)tn

(1 + ar2)[1 + (a − b)r2]
)

+
(

4(a − b)2n(n − 1)

[1 + (a − b)r2]2

)

− a
[
s(1 + α) + 2β

]

× (a(t + n)[1 + (a − b)r2] − bn)

(a − b)(1 + ar2)[1 + (a − b)r2]

+ a2[s(1 + α) + 2β]2

16(a − b)2

}

− 4[1 + ar2(2 + (a − b)r2)] − b(5 + α)r2

4(a − b)(1 + α)(1 + ar2)3[1 + (a − b)r2]
× [−8b2n + a3r2(−8(t + n) + [

s(1 + α) + 2β
]
r2)

+ a2(8(t + n)
(
2br2 − 1

)

+ [
s(1 + α) + 2β

](
2 − br2)r2 + a

(−8b2(t + n)r2

+ [
s(1 + α) + 2β

]

+ b
(
8t + 16n − [

s(1 + α) + 2β
]
r2))], (18)

E2 = sa2r4

(1 + ar2)2
, (19)

σ 2 = sa2r2[1 + (a − b)r2](2 + ar2)2

π(1 + ar2)5
, (20)

m(r) = 1

8

[
s(−15 − 10ar2 + 2a2r4)r

3a(1 + ar2)
+ 4br3

(1 + ar2)

+ 5s arctan(
√

ar2)

a3/2

]
, (21)

where A, a, b and s are constants. In the above equations
the constants m and n are given by

t = 4αb − (1 + α)s

8b
,

n = 1

8b(a − b)2

[
a2((1 + α)s − 4αb

)
2ab2(1 + 5α)

+ b2(−2b(1 + 3α) + 2β
)]

.
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The exact solution (13)–(21) of the Einstein-Maxwell sys-
tem is written in terms of elementary functions.

The constants a, b, s have the dimension of length−2. We
make the following transformations for simplicity in numer-
ical calculations:

ã = a�2, b̃ = b�2, s̃ = s�2,

where � is a parameter which has the dimension of length.
Based on the requirements of Delgaty and Lake (1998), we
impose restrictions on our model to make it physically rele-
vant. The values of ã, b̃, s̃ should be chosen so that:

• The energy density ρ remains positive inside the star,
• The radial pressure pr should vanish at the boundary of

the star (pr(ε) = 0),
• The tangential pressure pt should be positive within the

interior of star,
• The gradient of pressure dpr

dr
< 0 in the interior of the star,

• At the centre pr(0) = pt(0) and (0) = 0,
• The metric functions e2λ, e2ν and the electric field inten-

sity E should be positive and non singular throughout the
interior of the star.

• At the centre density ρ(0) = ρc must be finite.
• Across the boundary r = ε:

e2ν(ε) = 1 − 2M

ε
+ Q2

ε2
,

e2λ(ε) =
(

1 − 2M

ε
+ Q2

ε2

)−1

,

m(ε) = M.

3 Recent observations

For a pulsar in a binary system, Jacoby et al. (2005) and
Verbiest et al. (2008) used detection of the general relativis-
tic Shapiro delay to infer the masses of both the neutron star
and its binary companion to high precision. Based on this
approach Demorest et al. (2010) presented radio timing ob-
servations of the binary millisecond pulsar PSR J1614-2230,
which showed a strong Shapiro delay signature. The implied
pulsar mass of (1.97 ± 0.08M�) is by far the highest yet
measured with accurate precision.

Freire et al. (2011) utilised the Arecibo and Green Bank
radio timing observations and included a full determination
of the relativistic Shapiro delay, a very precise measure-
ment of the apsidal motion and new constraints of the or-
bital orientation of the system. Through a detailed analysis,
they derived new constraints on the mass of the pulsar and
its companion and determined the accurate mass for PSR
J1903+0327 (1.667 ± 0.02M�).

Recently Rawls et al. (2011) have found an improved
method for determining the mass of neutron stars such as

(Vela X-1, SMC X-1, Cen X-3) in eclipsing X-ray pulsar bi-
naries. They used a numerical code based on Roche geome-
try with various optimisers to analyse the published data for
these systems, which they supplemented with new spectro-
scopic and photometric data for 4U 1538-52. This allowed
them to model the eclipse duration more accurately, and they
calculated an improved value for the neutron star masses.
Their derived values are (1.77 ± 0.08M�) for Vela X-1,
(1.29 ± 0.05M�) for LMC X-4 and (1.29 ± 0.08M�) for
Cen X-3.

There have been similar observations for other stars, but
for our present work, we restrict ourselves to these five stars
only.

4 Uncharged stars

In this section, we use the analytical solutions (13)–(21) to
calculate the mass and radius of five different compact stars
(PSR J1614-2230, PSR J1903+327, Vela X-1, SMC X-1,
Cen X-3), and compare the output to the recent accurate
maximum mass values as mentioned in the previous section.
We consider the equation of state of strange stars and choose
the central density ρc in the range of 2.2 × 1015 g cm−3 ≤
ρc ≤ 5.5 × 1015 g cm−3, ã = 53.34, � = 43.245 km, α =
0.33, ρε = 0.5 × 1015 g cm−3. Then the model yields the
above stars which are represented in Table 1. We regain
the accurate mass and corresponding radius for each star.
For PSR J1614-2230, with ρc = 3.45 × 1015 g cm−3, leads
to M = 1.97M� and R = 10.30 km. For PSR J1903+327,
ρc = 3.14 × 1015 g cm−3 and we obtain M = 1.667M�
and R = 9.82 km. By taking ρc = 3.25 × 1015 g cm−3,
we get the mass and radius of Vela X-1 M = 1.77M�
and R = 9.99 km. The value 2.72 × 1015 g cm−3 leads to
M = 1.29M� and R = 9.13 km which corresponds to SMC
X-1. Finally for Cen X-3, we take ρc = 2.95×1015 g cm−3,
and obtain the accurate mass and the radius (M = 1.49M�
and R = 9.51 km).

5 Charged stars

The parameters used in Sect. 4 have generated results which
are consistent with observational data. Consequently, we
use these values to study charged bodies. We take the
central density in the range of 2.2 × 1015 g cm−3 ≤ ρ ≤
5.5 × 1015 g cm−3, ã = 53.34, � = 43.245 km, α = 0.33,
ρε = 0.5×1015 g cm−3, s̃ = 0.0,7.5,14.5 and M� = 1.477.
Then the corresponding results are given in Table 2. It is
clear that the presence of electric charge leads to a consid-
erable increase in the mass of a stellar object obeying the
linear equation of state. On the other hand the radius of dif-
ferent charged configurations (s̃ = 7.5,14.5) is smaller than
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Table 1 Masses of different
stars and radius for uncharged
case (s̃ = 0.0)

STAR α b̃ M(M�) M(M�)/R R (km) ρc (×1015 gcm−3)

PSR J1614-2230 0.33 40.11 1.97 0.191 10.30 3.45

PSR J1903+327 0.33 36.48 1.667 0.170 9.82 3.14

Vela X-1 0.33 37.77 1.77 0.177 9.99 3.25

SMC X-1 0.33 31.68 1.29 0.141 9.13 2.72

Cen X-3 0.33 34.29 1.49 0.157 9.51 2.95

Table 2 Masses of different
stars and radius for charged case
(s̃ �= 0). For s̃ = 0.1, the results
are similar to the uncharged
case s̃ = 0.0. A little difference
appears at s̃ = 7.5 and the effect
of charge becomes significant at
s̃ = 14.5

Charge parameter STAR α b̃ M (M�) R (km) ρc (×1015 gcm−3)

s̃ = 0.1 PSR J1614-2230 0.33 40.11 1.97 10.30 3.45

PSR J1903+327 0.33 36.48 1.667 9.82 3.14

Vela X-1 0.33 37.77 1.77 9.99 3.25

SMC X-1 0.33 31.68 1.29 9.13 2.72

Cen X-3 0.33 34.29 1.49 9.51 2.95

s̃ = 7.5 PSR J1614-2230 0.33 40.11 1.98 9.67 3.45

PSR J1903+327 0.33 36.48 1.674 9.24 3.14

Vela X-1 0.33 37.77 1.78 9.39 3.25

SMC X-1 0.33 31.68 1.30 8.62 2.72

Cen X-3 0.33 34.29 1.50 8.96 2.95

s̃ = 14.5 PSR J1614-2230 0.33 40.11 2.13 9.21 3.45

PSR J1903+327 0.33 36.48 1.81 8.82 3.14

Vela X-1 0.33 37.77 1.92 8.96 3.25

SMC X-1 0.33 31.68 1.40 8.25 2.72

Cen X-3 0.33 34.29 1.62 8.57 2.95

the maximum radius of the uncharged case (s̃ = 0.0). A sim-
ilar situation arises in the analysis of Mak and Harko (2004).

To illustrate the behaviour of physical parameters at the
interior of different stars, we have plotted the energy den-
sity ρ, radial pressure pr , tangential pressure pt and the
measure of anisotropy . Figures 1, 2, 3, 4, 5 represent
PSR J1614-2230, SMC X-1, PSR J1903+327, Cen X-3 and
Vela X-1 respectively. The density profiles are positive and
well behaved inside all stars. The effect of electric charge
is more significant near the surface of stars; this situation is
consistent with the form of the electric field of Mafa Tak-
isa and Maharaj (2013) in (19) which vanishes at the centre
E(0) = 0. We note that the interior profile of radial pressure
pr , tangential pressure pr and the measure of anisotropy
 profiles of PSR J1614-2230, PSR J1903+327, Vela X-1,
SMC X-1 and Cen X-3 stars are completely unaffected by
the electric charge layer, since the latter is mostly located
in a spherical shell close the surface. A similar statement
has also been made by Negreiros et al. (2009). The tan-
gential pressure pt profiles for all studied stars are well
behaved, increasing in the vicinity of the centre, reaches a
maximum, and becomes a decreasing function. This is rea-
sonable since the conservation of angular momentum during
the quasi-equilibrium contraction of a massive body should

lead to high values of pt in central regions of the star, as
pointed out by Karmakar et al. (2007). The anisotropy is in-
creasing in the neighbourhood of the centre, reaches a max-
imum value, then starts decreasing up to the boundary. The
anisotropy profile is similar to the model of Sharma and Ma-
haraj (2007a).

6 Discussion

We have used Mafa Takisa and Maharaj (2013) result to
model compact stars. In our investigation, we have con-
sidered a constant slope α = 1/3 in the equation of state,
and the surface density ρs = 0.5 × 1015 g cm−3. The sur-
face density chosen in this work is approximately close to
4B = 0.45 × 1015 g cm−3 of Alcock et al. (1986). It shows
that, for particular parameters values, the model can be used
to describe the observed compact stars (PSR J1614-2230,
PSR J1903+327, Vela X-1, SMC X-1, Cen X-3). The re-
cent measurement of the mass of PSR J1614-2230 provides
one of the strongest observational constraints on the equa-
tion of state thus far. In our present result we have found
the mass value of M = 1.97M�, ρc = 3.45 × 1015 g cm−3
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Fig. 1 PSRJ1614-2230, for the uncharged and charged cases

Fig. 2 SMC X-1, for the uncharged and charged cases

and R = 10.30 km as the corresponding radius for the pul-

sar PSR J1614-2230. As accurate and reliable radius mea-

surements of this star are not yet available, our theoretical

result may be useful in future investigations. From the gen-

eral relativistic structure equations and according to Buch-

dahl (1959), the maximum allowable compactness (mass-

radius ratio) for an uncharged star is set by 2M
R

< 8
9 . The

compactness values for all stars shown in Table 1, shows

the acceptability of our model. Unlike others models, for

example the models of Thirukkanesh and Maharaj (2008)
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Fig. 3 PSRJ1903+327, for the uncharged and charged cases

Fig. 4 Cen X-3, for the uncharged and charged cases

and Mafa Takisa and Maharaj (2013), the masses for the

charged case s̃ �= 0 increases. For the maximum charge case

with s̃ = 14.5, it has been observed that our class of so-

lutions gives us a maximum mass for PSR J1614-2230 of

M = 2.13M�, with electric field E = 4.91059 × 1020 V/m.

This translates to an increase of 10 % of mass with charge.

Our results are in agreement with the work done by Ne-

greiros et al. (2009), who have demonstrated that the pres-

ence of electric fields of similar magnitude, generated by

charge distributions located near the surface of strange quark
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Fig. 5 Vela X-1, for the uncharged and charged cases

stars, may increase the stellar mass by up to 15 %; this helps
in the interpretation of massive compact stars, with masses
of around M = 2.0M�. We conclude by pointing out that
such solutions may be used to construct a suitable model of
a superdense object both with both uncharged and charged
matter.
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