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Abstract We suggest a two-step mechanism for the gener-
ation of the parallel electric field at the Alfvén wave. At the
first step, the coupling with the compressional mode due to
the magnetic field non-uniformity and finite plasma pressure
provides the parallel magnetic field of Alfvén wave. At the
second step, the compressional mode acquires the parallel
electric field due to coupling with the electrostatic mode as
required by the quasi-neutrality condition in kinetics. The
parallel electric field acquired by the Alfvén mode is con-
siderably larger than that due to the single-step coupling be-
tween the Alfvén and electrostatic modes in kinetics.

Keywords Parallel electric field · Particle acceleration ·
ULF waves · Mode coupling

1 Introduction

The ultra-low-frequency (ULF) waves, that is the waves
with frequencies much less than the ion gyrofrequency, are
widely observed in space plasmas: in the planetary mag-
netospheres (Glassmeier et al. 2004), interplanetary mag-
netic field (Potapov et al. 2013), Sun’s atmosphere (Nakari-
akov et al. 1999), cometary atmospheres (Le et al. 1989).
Some of them can be identified with various compressional
modes (Leonovich and Kozlov 2009; Leonovich et al. 2010;
Klimushkin and Mager 2011), but vast majority of the ULF
waves are interpreted as the shear Alfvén modes (Glass-
meier et al. 2004).
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An importance of the ULF waves for the space plasma
physics is caused, in particular, by their ability to accelerate
the plasma particles. Indeed, there are experimental signa-
tures that the ULF waves are responsible for the accelera-
tion of the auroral electrons (Keiling et al. 2002) and radi-
ation belt electrons (Mathie and Mann 2001; Potapov et al.
2012) in the Earth’s magnetosphere, the electrons in the Io’s
plasma torus (Das and Ip 1992). The Alfvén waves are often
involved for explanation of the heating of the Sun’s corona
(e.g. Nakariakov et al. 1999).

Sometimes, plasma energization by the nonlinear pon-
deromotive forces is supposed (Allan 1993; Guglielmi et al.
1999; Dmitrienko 1997, 2011; Nekrasov and Feygin 2005;
Lundin and Guglielmi 2006). The transverse electric field
E⊥ is usually involved for the studies of the acceleration of
the radiation belt electrons (Ukhorskiy et al. 2009). But the
most popular mechanism involves the parallel electric field
E‖ (Hasegawa 1976; Genot et al. 2000; McClements and
Fletcher 2009; Bingham et al. 2013).

However, in usual MHD treatment, the Alfvén wave par-
allel electric field is assumed to be zero, E‖ = 0. Thus, ki-
netic effects should be taken into account. One such effect
is electron inertia that provides coupling of Alfvén wave
with the electrostatic mode causing the formation of the
inertial Alfvén wave with nonzero E‖ (Lysak and Lotko
1996). The parallel to transverse electric field ratio E‖/E⊥
is very small, therefore, this mechanism is not very effective
for ULF modes. To overcome this difficulty, various kinetic
instabilities were proposed (Dwivedi et al. 2001; Bespalov
et al. 2006; Agarwal et al. 2011; Chen et al. 2013; Arshad
and Mirza 2013). However, the problem cannot be consid-
ered as being solved yet.

In this paper, another approach is suggested that assumes
a two-step generation of the parallel electric field at the
Alfvén mode. As was shown in MHD, the Alfvén wave ac-
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quires considerable parallel magnetic field (B‖) due to the
coupling with the compressional modes owing to plasma in-
homogeneity (e.g. Agapitov et al. 2008; Mazur et al. 2013).
The second step assumes that the compressional mode is
coupled with the wave parallel electric field, as demanded
by the quasi-neutrality condition in kinetics. As a result, the
Alfvén mode acquires considerable parallel electric field in
the non-uniform plasma.

2 Initial equations

Let us consider a one-dimensionally inhomogeneous cylin-
der model of the magnetosphere where the magnetic field
lines are concentric circles with radius R. All the plasma
parameters (plasma pressure P(x), ambient magnetic field
B(x) and others) vary across the magnetic shells only. The
radius R has the role of the radial coordinate x. The coordi-
nate y along the cylinder axis corresponds to the azimuthal
coordinate in the magnetosphere, the coordinate l‖ is along
the magnetic field line.

Let us assume the isotropic Maxwellian equilibrium dis-
tribution function

F = n

(2πV )3/2
e−v2/2V 2

,

where n is the plasma number density, V is the particle ther-
mal velocity. Then the equilibrium condition is written as

β

2

P ′

P
+ B ′

B
+ 1

R
= 0, (1)

where prime denotes differentiation over the radial coordi-
nate x. The dependence of the wave variables on the spatio-
temporal coordinates has the form

exp

[
−iωt + i

∫
kx(x)dx + ikyy + ik‖l‖

]
,

where ω is the wave frequency, kx and ky are the wave-
vector’s radial and azimuthal component, respectively, with
the former being determined from the leading order WKB
approximation (Leonovich and Mazur 1993). In what fol-
lows, the transversally small scale waves are considered:
k⊥ � k‖, where k⊥ is the wave vector transverse compo-
nent, k2⊥ = k2

x + k2
y .

The wave phenomena with the wave frequency ω much
less than the gyrofrequency ωc are conventionally stud-
ied within the gyrokinetics (Chen and Hasegawa 1991). In
this formalism, the wave’s electromagnetic field can be de-
scribed via three variables. The first one is b = ωB‖/c,
where B‖ is the longitudinal magnetic field of the wave. The
second one ψ is related to the longitudinal vector potential
by A‖ = −(ic/ω)∂ψ/∂l‖, where ω is the wave frequency.
The third variable is the electrostatic potential φ. However,

instead of the latter, it is convenient to use the “parallel po-
tential” φ‖ = φ − ψ .

In the gyrokinetic formalism, the gauge in which ∇ · �A =
0 is selected (Antonsen and Lane 1980), thus the trans-
verse vector potential A⊥ = (k‖/k⊥)A‖ can be neglected
in the limit k⊥ � k‖. Then �B = ∇ × �A‖ and the trans-
verse magnetic field of the wave is expressed in terms of
the variable ψ . The parallel electric field of the wave is ex-
pressed through the parallel potential as E‖ = −ik‖φ‖. In
what follows we assume that the parallel electric field of the
wave is much less than the perpendicular component (al-
though E‖ �= 0). Then we can find from the Faraday law
∇ × �E = (iω/c) �B that the transverse electric can be ex-
pressed in terms of the variable ψ as E⊥ = −ik⊥ψ .

The field variables are related to each other through the
quasi-neutrality condition, transverse Ampere law, and the
parallel Ampere law [see equations (12–14) in Chen and
Hasegawa (1991)]. In this paper, the following approach will
be adopted. First, we well assume the negligibly small par-
allel electric field, that is φ‖ 	 ψ . Then, the wave field is
determined by the variables b and ψ related to each other by
the reduced equations for the transverse and parallel Ampere
law. Then, the quasi-neutrality condition will be considered,
which can be treated as the equation for the parallel poten-
tial expressed in terms of the variables b and ψ determined
on the previous step.

In what follows, the ion Larmor radius ρi will be assumed
to be small, k⊥ρi 	 1.

3 Relation between the transverse and compressional
modes

The variables b and ψ are related by the equations

LMb + kyLcψ = 0, (2)

LAψ + kyLcb = 0 (3)

[see equations (21–22) in Chen and Hasegawa (1991)],
where LM and LA are the operators for the compres-
sional and transverse (Alfvén) modes, respectively, and Lc

is the coupling operator. In the general form for the one-
dimensionally inhomogeneous cylinder model these opera-
tors are written in Klimushkin and Mager (2011). Here we
consider the quasi-MHD limit, where ω � k‖V‖ and the ve-
locity of the gradient-curvature drift is small. The opposite
case was considered in Klimushkin and Mager (2012).

Let us introduce the diamagnetic drift frequency

ω∗ = ky

ωc

T

(
n′

n
− 3

2

T ′

T

)
, (4)

where T = V 2/2 is the plasma temperature (remind that
the prime denotes differentiation over the radial coordinate).
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Then the operators are recast as

LA = k2⊥

(
ω2

v2
A

− k2‖

)
+ k2

y

4πP ′

B2

(
B ′

B
− 1

R

)

− k2
yβ

ω − ω∗
ω

(
B ′2

B2
− B ′

BR
+ 3

2R2

)
, (5)

Lc = 4πP ′

B2
− β

ω − ω∗
ω

(
B ′

B
− 1

2R

)
, (6)

LM = −1 − β
ω − ω∗

ω
. (7)

All of the operators contain also imaginary terms, but we
will consider them negligibly small.

The solution of the system (2, 3) reveal existence of two
branches of the ULF modes: the Alfvén-ballooning mode
with the characteristic frequency ω ∼ k‖vA, and the drift
compressional mode with the frequency ω ∼ ω∗. The disper-
sion properties of these modes and corresponding instabil-
ity conditions are studied in Klimushkin and Mager (2011),
Klimushkin et al. (2012).

Here we bound ourselves with the limit ω � ω∗. After
expressing b from (2) and substituting it into (3) we get the
equation for the Alfvén-ballooning mode

[
k2⊥

(
ω2

v2
A

− k2‖

)
+ k2

yΛ

]
ψ = 0, (8)

where

Λ = − 2

R

(
4πP ′

B2
+ 7

4

β

R

)
+

(
3

2R

)2
β2

1 + β

is the ballooning term.
Further, Eq. (2) in the limit ω � ω∗ can be written as

B‖ = cky

ω

(
4πP ′

B2
+ 2

R

6πP

B2

)
ψ. (9)

Remind that P ′ is the plasma pressure radial gradient con-
nected with the curvature radius R according to the equilib-
rium condition (1).

Thus, in a non-uniform finite-pressure plasma the Alfvé-
nic perturbation is always accompanied by the parallel mag-
netic field. On the order of magnitude,

B‖ ∼ cky

ω

β

L⊥
ψ. (10)

The same expressions (9, 10) can be obtained also in MHD
(Mager and Klimushkin 2002).

4 The parallel electric field in the uniform plasma

In the limits ω � k‖V‖, ω � ω∗, the quasi-neutrality condi-
tion can be written in the form

∑
i,e

q2

m

〈
(1 − J 2

0 )
∂F

∂ε
φ‖

〉

=
∑
i,e

q2

m

〈
−(1 − J 2

0 )
∂F

∂ε
ψ + ∂F

∂ε

v⊥J0J1

k⊥c
B‖

〉
, (11)

where 〈...〉 denotes the averaging over the velocity space,
q and m are the charge and the mass of the particle, Jn =
Jn(k⊥v⊥/ωc) is the nth order Bessel function, ε = v2/2 is
the particle energy. This equation is an analogy of Eq. (12)
from Chen and Hasegawa (1991) but written for the case of
the circular field lines.

This equation describes the generation of the parallel
electric field φ‖ by the transverse electric field ψ and par-
allel magnetic field B‖ already determined from Eqs. (8,9).

Let us assume B‖ = 0, which is justified for the Alfvén
mode in the uniform plasma. Then we integrate Eq. (11) for
the case of the small ion Larmor radius, k⊥ρi 	 1, and the
electrons with the thermal velocities much higher than the
parallel phase speed of the wave, V‖ � ω/k‖. As a result,
we have
[

q2

meV 2
e

− q2k2‖
miω2

]
φ‖H = −k2⊥mic

2

B2
ψ. (12)

The lower index H here refers to the uniform plasma case.
First, let us consider the case when the Alfvénic frequen-

cies are higher than vsk‖, where vs = ve

√
me/mi is the

ion-sound speed. Then, taking into account also definitions
E‖ = −ik‖φ‖, E⊥ = −ik⊥ψ , Eq. (12) can be written in the
form

E‖H = −(k⊥ρi)
2 Te

Ti

k‖
k⊥

E⊥. (13)

Due to the small ion Larmor radius the inequality E‖H 	
E⊥ holds.

Now let us consider the opposite case, ω 	 vsk‖. Then
only the second term in the left-hand side of Eq. (12) must
be kept, and the parallel electric field equals

E‖H = k⊥
k‖

ω2

ω2
ci

E⊥. (14)

This time, the inequality E‖H 	 E⊥ is a consequence of the
small wave frequency compared with the ion gyrofrequency.

Equations (13, 14) confirm that in a uniform plasma the
parallel electric field of the Alfvén mode is very small com-
pared with its transverse electric field.
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5 The parallel electric field in the non-uniform plasma

Keeping in Eq. (11) both ψ and B‖ terms, we find after in-
tegration:
[

q2

mev2
e

− q2k2‖
miω2

]
φ‖ = −k2⊥mic

2

B2
ψ + q

B
B‖. (15)

The parallel magnetic field B‖ can be expressed through ψ

according to Eq. (10). The transverse and parallel electric
fields are expressed as E⊥ = −ik⊥ψ , E‖ = −ik‖φ‖, respec-
tively.

Let us consider two cases: cold electrons (ω � vsk‖) and
hot electrons (ω 	 vsk‖).

For the frequencies ω � vsk‖ we get:

E‖ = − (k⊥ρi)
2 Te

Ti

k‖
k⊥

×
[

1 − ωci

ω

ky

k2⊥

(
4πP ′

B2
+ 2

R

6πP

B2

)]
E⊥. (16)

On the order of magnitude, the parallel electric field gener-
ated by this mechanism is

E‖ ∼ ρi

L⊥
Te

Ti

β3/2E⊥. (17)

In the opposite case, ω 	 vsk‖, we get:

E‖ = k⊥
k‖

ω2

ω2
ci

×
[

1 − ωci

ω

ky

k2⊥

(
4πP ′

B2
+ 2

R

6πP

B2

)]
E⊥, (18)

or on the order of magnitude

E‖ ∼ ω

ωci

β

k‖L⊥
E⊥. (19)

Although in both cases the parallel electric field is small,
E‖ 	 E⊥, but it is

η = E‖
E‖H

∼ ωci

ω

β

k⊥L⊥
(20)

times stronger than the in the homogeneous plasma accord-
ing to Eqs. (13) and (14). For typical frequencies of the
Pc5 ULF waves in the Earth’s magnetosphere and azimuthal
wave numbers m ∼ 5 typical for the field line resonances,
this factor can be estimated as η ∼ 102–103.

The work of the parallel electric field per unit time is ex-
pressed as

δ‖ε
δt

= q �v‖ · �E‖, (21)

while the work of the transverse electric field per unit time
is

δ⊥ε

δt
= q �ud · �E⊥, (22)

where ud is the gradient-curvature drift velocity. On the or-
der of magnitude,

ud ∼ Vi

ρi

L⊥
. (23)

Thus, in the case of cold electrons (ω � vsk‖) the works of
the parallel and the transverse electric field are related as

δ‖ε
δ⊥ε

∼ Te

Ti

β3/2, (24)

and in the case of the hot electrons (ω 	 vsk‖)

δ‖ε
δ⊥ε

∼ β1/2 (25)

(for the Alfvénic frequencies ω ∼ k‖vA). In both cases, this
ratio can be rather large value.

The estimates (20, 24, 25) justify the necessity to con-
sider the parallel magnetic field of the Alfvén mode for E‖
generation.

6 Conclusions

Due to the coupling with the compressional mode in a fi-
nite pressure plasma embedded in a non-uniform magnetic
field, the Alfvén mode gains the field-aligned component of
the wave magnetic field. The parallel magnetic field of the
wave is coupled with the parallel electric field according to
the kinetic quasi-neutrality condition. As a result, the Alfvén
mode parallel electric field is considerably larger than that
due to the direct coupling with the electrostatic mode.
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