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Abstract In this paper first ever we have developed a class
of well behaved charged fluid spheres expressed by a space
time with its hypersurfaces t = const. as spheroid for the
case 0 < K < 1 with surface density 2 × 1014 gm/cm3. The
same utilized to construct a superdense star and seen that
star satisfies all well behaved condition for 0 < K ≤ 0.038.
The maximum mass occupied and the corresponding radius
are found to be 4.830982MΘ and 20.7612 km respectively.
The redshift at the center and on the surface is given z0 =
0.425367 and za = 0.240901.

Keywords Reissner-Nordstrom metric · Charged fluid ·
General relativity

1 Introduction

Since the inception of Reissner-Nordstrom metric, research
workers have been busy in deriving interior regular charged
perfect fluid solutions such as Tiwari et al. (1991), Tiwari
and Ray (1991a, 1991b, 1993) and many more. Some of the
workers, charged the well-known uncharged perfect fluid so-
lutions e.g. Kuchowicz (1968) solutions by Nduka (1977),
Adler (1974), Wyman (1949) solution by Nduka (1976) and
so on a good account of the above can be had from the work
of Ivanov (2002). The relevance of the study of charged

J. Kumar (B)
Department of Applied Mathematics,
Central University of Jharkhand, Brambe Ranchi,
Jharkhand 835205, India
e-mail: jitendark@gmail.com

Y.K. Gupta
School of Engineering & Technology, Sharda University, Noida,
India

fluid distributions is connected with the following interest-
ing facts such as: (i) Charge dust (CD) (pressure free dis-
tribution) may be realized in the slight ionization of neu-
tral hydrogen. (ii) CD may possess arbitrary mass and ra-
dius, can attain very large redshifts, their exteriors can be
made arbitrarily near to the exterior of an extreme charged
black hole. (iii) A classical model of an electron is likely
to be represented by CD if many of its characteristics re-
main finite and non-trivial while the junction radius shrinks
to zero. (iv) Besides many other speciality, the charge in
the fluid distribution helps in countering the gravitational
collapse by means of the Coulombian repulsion together
with the pressure gradient. Although one can reach this goal
with non perfect fluids, a perfect fluid solution of the type
mentioned was recently found (Gupta and Kumar 2005a)
but with the presence of an electric charge. In the pres-
ence of electric charge the gravitational collapse of a spher-
ically symmetric distribution of matter to a point singularity
may be avoided as the gravitational attraction is counter bal-
anced by the repulsive Coulombian force in addition to the
negative pressure gradient due to the matter. Also presence
of the charge, remove the gravitational collapse, which ab-
sorbs much of the fine tuning necessary in the uncharged
case (Ivanov 2002). After the model is charged thorough a
specific electric intensity (Charge function) it starts possess-
ing the negative density gradient which is necessary for a
physically valid model. Vaidya and Tikekar (1982) coined
a space-time involving a parameter K whose hypersurfaces
t = constant were spheroids for K < 1. They also obtained
a perfect fluid distribution (for K = −2) which was utilized
to describe a superdense star model. In fact the above space-
time owes its origin to Buchdahl (1959) with a passage of
time perfect fluid models were obtained for all K except
for 0 < K < 1 by Gupta and Jasim (2003). Then the fluid
spheres so obtained were electrified by means of a particu-
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lar electric field (Gupta and Kumar 2005a, 2005b; Sharma
et al. 2001). It is observed that the case 0 < K < 1 fails to
yield negative gradient of energy density for an uncharged
case. Also Gupta and Kumar (2005c) has obtained most gen-
eral class of charged fluid spheres described by space-time
with hypersurfaces ‘t = const’ as spheroids or hyperboloids
considering the electric field intensity that has positive gra-
dient. Recently, Gupta et al. (2010, 2011) discussed new
closed form solutions for spheroid and hyperboloid, respec-
tively considering a special form of charge profile satisfy-
ing ultra relativistic and non-relativistic conditions. Recently
Naveen Bijalwan and Gupta (2011, 2012) have obtained per-
fect fluid charged analogues models for all K except for
0 < K < 1 using different electric intensity and Kumar and
Gupta (2013) also obtained the Buchdhal’s type fluid with
generalized charged intensity for 0 < K ≤ 0.05 which satis-
fies the reality conditions except casualty condition.

In this paper we have obtained a class of well-behaved
charged fluid spheres satisfying the reality as well as ca-
sualty conditions and expressed by space time metric with
its hypersurfaces t = const. as spheroid for the case 0 <

K < 1. The charged fluid spheres so obtained are utilized
to construct super-dense star models with surface density
2 × 1014 gm/cm3. In this process we come across various
astrophysical objects like white dwarf, quark and neutron
stars. A neutron star has mass between 1.35 and about 2.1
solar mass with a corresponding radius of about 12 km. It is
shown by Chanderasekhar that no stable White Dwarf can
be more massive than 1.42 solar mass. However 2 to 3 solar
mass correspond to quark star.

2 Field equations

Let us take the static spherically symmetric space-time with
t = const hypersurfaces as spheroids or hyperboloids as

ds2 = −K(1 + Cr2)

(K + Cr2)
dr2 − r2(dθ2 + sin2 θdφ2)+y2(r)dt2

(2.1)

where C and K are constant parameters.
If the metric (2.1) describes charged fluid distribution

then the metric has to satisfy the Einstein-Maxwell equa-
tions
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2
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, (2.2)

where κ = 8πG

c4 , ρ, p and vi denote matter density, fluid
pressure and the unit time-like flow vector of the fluid re-

spectively and Fik being the skew symmetric electromag-
netic field tensor satisfying the Maxwell equations

Fik;j + Fkj ;i + Fji;k = 0, (2.3)

∂

∂xk

(√−gF ik
) = −4π

√−gj i, (2.4)

where j i = σvi represents the four-current vector of charged
fluid while the charge density is denoted by σ .

The field equations (2.2) with respect to (2.1) reduce to
(Dionysiou 1982)
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(2.7)

where

q(r) = 4π

∫ r

0
σr2eλ/2dr = r2

√
−F14F 14 = r2F 41e(λ+υ)/2

(2.8)

represents the total charge contained with in the sphere of
radius ‘r’. Equation (2.4) reduces to

∂

∂r

(
e(λ+υ)/2r2F 41) = −4πe(λ+υ)/2r2j4 (2.9)

Beyond the pressure free interface ‘r = a’ the charged
fluid sphere is expected to join with the Reissner-Nordström
metric:

ds2 = −
(

1 − 2M

r
+ e2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2M

r
+ e2

r2

)
dt2 (2.10)

where M is the gravitational mass of the distribution such
that

M = μ(a) + ε(a)

while
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μ(a) = κ

2

∫ a

0
ρr2dr,

ε(a) = κ

2

∫ a

0
rσqeλ/2dr, e = q(a) (2.11)

ε(a) is the mass equivalence of the electromagnetic energy
of distribution while μ(a) is the mass and e is the total
charge inside the sphere (Florides 1983).

For the given expression of q , the expressions for the
pressure and energy density can be had from (2.5) and (2.7)
subject to the consistency of (2.6), which requires elimina-
tion of p.

(K + Cr2)
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[
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y
)
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= 2q2
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(2.12)

If we let

X =
√

K

1 − K

√

1 + Cr2

K
, (2.13)

then (2.12) transforms to a simple form

(
1 + X2) d2y

dX2
− X

dy

dX
− αy = 0 (2.14)

where

α = 1 − K + 2Kq2 (Cr2 + 1)2

C2r6

In order to obtained closed form solution of (2.14), when
0 < K < 1, then we get

y = (
1 + X2)1/4 · v (2.15)

Now put (2.15) into (2.14), we get

d2v

dX2
+ Sv = 0 (2.16)

where

S = − α

(1 + X2)
+ (2 − 3X2)

4(1 + X2)2

The electric intensity can be explicitly determined as

q2
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The expressions for density and pressure are given as
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The expression for velocity of sound can be written as

dp

c2dρ
= dp/dr

c2dρ/dr
(2.20)

Now we can solve (2.16) easily if we let,

S = D or S = D

X2
(2.21)

The expression for the pressure can be derived as follows:

Case (a): S = D

X2 = β

X2 , β < 1
4

y(X) = (
1 + X2)1/4[

AXm1 + BXm2
]

(2.22)

where
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2
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2

The expression of the pressure is given as
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where

Q = 1 + Cr2

1 − K

For numerically investigation of the models here we are
taking following symbols throughout the article

D = 8πG

c2
a2ρ, P = 8πG

c4
a2p,
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Table 1 −0.0055 ≤ Ca2 ≤ −0.001 and −0.04 ≤ β ≤ −.0.01

K = 0.01, Ca2 = −0.0055, β = −0.03, Radius = 20.37597 km, M = 4.476802MΘ , z0 = 0.415763, za = 0.231177, Quark Star

X Pressure (P ) Density (D) (D − 3P ) Charge (q) dp/c2dρ P/D γ

0 0.075515 1.6335 1.406954 0 0.570444 0.046229 7.364388

0.2 0.070318 1.632273 1.42132 0.035762 0.566688 0.04308 7.775571

0.4 0.055307 1.628053 1.462132 0.296153 0.556281 0.033971 9.418601

0.6 0.032616 1.618771 1.520923 1.064409 0.541919 0.020149 14.86927

0.8 0.007911 1.598643 1.574911 2.795204 0.528985 0.004948 56.82924

1 0 1.547957 1.547957 6.463807 0.500209 0 Inf

Table 2 −0.0115 ≤ Ca2 ≤ −0.001 and −0.04 ≤ β ≤ −.0.03

K = 0.02, Ca2 = −0.0115, β = −0.03, Radius = 20.7612 km, M = 4.830982MΘ , z0 = 0.425367, za = 0.240901, Quark Star

X Pressure (P ) Density (D) (D − 3P ) Charge (q) dp/c2dρ P/D γ

0 0.067181 1.6905 1.488956 0 0.567879 0.039741 8.437291

0.2 0.061896 1.689832 1.504144 0.037745 0.55323 0.036629 8.661925

0.4 0.046683 1.687209 1.54716 0.313581 0.515618 0.027669 9.874555

0.6 0.023953 1.680225 1.608366 1.13374 0.468696 0.014256 15.62922

0.8 0.000397 1.661924 1.660734 3.00714 0.425812 0.000239 760.0001

1 0 1.607043 1.607043 7.082832 0.40153 0 Inf

Table 3 −0.088 ≤ Ca2 ≤ −0.001 and β = −0.04

K = 0.03, Ca2 = −0.0088, β = −0.04, Radius = 15.03099 km, M = 1.584497MΘ , z0 = 0.191548, za = 0.109491, Neutron Star

X Pressure (P ) Density (D) (D − 3P ) Charge (q) dp/c2dρ P/D γ

0 0.005578 0.8536 0.836867 0 0.414449 0.006534 26.45835

0.2 0.00508 0.85343 0.838191 0.015671 0.406927 0.005952 27.98543

0.4 0.003688 0.852819 0.841755 0.127779 0.386964 0.004324 34.7773

0.6 0.001748 0.851414 0.84617 0.445733 0.360459 0.002053 63.42029

0.8 0.000002 0.848458 0.848453 1.109975 0.333294 0.000002 57153.77

1 0 0.84236 0.84236 2.324505 0.309841 0 Inf

Table 4 −0.0101 ≤ Ca2 ≤ −0.001 and β = −0.04

K = 0.038, Ca2 = −0.0101, β = −0.04, Radius = 14.29049 km, M = 1.342129MΘ , z0 = 0.170592, za = 0.097454, White dwarfs Star

X Pressure (P ) Density (D) (D − 3P ) Charge (q) dp/c2dρ P/D γ

0 0.004881 0.767068 0.752425 0 0.90856 0.006363 130.553

0.2 0.004489 0.767041 0.753574 0.013383 0.802288 0.005852 110.629

0.4 0.003388 0.766884 0.756719 0.108979 0.624006 0.004418 88.52281

0.6 0.001831 0.766341 0.760847 0.379243 0.487184 0.00239 99.54997

0.8 0.000348 0.764878 0.763833 0.94066 0.395369 0.000455 343.5703

1 0 0.761407 0.761407 1.957265 0.334474 0 Inf
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c = 2.997×1010 cm/s, G = 6.673×10−8 cm3/gs2, MΘ =
1.475 km.

Case (b): S = D

X2 = β

X2 , β = 1
4

y(X) = X1/2(1 + X2)1/4[A + B logX] (2.24)

The expression of the pressure is given as
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where

Q = 1 + Cr2

1 − K

Case (c): S = D

X2 = β

X2 , β > 1
4

y(X) = X1/2(1 + X2)1/4[
A cos(m1 logX)

+ B sin(m1 logX)
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(2.26)
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The expression of the pressure is given as
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3 Well behaved conditions to be satisfied

The physical validity of the charged fluid sphere (CFS) de-
pends upon the following conditions (called reality condi-
tions or energy conditions) inside and on the sphere r = a

such that

(i) ρ > 0, 0 ≤ r ≤ a,
(ii) p > 0, r < a,

(iii) p = 0, r = a,
(iv) dp/dr < 0, dρ/dr < 0,0 < r < a.
(v) c2ρ ≥ p weak energy condition (WEC) or c2ρ ≥ 3p

strong energy condition (SEC) 0 ≤ r ≤ a.
(vi) The velocity of sound (dp/dρ)1/2 should be less than

that of light throughout the CFS (0 ≤ r ≤ a).
(vii) d

dr
(

p

c2ρ
) < 0.

(viii) d
dr

(
dp

c2dρ
) < 0.

(ix) The adiabatic constant γ = ((
c2ρ+p

p
)(

dp

c2dρ
)) > 1.

(x) Red Shift red as (e−ν/2 − 1) or ( 1
|y(r)| − 1)

Beside the above the smooth joining with the Reissner-
Nordström metric, requires the continuity of eλ, eυ and q

across the pressure free interface r = a and we get,

K(1 + Ca2)

(K + Ca2)
= 1 − 2m(a)

a
+ e2

a2
(3.1)

y2(a) = 1 − 2m(a)

a
+ e2

a2
(3.2)

q(a) = e (3.3)

p(r=a) = 0 (3.4)

The conditions (3.1) and (3.3) are automatically satis-
fied due to the preposition (2.11) however (3.2) and (3.4)
can provide the unique values of arbitrary constants A

and B .

4 Conclusion

In this paper the fluid spheres is electrified in a particular
way which leads to a second order differential equation in

normal form with g44 = (1 + X2)1/2v2 and d2v

dr2 + Sv = 0.
The later is solved for three cases, but only one case i.e.
S = β

X2 , (β < 1
4 ) could yield the charged fluid spheres sat-

isfying all the well behaved conditions for 0 < K ≤ 0.038
and depict the models for super dense star with the max-
imum mass and the corresponding radius as 4.830982MΘ

and 20.7612 km respectively for K = 0.02 with red shifts
at the center and on the surface are given by z0 = 0.425367
and za = 0.240901 respectively (where surface density is
taken to be 2 × 1014 g/cm3). The star models are seen to
satisfy Chandrasekhar limit. In this article we come across



248 Astrophys Space Sci (2014) 351:243–250

Table 5 Numerical table for the various values of the parameter K

X K = 0.01, Ca2 = −0.001, β = 1/4 K = 0.05, Ca2 = −0.01, β = 1/4 K = 0.1, Ca2 = −0.07, β = 1/4

Pressure(P ) Density(D) Pressure (P ) Density (D) Pressure (P ) Density (D)

0 0.028649 0.297 0.060692 0.57 1.304171 1.89

0.2 0.027585 0.297071 0.058619 0.570602 1.277927 1.901897

0.4 0.024356 0.297287 0.052252 0.572433 1.194201 1.939056

0.6 0.018843 0.297654 0.041104 0.575568 1.032879 2.007118

0.8 0.010834 0.298188 0.024237 0.580156 0.730739 2.122971

1 0 0.298911 0 0.586459 0 2.366242

Negative comments: In Table 5, Density (D) is monotonically increasing

Table 6 Numerical table for the various values of the parameter K

X K = 0.1, Ca2 = −0.01, β = 1/4 K = 0.3, Ca2 = −0.21, β = 1/4 K = 0.8, Ca2 = −0.53, β = 1/4

Pressure (P ) Density (D) Pressure (P ) Density (D) Pressure (P ) Density (D)

0 0.010143 0.27 0.847778 1.47 1.045452 0.681429

0.2 0.009769 0.270241 0.833409 1.495064 1.009805 0.714847

0.4 0.00863 0.270967 0.787047 1.574644 0.911572 0.829355

0.6 0.006684 0.272191 0.694832 1.724401 0.767469 1.083004

0.8 0.003849 0.273934 0.509616 1.983643 0.567537 1.660657

1 0 0.276229 0 2.489278 0 3.396605

Negative comments: In Table 6, Density (D) is monotonically increasing

Table 7 Numerical table for the various values of the parameter K

X K = 0.01, Ca2 = −0.0009, β = 7 K = 0.03, Ca2 = −0.01, β = 26 K = 0.7, Ca2 = −0.01, β = 10.9

Pressure (P ) Density (D) Pressure (P ) Density (D) Pressure (P ) Density (D)

0 0.257932 0.2673 6.009217 0.97 0.390607 0.398571

0.2 0.248428 0.268455 5.842325 1.029263 0.377117 0.403328

0.4 0.219541 0.27197 5.315881 1.21725 0.335713 0.417937

0.6 0.170102 0.278003 4.340716 1.569198 0.263417 0.443472

0.8 0.098015 0.286834 2.717404 2.163691 0.15464 0.481949

1 0 0.298904 0 3.17579 0 0.53675

Negative comments: In Table 7, Density (D) is monotonically increasing

Table 8 Numerical table for the various values of the parameter K

X K = 0.1, Ca2 = −0.07, β = 50 K = 0.4, Ca2 = −0.1, β = 47.3 K = 0.8, Ca2 = −0.3, β = 5.5

Pressure (P ) Density (D) Pressure (P ) Density (D) Pressure (P ) Density (D)

0 103.6887 1.89 2.501252 0.45 1.038966 0.225

0.2 99.30787 2.4049 2.433428 0.51328 1.015236 0.247078

0.4 87.42209 4.160103 2.217756 0.713849 0.939846 0.320258

0.6 70.19829 8.025012 1.813068 1.087786 0.795543 0.470081

0.8 46.82715 16.91766 1.132334 1.71089 0.532308 0.760944

1 0 46.05352 0 2.734825 0 1.365251

Negative comments: In Table 8, Density (D) is monotonically increasing
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Fig. 1 Behaviour of pressure
versus radius

Fig. 2 Behaviour of density
versus radius

Fig. 3 Behaviour of density
versus radius

Fig. 4 Behavior of density
versus radius

various astrophysical objects like white dwarf, quark and

neutron stars with the masses 1.342129M, 4.830982MΘ and

1.584497MΘ respectively and the corresponding radius are

14.29049 km, 20.7612 km and 15.03099 km respectively.

Also in the cases (b) and (c) from the numerical Tables 5,

6, 7, 8 we have concluded that due to positive density gra-

dient for all numerical values of K , Ca2 and β , all the

mentioned cases are unphysical. Finally through the numer-

ically as well as graphically investigations we have con-

cluded that only the case (a) is satisfied the well behaved

conditions of the charged fluid sphere. Here we have con-

structed the graphs only for well behaved case (Tables 1, 2,

3, 4).

Figure 1 shown that the pressure (P ) is monotonically
decreasing with respect to radius for the various values of
the parameter K .

Figure 2 shown that the density (D) is monotonically de-
creasing with respect to radius for the various values of the
parameter K .

Figure 3 shown that the charge (q) is monotonically in-
creasing with respect to radius for the various values of the
parameter K .

Figure 4 shown that the velocity of sound is monotoni-
cally decreasing with respect to radius for the various values
of the parameter K .

Figure 5 shows that the ratio (P/D) of pressure and den-
sity is monotonically decreasing with respect to radius for
the various values of the parameter K .
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Fig. 5 Behavior of ration
(P/D) versus radius
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