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Abstract A theoretical investigation is made on the forma-
tion as well as basic properties of dust-ion-acoustic (DIA)
shock waves in a magnetized nonthermal dusty plasma con-
sisting of immobile charge fluctuating dust, inertial ion
fluid and nonthermal electrons. The reductive perturba-
tion method is employed to derive the Korteweg-de Vries-
Burgers equation governing the DIA shock waves. The com-
bined effects of external static magnetic field, obliqueness,
nonthermal electron distribution and dust charge fluctuation
on the DIA shock waves are also investigated. It is shown
that the dust charge fluctuation is a source of dissipation, and
is responsible for the formation of the DIA shock waves. It
is also observed that the combined effects of obliqueness,
nonthermal electron distribution and dust charge fluctuation
significantly modify the basic properties of the DIA shock
waves. The implications of our results in space and labora-
tory dusty plasma situations are briefly discussed.

Keywords Dust-ion-acoustic waves · Shock waves ·
Nonthermal electrons

1 Introduction

Dusty plasma is an electron-ion plasma with an addi-
tional component of small micron sized highly charged
dust (Shukla and Mamun 2002). The presence of this
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charged dust component does not only modify the exist-
ing plasma wave spectra, but also introduces new eigen-
modes, such as dust- acoustic (DA) mode (Rao et al. 1990;
Melandso et al. 1993; Rosenberg 1993; Barkan et al. 1995;
D’Angelo 1995), dust- ion acoustic (DIA) mode (Shukla
and Silin 1992), dust cyclotron mode (Shukla and Rahman
1998), dust drift mode (Shukla et al. 1991), dust lattice
mode (Melandso 1996; Farokhi and Shahmansouri 2009;
Shahmansouri and Farokhi 2012), etc. The DIA mode,
which is one of the most important low frequency electro-
static dust associated modes, is first predicted theoretically
by Shukla and Silin (1992), and observed experimentally by
Barkan et al. (1996). The experimental observation of the
DIA waves is more convenient than that of the DA waves.
These waves exist not only in laboratory devices, but also in
various space and astrophysical plasma systems. Therefore,
the DIA waves have attracted a great deal of attention in the
last few decades.

The electron distribution function may be significantly
modified by the localized dust- ion-acoustic potential struc-
tures via generating fast or energetic or nonthermal electron
population. The electrostatic solitary structures associated
with density depression have been observed by the Viking
spacecraft (Boström 1992) and Freja satellite (Shukla and
Mamun 2002) at the lower part of in the magnetosphere
or upper part of the ionosphere. These observations moti-
vated Cairns et al. (1995) to study the effect of nonther-
mal electrons on the nature of ion acoustic solitary waves.
Their results were in good agreement with those observed
by Viking and Freja. The influence of nonthermal distri-
bution of plasma particles on the collective processes in
plasma has been discussed by a number of authors (Ghosh
et al. 2002; Ghosh et al. 2004; Zhang and Xue 2005;
El-Taibany and Sabry 2005; Zhang and Wang 2006; El-
Taibany and Kourakis 2006; Roy et al. 2006; El-Taibany
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et al. 2007; El-Taibany and Wadati 2007; Chaudhuri et al.
2007; Tribeche and Amour 2007; Tribeche and Boume-
zoued 2008).

A large number of theoretical investigations (Duha and
Mamun 2009; Sarma and Nakamura 2009; Mamun et al.
2009; Mamun and Shukla 2009; Mamun and Shukla 2010)
have been made on the effects of dust charge fluctuation on
the nonlinear propagation of the DIA waves in a collision-
less dusty plasma during the last few couple of years very
seriously. They are termed ‘collisionless’ in the sense that
no viscous or damping effects resulting from collisions be-
tween dust and plasma particles are involved. Mamun and
Shukla (2002) studied the DIA solitary and shock waves in
dusty plasma with charge fluctuating dust. They explained
clearly the necessary conditions for the formation of DIA
solitary and shock waves as well as their properties. Moslem
(2006) investigated the DIA solitary and shock waves in
charge varying dusty plasma in the presence of transverse
perturbations. It was showed that the DIA waves governed
by the Kadomtsev–Petviashivili–Burgers (KPB) equation.
Berbri and Tribeche (2009) have revisited the model of Ma-
mun and Shukla (2002) in the presence of nonthermal elec-
trons. The dusty plasma system with Maxwellian electrons
supports only compressive DIA solitary waves, while that
with nonthermal electrons supports both compressive and
rarefactive DIA solitary waves. Duha et al. (2011) studied
the DIA shock and solitary waves in a multi-ion plasma with
trapped electrons. They discussed the implications of their
findings in space and laboratory dusty multi-ion plasmas.

It is well known that the external magnetic field can mod-
ify the propagation properties of the electrostatic solitary
structures. The effect of an ambient external magnetic field
on the electrostatic waves has been studied by a number
of authors (Alinejad and Mamun 2011; Mamun and Has-
san 2000; Zhang and Xue 2005; Shahmansouri and Alinejad
2013a, 2013b; Choi et al., 2005a, 2005b; Anowar and Ma-
mun 2008a, 2008b; Shalaby et al. 2009; Anowar et al. 2011;
Shahmansouri and Alinejad 2012). D’Angelo (1990) studied
two possible electrostatic modes, namely, electron-ion cy-
clotron and dust-ion acoustic in a magnetized dusty plasma.
Yinhua and Yu (1994) investigated the influence of static
dust particles on both large- and small-amplitude obliquely
propagating ion acoustic solitons. They showed that the dust
particles increase the region of permitted soliton speed as
well as the soliton width. Anowar and Mamun (2008a) stud-
ied the oblique propagation of the DIA solitons in hot adi-
abatic magnetized dusty plasma. They also investigated the
multi-dimensional instability of obliquely propagating DIA
solitary waves in a magnetized dusty plasma (Anowar and
Mamun 2008b). Shalaby et al. (2009) investigated the DIA
solitary waves governed by the Zakharov–Kuznetsov (ZK)
equation in a collisional magnetized dusty plasma, and dis-
cussed their stability. Recently, Shahmansouri and Alinejad

(2012) studied obliquely propagating large amplitude DIA
waves in magnetized superthermal dusty plasma. The char-
acteristics of linear and nonlinear structures are found to de-
pend significantly on the different types of electron distribu-
tion function.

Zhang and Xue (2005) studied DA shock waves in mag-
netized dusty plasma with dust charge fluctuations and
nonthermal ion effects. They used the reductive perturba-
tion technique to derive a KdV-Burgers equation. Recently,
Tribeche and Bacha (2012) studied the DA shock waves in
magnetized superthermal dusty plasma with application to
the Halley’s Comet. More recently, we studied oblique prop-
agation of IA shock waves in a magnetized plasma consist-
ing of a cold viscous ion fluid and Maxwellian electrons. We
showed that the combined effects of ion-viscosity, oblique-
ness and magnitude of the external magnetic field signifi-
cantly modify the basic properties of the IA shock waves
(Shahmansouri and Mamun 2013).

The aim of the present work is to examine the combined
effects of external static magnetic field, obliqueness, non-
thermal electron distribution and dust charge fluctuation on
the basic properties of the DIA shock waves in a magne-
tized dusty plasma system in which the charge fluctuating
dust grains are immobile, ions are inertial fluid and electrons
follow the nonthermal distribution of Cairns et al. (1995).

The manuscript is organized as follows. Theoretical
model and basic equations are provided in Sect. 2. The KdV-
Burgers equation is derived in Sect. 3. The shock stationary
shock wave solution is obtained and is numerically analyzed
in Sect. 4. A brief discussion is presented in Sect. 5.

2 Theoretical model

We consider a collisionless magnetized dusty plasma con-
sisting of charge fluctuating negatively charged static dust,
inertial ion fluid, and nonthermal electrons of densities nd ,
ni , and ne, respectively. At equilibrium, the charge neutral-
ity condition reads ne0 + Zd0nd0 = ni0, from which we de-
fine f = ne0/ni0 = 1 −Zd0nd0/ni0. We assume this system
is immersed in an external magnetic field (B0‖ẑ; ẑ is a unit
vector along the z-axis). Thus, the nonlinear dynamics of the
DIA waves can be described by

∂ni

∂t
+ ∇ · (niui ) = 0, (1)

∂ui

∂t
+ (ui · ∇)ui = −∇φ + ωci

ui × ẑ, (2)

∇2φ = f ne − ni + (1 − f )Zd, (3)

where ui is the ion fluid velocity normalized by Cs =√
Te/mi , φ is the electrostatic wave potential normalized
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by Te/e, the time variable (t) is normalized by 1/ωpi =√
mi/4πni0e2, the plasma species number density nj (j =

e, i, d) is normalized by its equilibrium value nj0, the space
variable (r) is normalized by λD = Cs/ωpi , and ωci is the
ion-cyclotron frequency normalized by ωpi .

To model the electron distribution with fast or nonther-
mal particles, we employ the nonthermal electron velocity
distribution function of Cairns et al. (1995). The latter allow
us to express the electron density ne as

ne(φ) =
{

1 − β
eφ

Te

+ β
e2φ2

T 2
e

}
exp

(
eφ

Te

)
, (4)

where β = 4α/(1 + 3α) and α determines the number of
nonthermal electrons. It may be mentioned here that Eq. (4)
is correct for an assumption: The magnetic field is so strong
that the electron Larmor radius is very small in comparison
with the size of the structures under consideration, i.e. the
electrons are moving parallel to the strong magnetic field.

We note that the dust grain is charged by the plasma cur-
rents at the grain surface. The charging current originates
from electrons and ions hitting the grain surface. It must
be noted that the nonthermal electron distribution signif-
icantly modify the electron current flowing to the spheri-
cal dust grain surface. The modified expressions for elec-
tron and ion charging currents are expressed as (Berbri and
Tribeche 2009)

Ie = −πr2
d ene0

1 + 3α

√
8Te

πme

exp

(
eφ

Te

− e2Zd

rdTe

)

×
{

1 + 4α

5

(
6 − 20

3

eφ

Te

+ 4e2Zd

rdTe

+ 5
e2φ2

T 2
e

− 10

3

e3Zdφ

rdT 2
e

+ e4Z2
d

r2
dT 2

e

)}
, (5)

Ii = πr2
d eni

√
8Ti

πmi

(
1 + 2e2Zd

Tird

)
, (6)

where rd is the dust radius. We assume that the dust grain
radius is smaller than the electron gyro-radius, thus the ex-
ternal magnetic field do not significantly affects the charging
characteristics (Chang and Spariosu 1993; Rubinstein and
Laframboise 1982). Then the variable dust charge is deter-
mined self-consistently by the following normalized charg-
ing equation

η

(
∂Zd

∂t
+ ud

∂Zd

∂x

)
= γ exp

(
eφ

Te

− e2Zd

rdTe

)

×
{

1 + 4α

5

(
6 − 20

3

eφ

Te

+ 4e2Zd

rdTe

+ 5
e2φ2

T 2
e

− 10

3

e3Zdφ

rdT 2
e

+ e4Z2
d

r2
dT 2

e

)}

− χni

(
1 + 2αZd

σ

)
, (7)

where η = √
k◦me(1 − f )/2mi , γ = μ(rd/n

−1/3
d0 )3/2/

(1 + 3α), χ = (rd/n
−1/3
d0 )3/2√meσ/mi , σ = Ti/Te, and

k◦ = Zd0e
2/rdTe. Equation (7) is an additional equation

which is coupled self-consistently to the plasma equations
through the plasma currents. For nonadiabatic dust charge
fluctuations (Shukla and Mamun 2002), the ratio ωpi/νch

can be considered small but finite, and in the theory of
adiabatic dust charge fluctuations we have ωpi/νch ≈ 0,
in that νch is dust charging frequency defined as νch =
r−1
d T −1

e ∂(Ie + Ii)/∂Zd . The influence of the dust charg-
ing rates on the propagation of low frequency DIA waves
is dependent on the dust charging frequency, νch in com-
parison to the plasma frequency ωpi . If the dust charging
frequency becomes much greater than that of the plasma
frequency, the dust charge reaches equilibrium value at each
point. But for non-negligible values of ωpi/νch, the dust
charge fluctuations play the role of a dissipative mechanism.
Thus, the dust charge fluctuations modify the dynamical be-
havior of system and finally it can lead to the formation of
collisionless shock waves. Furthermore, the charge neutral-
ity at equilibrium conditions (Zd = 1, φ = 0) leads to the
following constraint:

f =
√

σme

mi

(1 + 2k◦/σ)(1 + 3α) exp(k◦)
1 + 4α

5 (6 + 4k◦ + k2◦)
. (8)

The above equation indicates that how the equilibrium den-
sity ratio depends on the plasma parameters.

3 Derivation of KdV Burger equation

To study the small amplitude DIA shock waves in magne-
tized nonthermal dusty plasmas, we adopt the standard re-
ductive perturbation method. The stretched coordinates for
this method are defined as (Washimi and Taniuti 1996)

ξ = ε1/2(lxx + lyy + lzz − V0t), τ = ε3/2t, (9)

where ε is a real and small parameter which measures the
weakness of the amplitude or dispersion, V0 is the normal-
ized phase velocity, and lx , ly , and lz are, respectively, the
directional cosines of the wave vector �k along the x, y, and
z axes, so that l2

x + l2
y + l2

z = 1. The expansion of dependent
variables are considered as (Washimi and Taniuti 1996)

ni = 1 + εn1 + ε2n2 + · · · , (10a)

uix = ε3/2ux1 + ε2ux2 + · · · , (10b)
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uiy = ε3/2uy1 + ε2uy2 + · · · , (10c)

uiz = εuz1 + ε2uz2 + · · · , (10d)

Zd = 1 + εZd1 + ε2Zd2 + · · · , (10e)

φ = εφ1 + ε2φ2 + · · · . (10f)

We note that for non-adiabatic dust charge fluctuations the
ratio ωpi/νch can be considered small but finite. We as-
sume that η ≈ ε1/2η◦, (Ghosh et al. 2002) where η◦ is a
finite parameter of the order of unity. Now, substituting the
above expansions, along with the stretched coordinates, into
Eqs. (1)–(3) and (7), and collecting the terms in different
powers of ε, the lowest order of ε leads to

n1 = lz

V0
uz1, uz1 = lz

V0
φ1, (11a)

n1 = f (1 − β)φ1 + (1 − f )Zd1, (11b)

Zd1 = b1φ1 − b2n1. (11c)

The set of Eqs. (11a–11c) allows us to express the wave ve-
locity V0 as

V0 = lz

√
1 + (1 − f )b2

f (1 − β) + (1 − f )b1
, (12)

where

b1 = γ

[
8αk◦

15
− 8α

15
+ 1 + 4αk2◦

5

]
/b0,

b2 = χ

(
1 + 2k◦

σ

)
exp(k◦)/b0,

b0 = γ

[
k◦ + 8αk◦

5
+ 8αk2◦

5
+ 4αk3◦

5

]
+ 2k◦χ

σ
exp(k◦).

On the other hand, the x and y components of the momen-
tum equation to the lowest order in ε, take the following
form

ux1 = − ly

ωci

∂φ1

∂ξ
and uy1 = lx

ωci

∂φ1

∂ξ
(13)

The above equation indicates the components of the elec-
tric field drift. Now, the next higher order in ε leads to the
following set of equations

∂n2

∂ξ
= 1

V0

∂n1

∂τ
+ 1

V0

∂

∂ξ
(lxux2 + lyuy2 + lzuz2 + lzn1uz1),

(14a)

∂uz2

∂ξ
= 1

V0

∂uz1

∂τ
+ 1

2

lz

V0

∂(u2
z1)

∂ξ
+ lz

V0

∂φ2

∂ξ
, (14b)

∂2φ1

∂ξ2
= f

[
(1 − β)φ2 + 1

2
φ2

1

]
− n2 + (1 − f )Zd2, (14c)

Zd2 = b1φ2 − b2n2 + b3
∂φ1

∂ξ
+ b4φ

2
1 , (14d)

ux2 = V0lx

ω2
ci

∂2φ1

∂ξ2
, (14e)

uy2 = V0ly

ω2
ci

∂2φ1

∂ξ2
, (14f)

where

b3 = V0η
(
b1 − b2l

2
z /V 2

0

)
exp(k◦)/b0,

b4 = γ

b0

[
16α

15
− 16αk◦

15
+ 1

2
+ 2αk2◦

5

]

− 2k◦χ
σ

l2
z

V 2
0

(
b1 − b2

l2
z

V 2
0

)
exp(k◦)

b0

+ γ k◦
b0

(
b1 − b2

l2
z

V 2
0

)[
16α

15
+ 16αk◦

15
− 1 − 4αk2◦

5

]
.

Now, using Eqs. (11a–11c)–(14a–14f), and after some
straight forward mathematical steps, we can eliminate the
second perturbed quantities and obtain the following KdV-
Burgers equation for the first perturbed term of the electro-
static potential as

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
= C

∂2φ1

∂ξ2
, (15)

where

A =
[
−V 3

0

2l2
z

f + 3l2
z

2V0
g◦ − V 3

0

l2
z

b4(1 − f )

]/
g◦,

B = V 3
0

2l2
z

[
1 + 1 − l2

z

ω2
ci

g◦
]/

g◦,

C = V 3
0 (1 − f )b3/2l2

z g◦, g◦ = [
1 + (1 − f )b2

]
.

The above equation (15) represents the KdV- Burgers equa-
tion which describes the nonlinear evolution of the DIA
shock wave including the obliqueness, electron nonthermal-
ity effects, and dust charge fluctuation. The structure of
shock-like solution of Eq. (15) depends upon the competi-
tion between the coefficients A, B and C. Here, the nonlin-
ear coefficient A, the dispersion coefficient B , and the dissi-
pation coefficient C are strongly influenced by the nonther-
mal parameter α, obliqueness and dust charge fluctuation.
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Fig. 1 Ratio of the dissipation coefficient to the dispersion coeffi-
cient, as a function of obliqueness θ , (a) for different values of α with
ωci = 0.5; (b) for different values of ωci with α = 0.1

We note that in the absence of dust charge fluctuation, the
dissipation coefficient tends to zero and Eq. (15) reduces to
the well known KdV-equation. Thus, it can be anticipated
that the relation between the plasma parameters β , lz, ωci

and σ may control the behavior of the solution of Eq. (15).
Figure 1 shows the effect of different parameters (such as
obliqueness θ , nonthermal parameter α and magnitude of
the magnetic field ωci ) on the ratio of dissipation to disper-
sion coefficients C/B as a function of the obliqueness θ . In
the Fig. 1a, we consider C/B with different values of α, for
the case ωci = 0.5. It can be observed that C/B decreases
with θ . Furthermore, the nonthermal parameter α has a re-
ducing effect on C/B . But we see that in all curves C is
very larger than B , as we have C � B . Figure 1b shows
variation of C/B as a function of obliqueness for different
values of magnitude of the magnetic field with α = 0.1. It
is clear that an increase in ωci increases C/B . Thus, in the
presence of a weak magnetic field, when DIA shock wave
goes more oblique neither dispersion nor dissipation are not
negligible. We discuss this case with more details in the next
section.

Fig. 2 (a) Ratio of the dissipation coefficient to the dispersion coef-
ficient, as a function of obliqueness θ with α = 0.5 and ωci = 0.1.
(b) The threshold curve for the oscillatory shock profiles as a function
of obliqueness θ . The triangles refer to the ratio C/V 3/2 as a function
of θ . The parameters are similar to the panel (a)

4 Shock wave solution

The electrostatic shock-like solutions of the Eq. (15) de-
pends on the competition between the coefficients of KdV-
Burgers equation. It is found from Fig. 1 that for high val-
ues of ωci (i.e. strong magnetic field), the dispersion coef-
ficient is very smaller than the dissipation coefficient, while
for lower values of ωci (i.e. weak magnetic field), when the
waves propagate obliquely, the dispersion coefficient can
be comparable with the dissipation coefficient. Therefore,
Fig. 1 leads us to consider two different physical situations,
namely dispersive case (low values of ωci ) and weakly dis-
persive case (high values of ωci ), to solve the KdV-Burgers.

1st case: A Dispersive case (low values of ωci and high
values of θ )
Let us consider a special case for low values of ωci and high
values of θ , in which C/B is in order of unity (Fig. 2a).
To study the shock-like solution of Eq. (15), in this case we
consider a reference frame moving with the shock speed.
Now, transforming the independent variables ξ and τ to ς =
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(ξ −V τ ′)/L and τ ′ = τ , one can find, under the steady-state
condition, a third order differential equation for φ1, which
after integrating once, reduces to

A

2
[φ1]2 + B

L2

d2φ1

dς2
= C

L

dφ1

dς
+ V φ1, (16)

where V is the shock speed (in the reference frame), i.e. the
shock speed is Vshock = cs +V , L indicates the shock width.
To obtain Eq. (16), we have used the appropriate boundary
conditions, namely φ1 → 0, dφ1/dς → 0, d2φ1/dς2 → 0
at ς → ∞. The differential Eq. (16) is similar to the equa-
tion of motion of a damped an-harmonic oscillating par-
ticle of a unit mass with speed dφ1/dς and position φ1.
The above boundary conditions show that Eq. (16) has two
singular points dφ1/dς = 0 at φ1 = 0 and dφ1/dς = 0 at
φ1 = 2V/A. If we assume that the particle was located at
φ1 = 0 for ς → +∞, then for ς → −∞ we have φ1 =
2V/A. Thus, under the condition that φ1 is bounded by
ς → ±∞, the solution of Eq. (16) describes a shock-like
structure. There are several techniques to solve the nonlin-
ear partial differential equations (for example, Hirota bilin-
ear formalism, inverse scattering method, Backlund trans-
formation, tanh method, etc). It should be noted that in the
systems including the combined effect of dispersion and
dissipation, “tanh” technique is the most convenient tech-
nique. Thus, the analytical stationary solution of Eq. (16)
by adopting “tanh” approach (Malfliet 1992; Malfliet 2004;
Sultana et al. 2012) can be obtained as

φ1(ξ, τ ) = Φmax

{
1 − 1

4

[
1 + tanh

(
ξ − V τ

L

)]2}
, (17)

where Φmax = 12C2/25AB is the shock amplitude, L =
10B/C is the shock width and V = 6C2/25B is the shock
speed. Since V > 0, this solution corresponds to a shock
traveling toward the +ς axis. It should be noted that all the
shock relevant parameters are the function of the plasma pa-
rameters such as α, lz, ωci, σ and V0.

To investigate the stability of a small perturbation around
the exact solution given in Eq. (17), we consider a perturbed
solution in the form of φ1(ς) = Φ(ς) + εΦ1, where ε is a
real small parameter. Then following the approach given in
Mamun and Shukla (2002), Sultana et al. (2012) via the sub-
stitution of φ1 in Eq. (16), and after linearizing with respect
to Φ1, we obtain a differential equation in the form

B

L2

d2Φ1

dς2
− C

L

dΦ1

dς
+ Φ1(AΦ − V ) = 0. (18)

The general solution of Eq. (18) is an exponential function in
the form exp(λς), and it is easy to show that the parameter
λ admits the following condition

λ = CL ± √
C2L2 − 4BL2(AΦ − V )

2B
. (19)

Due to the behavior of the parameter λ the shock structure
can take oscillatory or monotonic behavior. An imaginary
value of the parameter λ leads to an oscillatory behavior,
whereas for the real value of λ, the perturbation around the
exact solution represents an exponentially behavior. Now,
substituting Φ obtained from (17) into Eq. (19) we see that
the parameter λ take always real values. Thus, in the 1st
case the present model supports excitation of the monotonic
shock structures, which are unstable with respect to an ex-
ternal perturbation.

2nd case: Weakly dispersive case (high values of ωci )
It is shown that in the 2nd situation the effect of dispersion
is almost negligible compared to that of dissipation (Fig. 1),
that this is a dominate effect in the present model. Thus, we
proceed by neglecting the dispersion coefficient in Eq. (16).
The latter reduces to

A

2
[φ1]2 − V φ1 = C

L

dφ1

dς
. (20)

This equation is analytically solvable and exhibits a mono-
tonic shock wave solution in the following form

φ1(ξ, τ ) = Φw

[
1 − tanh

(
ξ − V τ

Lw

)]
, (21)

where Φw = V/A and Lw = 2C/V represent the amplitude
and the width of the shock waves, respectively. In a particu-
lar case, according to Fig. 2a, when shock wave propagates
more obliquely, the dispersion coefficient increases and thus
for large values of θ we cannot neglect it. This is similar
to the propagation of the shock wave from a non-dispersive
zone (small θ ) to a dispersive one (large θ ). The behav-
ior of shock solution (21) through such propagation (from
non-dispersive to dispersive zone), has been investigated in
Sultana et al. (2012). Similarly, we substitute Eq. (21) into
Eq. (16) and obtain the following expression

− BV 3

2AC2
tanh

(
ξ − V τ

Lw

)[
tanh2

(
ξ − V τ

Lw

)
− 1

]
= 0, (22)

To preserve the stability of the DIA shock waves (which
are stable in the non-dispersive zone) in the dispersive zone,
the condition (22) must be fulfilled. For an arbitrary ς , the
above condition can be satisfied for BV 3/2AC2 � 1. This
means that in the presence of weak dispersion or strong
dissipation a shock structure preserve its stability through
the propagation in the dispersive zone. We can obtain a θ -
dependent form from Eq. (22), which determines the essen-
tial condition for the monotonic or oscillating shock profile
when it propagates through the dispersive zone. The condi-
tion is

C

V 3/2
�

√√√√√√
1 + 1−l2z

ω2
ci

g◦

−2f + 6l4z

V 4
0
g◦ − 4b4(1 − f )

. (23)
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Fig. 3 Variation of the nonlinear coefficient as a function of nonther-
mal parameter α, for different values of obliqueness.

It is seen from Figs. 1 that the dispersion term is neg-
ligible in comparison with the dissipation term, and there-
fore in this case the solution (21) satisfies Eq. (16). But in
Fig. 2a, when shock wave propagates more obliquely, the
dispersion term will be comparable with dissipation term.
This is equivalent to a fact that the wave is propagating from
a non-dispersive zone to a dispersive one. In this case we
consider a stable shock profile (21) for θ � 1 and employ
the above condition (23) to check the stability of shock pro-
file in the dispersive zone (θ → 25). Figure 2b shows the
behavior of C/V 3/2 as a function of θ , for the parameters
similar to Fig. 2a (the blue triangles). The threshold curve
for the oscillatory shock profiles (the red line) is depicted in
Fig. 2b where the right hand side of Eq. (23) is used. It can
be seen that for all the values of θ , all the blue triangles lay
below the threshold curve, and thus the condition (23) is not
satisfied. This means that for this typical plasma parameters
(which have been used in Fig. 2) when the shock structure
propagates more obliquely (from non-dispersive zone to the
dispersive zone) the shock structure may be shows an os-
cillatory behavior. Therefore, only in this special case the
DIA shock wave shows an oscillatory behavior and in the
other cases the behavior of shock structures are monotonic.
A similar treatment has been reported by Mamun and Shukla
(2002) DIA shock waves in unmagnetized dusty plasma.

To investigate the influence of the obliqueness, dust
charge fluctuations, and nonthermal electron distribution on
the basic properties of DIA shock waves, we have numeri-
cally analyzed the shock solution. The typical dusty plasma
parameters (Mamun and Shukla 2002), viz. Zd0 = 103, rd =
1–6 µm, σ = 0.05–0.1 have been chosen so that the non-
adiabatic condition ωpd/νch 
= 0 is fulfilled.

To trace the effect of nonthermal parameter α on the
shock profile, we have shown variation of the nonlinear co-
efficient with α in Fig. 3. We see that as we increase the non-
thermal parameter α, the nonlinear coefficient decreases and

Fig. 4 The behavior of DIA shock profile as a function of oblique-
ness θ , for (a) α = 0.1, and (b) α = 0.3 with ωci = 0.5

tends to zero at a certain critical value αcrit = 0.118. This
means that the present plasma model supports existence of
both compressive and rarefactive shock structures. It turns
out that the shock profile depends significantly on the non-
thermal parameter. Samanta et al. (2007) reported a similar
kind of result for the DA solitary waves in a magnetized
dusty plasma with nonthermal ions. The obliqueness do not
affects the critical value of the nonthermal parameter αcrit.

Figure 4 shows the effect of obliqueness (θ ) on the shock
structures for the compressive shock structure (Fig. 4a) with
α = 0.1 and for the rarefactive shock structures (Fig. 4b)
with α = 0.3. It can be seen that as we increase θ , the height
(thickness) of both the compressive and rarefactive shock
waves increases (decreases). Thus obliqueness makes the
shock structures more spiky. This is identical to that ob-
served by Zhang and Xue (2005) for the DA shock wave in a
magnetized dusty plasma. Mamun (1998) has shown a simi-
lar result for the study of obliquely propagating DA solitary
waves in a magnetized dusty plasma with nonthermal ions.
Recently, Tribeche and Bacha (2012) investigated the DA
shock waves in a charge variable magnetized dusty plasma
with superthermal electrons and reported a similar kind of
effect of the obliqueness on the DA shock structures.

The dependency of the DIA shock profiles on nonther-
mal electron is investigated in Fig. 5 for the compressive
(Fig. 5a) and rarefactive (Fig. 5b) profiles. It can be seen
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Fig. 5 The behavior of (a) compressive and (b) rarefactive DIA shock
profile as a function of nonthermal parameter α, with lz = 0.95 and
ωci = 0.5

that deviations of electrons from thermodynamics equilib-
rium, via an increase in the nonthermal parameter α, leads
to an increase (decrease) in the shock amplitude of compres-
sive (rarefactive) profile.

5 Discussion

The present investigation describe the formation and ba-
sis properties of small but finite amplitude compressive
and rarefactive DIA shock waves in a magnetized dusty
plasma whose constituents are charge fluctuating (negatively
charged) static dust, inertial ions, and nonthermal electrons.
The reductive perturbation technique has been employed to
derive the KdV-Burgers equation. The latter has been then
analyzed analytically and numerically. It is shown that the
dust charge fluctuation is a source of dissipation, and is re-
sponsible for the formation of the DIA shock structures.
It is found that the nonthermal index α modifies all the
nonlinear, dispersion, and damping coefficients of the KdV-
Burgers equation. An increase in the nonthermal parameter
α, induces a decrease of the nonlinearity coefficient, as it
tends to zero at a critical value αcrit = 0.118. This means
that nonthermal plasma supports the existence of compres-
sive and rarefactive shock structures. The dispersion coeffi-

cient is shown to be dependent upon the magnitude of the
external magnetic field B0, while the nonlinear and dissipa-
tion coefficients are independent of B0. We have also found
that the amplitude (width) of the DIA shock waves increases
(decreases) with the increase the obliqueness θ . It appears
appropriate here to add a comment that the reductive per-
turbation technique restricts the validity region of our inves-
tigation to the small but finite amplitudes limit. Thus, the
present investigation is only valid for the small angles θ . We
note that when θ → 90◦, the width tends to zero and am-
plitude tends to infinity. It is likely that for large angles the
assumption that the waves are electrostatic in nature is no
longer valid one, and one should look for fully electromag-
netic structures.

It is more appropriate to compare our results to those
of Mamun and Shukla (2002) where thermal (Maxwell–
Boltzmann) electrons have been used for space dusty plasma
parameters. Mamun and Shukla (2002) reported the exis-
tence of only compressive solitary DIA waves. The present
model, due to the nonthermal electron distribution, supports
compressive as well as rarefactive DIA shock waves. Simi-
larly, they found only monotonic DIA shock waves. On the
other hand, Berbri and Tribeche (2009) extended the work
of Mamun and Shukla (2002) to the situation in which elec-
trons satisfy a nonthermal distribution in the presence of ion
streaming velocity. They also reported formation of com-
pressive as well as rarefactive DIA shock waves with mono-
tonic behavior for 0.22 < α < 1. We found that the basic
properties of the DIA shock waves have been significantly
modified in the presence of external magnetic field and non-
thermal electron distribution. We expect that the present in-
vestigation should be useful for understanding the localized
electrostatic disturbances in magnetized space dusty plasma.
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