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Abstract A spatially homogeneous Bianchi type-VI0 space-
time is considered in the frame work of f (R,T ) gravity
proposed by Harko et al. (Phys. Rev. D 84:024020, 2011)
when the source for energy momentum tensor is a bulk vis-
cous fluid containing one dimensional cosmic strings. Ex-
act solutions of the field equations are obtained both in the
absence and in the presence of cosmic strings under some
specific plausible physical conditions. Some physical and
kinematical properties of the model are, also, studied.

Keywords f (R,T ) gravity · Bulk viscous model cosmic
strings · Bianchi type-VI0 model

1 Introduction

Several astronomical observations indicate that the observ-
able universe is undergoing a phase of accelerated expansion
(Reiss et al. 1998; Perlmutter et al. 1998, 2003; de Bernardis
et al. 2000) and this expansion of the universe is driven
by an exotic energy with large negative pressure which is
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known as dark energy. In spite of the all observational ev-
idence, dark energy is still a challenging problem in theo-
retical physics. The data indicates that the universe is spa-
tially flat and is dominated by 76 % dark energy, 24 % by
other matter (20 % dark matter and 4 % other cosmic mat-
ter). Thus dark energy has become important in modern cos-
mology and there has been a considerable interest in cosmo-
logical models with dark energy. A nice review of dark en-
ergy and dark energy models is presented by Mishra and Sa-
hoo (2013). There are two major approaches to address this
problem of cosmic acceleration either by introducing a dark
energy component in the universe and study its dynamics
or by interpreting as a failure of general relativity and con-
sider modifying Einstein’s theory of gravitation termed as
’modified gravity approach’. Among the various modifica-
tions of Einstein’s theory f (R) gravity (Caroll et al. 2004) is
treated most suitable due to cosmologically important f (R)

models. In this theory, a more general action is chosen in
which standard Einstein–Hilbert action is replaced by an
arbitrary function of Ricci Scalar R, i.e. f (R) so that this
modified theory may explain the late time acceleration of
the universe. It also describes the transition phase of the uni-
verse from deceleration to acceleration (Nojiri and Odintsov
2007). Several aspects of f (R) gravity have been investi-
gated by Capozziello et al. (2007, 2008), Multamaki and
Vilja (2006, 2007), Sharif and Zubair (2010), Azadi et al.
(2008), Nojiri and Odintsov (2003, 2004, 2007) and Chiba
et al. (2007). A comprehensive review of f (R) gravity has
been given by Copeland et al. (2006).

Recently, a further generalization of f (R) gravity theory
has been proposed by Harko et al. (2011). In this, the grav-
itational Lagrangian is given by an arbitrary function of the
Ricci Scalar R and of the trace T of the stress energy tensor
Tij . The field equations of f (R,T ) gravity are derived from
Hilbert–Einstein type variational principle by taking the ac-
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tion

S = 1

16π

∫ [
f (R,T ) + Lm

]√−gd4x (1)

where Lm is the matter Lagrangian density. Now by the vari-
ation of the action S of the gravitational field with respect
to the metric tensor components gij , the field equations of
f (R,T ) gravity with the special choice of

f (R,T ) = R + 2f (T ) (2)

have been obtained as (for a detailed derivation of these field
equations one can refer to Harko et al. 2011).

Rij − 1

2
gijR = 8πTij + 2f ′(T )Tij + [

2pf ′(T ) + f (T )
]
gij

(3)

where the overhead prime denotes derivative with respect to
the argument and Tij is given by

Tij = (ρ + p)uiuj + pgij (4)

ρ and p being energy density and isotropic pressure respec-
tively.

It is well known that the present day universe is satisfac-
torily described by homogenous and isotropic models given
by FRW line element. But, we cannot expect the universe
in its early stages to have these properties. Hence the mod-
els with anisotropic background are suitable to describe the
early stages of the universe. Therefore, Bianchi type models
which are spatially homogenous and anisotropic have been
widely studied in the frame work of general relativity and in
alternative or modified theories of gravitation in the search
for a realistic picture of the universe in its early stages. In
particular, Barrow (1984) has pointed out that Bianchi type-
VI0 universe gives a better explanation of some of the cos-
mological problems like primordial helium abundance and
they also isotropize in a special sense.

Strings are line like structures which arise due to spon-
taneous symmetry breaking during phase transition in the
early universe. Massive strings serve as seeds for the large
structures like galaxies and cluster of galaxies in the uni-
verse. Several important aspects of strings both in gen-
eral relativity and in modified theories of gravitation have
been investigated in Bianchi type space times by Stachel
(1980), Letelier (1983), Vilenkin et al. (1987), Banerjee
et al. (1990), Reddy (2003a, 2003b), Katore and Rane
(2006), Sahoo (2008) and Tripathy et al. (2009)

Cosmological models with bulk viscosity have gained
importance in recent years. Bulk viscosity contributes neg-
ative pressure term giving rise to an effective total negative
pressure stimulating repulsive gravity which over comes at-
tractive gravity of matter and gives an impetus for rapid

expansion of the universe. It is well known that in several
circumstances during cosmic evolution viscosity could arise
and lead to an effective mechanism of entropy production
(Misner 1968; Ellis and Sachs 1979; Hu 1983) Bianchi type
bulk viscous cosmological models play a vital role in the
discussion of early stages of evolution of the universe when
galaxies were formed (Ellis and Sachs 1971). Also, Murphy
(1973) and Heller and Klimek (1975) have shown that the
big bang singularity can be avoided by the introduction of
bulk viscosity. The importance of bulk viscosity in the cos-
mological models is also discussed clearly by Mohanty and
Mishra (2001). Barrow (1986), Pavon et al. (1991), Martens
(1995), Lima et al. (1993), Mohanty and Pradhan (1992) are
some of the authors who have investigated bulk viscous cos-
mological models in general relativity. Also Johri (1994),
Pimental (1994), Banerjee and Beesham (1996), Singh et al.
(1997) have discussed bulk viscous models in Brans and
Dicke (1961) theory of gravitation.

The study of spatially homogenous and anisotropic
Bianchi models in the presence of bulk viscous fluid with
one dimensional cosmic strings is attracting more and more
attention in view of the fact that these models help in under-
standing the realistic picture of a universe immediately after
the big bang. Naidu et al. (2012) studied LRS Bianchi type-
II bulk viscous cosmic string model in Saez and Ballester
(1986) scalar–tensor theory while Reddy et al. (2013a,
2013b) have investigated the same universe in f (R,T ) the-
ory of gravity and in scale covariant theory of gravitation
proposed by Canuto et al. (1977). Also, Reddy et al. (2013c)
discussed Kaluza-Klein universe with bulk viscous cosmic
strings in Saez-Ballester theory while the same has been
studied by Naidu et al. (2013a) in Brans-Dicke theory and
by Reddy et al. (2013d) in f (R,T ) gravity. Subsequently
Kiran and Reddy (2013) established the non-existence of
Bianchi type-III bulk viscous string cosmological model in
f (R,T ) gravity. Very Recently, Naidu et al. (2013b) pre-
sented Bianchi type-V bulk viscous string model in f (R,T )

gravity while Reddy et al. (2013e) have obtained the same in
Saez-Ballester theory. Also, Vidya Sagar et al. (2013) have
studied Bianchi type-III bulk viscous String model in Saez-
Ballester theory.

Inspired by the above discussion and investigations, we
discuss the dynamics of anisotropic Bianchi type-VI0 model
in the presence of bulk viscous fluid with one dimensional
cosmic strings. In Sect. 2, we present the anisotropic Bianchi
type-VI0 model and formulate the dynamical field equa-
tions, in f (R,T ) gravity. Section 3 deals with some exact
solutions of the field equations and the models. In Sect. 4 we
discuss the physical properties of the models and we sum-
marize the results.
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2 Metric and the field equations

Spatially homogenous and anisotropic Bianchi type-VI0

metric is given by

ds2 = dt2 − A2(t)dx2 − e2xB2(t)dy2 − e−2xC2(t)dz2 (5)

where the scale factors A,B and C are functions of cosmic
time t only

We assume the universe is filled with bulk viscous fluid
with one dimensional cosmic strings. The combined energy
momentum tensor for this matter source can be taken in the
form

Tij = (ρ + p)uiuj + pgij − λxixj (6)

and

p = p − 3ζH (7)

where ρ is the energy density of the fluid, ζ(t) is the co-
efficient of bulk viscosity, 3ζH is usually known as bulk
viscous pressure, H is the Hubble’s parameter and λ is the
string tension density. Also ui = δi

4 is a four velocity which
satisfies

giju
iuj = −xixj = −1, uixi = 0 (8)

Here we consider ρ,p and λ as functions of cosmic time t

only.
By adopting co-moving coordinates the field equations

(3), for the metric (5) with the help of Eqs. (6)–(8) for the
particular choice of the function (Harko et al. 2011) given
by

f (T ) = μ(t) (9)

can be written explicitly as

B̈

B
+ C̈

C
+ ḂĊ

BC
+ 1

A2
= p(8π + 7μ) − λ(8π + 3μ) − μρ

(10)

Ä

A
+ C̈

C
+ ȦĊ

AC
− 1

A2
= p(8π + 7μ) − μρ − μλ (11)

Ä

A
+ B̈

B
+ ȦḂ

AB
− 1

A2
= p(8π + 7μ) − μρ − μλ (12)

ȦḂ

AB
+ ḂĊ

BC
+ ĊȦ

CA
− 1

A2
= −ρ(8π + 3μ) + 5μp − μλ

(13)
(

Ḃ

B
− Ċ

C

)
= 0 (14)

where an overhead dot denotes differentiation with respect
to time t .

Equation (14) yields

B = kC (15)

where k is a constant of integration which can be chosen as
unity without any loss of generality so that we have

B = C (16)

Now, using Eq. (16), the field equations (10)–(13) reduce
to the following independent equations:

2
B̈

B
+ Ḃ2

B2
+ 1

A2
= p(8π + 7μ) − λ(8π + 3μ) − μρ (17)

Ä

A
+ B̈

B
+ ȦḂ

AB
− 1

A2
= p(8π + 7μ) − μ(ρ + λ) (18)

2
ȦḂ

AB
+ Ḃ2

B2
− 1

A2
= −ρ(8π + 3μ) + 5μp − μλ (19)

Now we define some parameters for the Bianchi type-VI0

model which are important in cosmological observations.
The average scale factor and spatial volume are defined as

a = (
AB2)1/3

, V = a3 = AB2 (20)

The anisotropic parameters of the expansion is expressed
in terms of mean and directional Hubble parameter as

� = 1

3

3∑
i=1

(
Hi − H

H

)2

(21)

where

H = ȧ

a
= 1

3

(
Ȧ

A
+ 2Ḃ

B

)
(22)

is the mean Hubble parameter and Hi (i = 1,2,3) repre-
sent the directional Hubble parameters in the directions of
x, y and z axes respectively. For � = 0, the space-time is
isotropic. The physical parameters expansion scalar θ , shear
scalar σ 2 are defined as follows:

θ = ui
;i = Ȧ

A
+ 2Ḃ

B
= 3H (23)

σ 2 = 1

2
σijσ

ij = 1

3

[
Ȧ

A
− Ḃ

B

]2

(24)

The model approaches to isotropy continuously if V →
∞,� → 0 and ρ > 0 (for comoving fluid to be realistic)
as t → ∞ (Collins and Hawking 1973; Akarsu and Kilinc
2010; Sharif and Zubair 2010).

3 Solutions of the field equations and the models

The field equations (17)–(19) are a system of three inde-
pendent non-linear differential equations in five unknowns
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A,B,p,ρ and λ. Hence we obtain the following physically
important cosmological models.

Case(i) λ = 0, bulk viscous model
In this particular case the field equations (17)–(19) reduce

to

B̈

B
− Ä

A
+ Ḃ2

B2
− ȦḂ

AB
+ 2

A2
= 0 (25)

2
ȦḂ

AB
+ Ḃ2

B2
− 1

A2
= −ρ(8π + 3μ) + 5μp (26)

Now Eqs. (25) and (26) are two independent equations in
four unknowns A,B,p and ρ Hence to find a determinate
solution we use the following physically plausible condi-
tions:

(i) The Shear Scalar σ 2 is proportional to scalar expansion
θ so that we can take (Collins et al. 1980)

A = Bm (27)

where m �= 0 is a constant.
(ii) For a bratropic fluid, the combined effect of the proper

pressure and the bulk viscous pressure can be expressed
as

p = p − 3ζH = ερ (28)

where

ε = ε0 − β (0 ≤ ε0 ≤ 1), p = ε0ρ (29)

and ε0 and β are constants

Now, using (27) in (25) we get the metric coefficients as

A = m(K1t + K2), B = C = [
m(K1t + K2)

] 1
m (30)

where K1 and K2 are constants of integration and

K2
1 = 1

m − 1
(31)

Now choosing K2 = 0, the metric (5) with the help of (30)
and (31) can, now, be written as

ds2 = −dt2 +
(

m2

m − 1

)
t2dx2

+
(

m2

m − 1
t2

)1/m[
e2xdy2 + e−2xdz2] (32)

Equation (32) represents Bianchi type-VI0 bulk viscous cos-
mological model in f (R,T ) gravity with the following
physical and kinematical parameters which are important in
the discussion of cosmological models.

Spatial volume in the model is

V = (mt)
2+m
m

(m − 1)
m−2
2m

(33)

Hubble parameter is

H =
(

m + 2

m

)
1

t
(34)

Scalar expansion is

θ = 3H = 3(m + 2)

m

1

t
(35)

The shear scalar is

σ 2 = (m − 1)2

3m2t2
(36)

The average anisotropic parameter is

� = 4

3

(
2m + 1

m + 2

)2

(37)

The deceleration parameter in the model is

q = −aä

ȧ2
= − 2

2 + m
(38)

The energy density in the model is

ρ = ε0

m2t2

[
m + 2

8π + μ(3 − 5ε)

]
(39)

The isotropic pressure in the model is

p = ε0

m2t2

[
m + 2

8π + μ(3 − 5ε)

]
(40)

Bulk viscosity in the model is

ζ =
[

ε0 − ε

3mt[8π + μ(3 − 5ε)]
]

(41)

From the above results, we observe that the spatial vol-
ume of the universe (32) increases with the growth of cos-
mic time which shows that we have an expanding model.
At the initial epoch of the universe i.e. at t = 0, the Hubble
parameter, the scalar expansion, the shear scalar, the pres-
sure, energy density and the bulk viscosity assume infinitely
large values where as they all vanish as t → ∞. Also, it
can be seen that the deceleration parameter q < 0. If q < 0,
the model accelerates and when q > 0, it decelerates in the
standard way. Here the model accelerates which is in accor-
dance with the present day scenario of accelerating universe.
Also, since the bulk viscosity decreases with time we get,
ultimately, inflationary model. It is worthwhile to mention,
here, that the universe model does not approach to isotropy
as the anisotropic parameter � is constant.
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Case(ii) Bulk viscous string model (λ �= 0)
In this particular case, the field equations (17)–(19) re-

duce to

B̈

B
− Ä

A
+ Ḃ2

B2
− ȦḂ

AB
+ 2

A2
= −(8π + 2μ)λ (42)

2
ȦḂ

AB
+ Ḃ2

B2
− 1

A2
= −ρ(8π + 3μ) + 5μμ − μλ (43)

which are a system of two independent equations in five un-
knowns A,B,p,ρ and λ. Hence to get a determinate solu-
tion of the equations we use, in addition to the conditions (i)
and (ii) of case (i), the special law of variation for Hubble’s
parameter proposed by Berman (1983) which yields con-
stant deceleration parameter models of the universe defined
by

q = −aä

ȧ2
= constant (44)

which yields, on integration,

a = (ct + d)
1

1+q (45)

where c �= 0 and d are constants of integration. This equa-
tion implies that the condition for expansion of the universe
is 1 + q > 0. Using Eqs. (27) and (45) in Eq. (20), we obtain
expression for the metric coefficients as

A = (ct +d)
3m

(m+2)(1+q) , B = C = (ct +d)
3

(1+q)(m+2) (46)

where c �= 0 and d are constants of integration. After a
suitable choice of coordinates and constants (i.e. choosing
c = 1, d = o) the metric (5) can, now, be written as

ds2 = −dt2 + t
6m

(1+q)(m+2) dx2

+ t
6

(1+q)(m+2)
[
e2xdy2 + e−2xdz2] (47)

which represents a bulk viscous string cosmological model
in f (R,T ) gravity with the following physical and kinemat-
ical parameters.

String tension density in the model is

(8π + 2μ)λ = 1

t2

[
9(m − 1)(m + 2)

(1 + q)2(m + 2)2

+ 3(1 − m)

(1 + q)(m + 2)
− 2t

− 6m
(1+q)(m+2)

]
(48)

Energy density is

[
8π + μ(3 − 5ε)

]
ρ = t

− 6m
(1+q)(m+2)

− 9(2m+1)

(1+q)2(m+2)2 t2 (49)

The isotropic pressure is

[
8π + μ(3 − 5ε)

]
p

= ε0

[
t
− 6m

(1+q)(m+2) − 9(2m + 1)

(1 + q)2(m + 2)2t2

]
(50)

The coefficient of bulk viscosity is

3
[
8π + μ(3 − 5ε)

]
ζ

= (ε0 − ε)(1 + q)t

[
t
− 6m

(1+q)(m+2) − 9(2m + 1)

(1 + q)2(m + 2)2t2

]

(51)

Spatial volume is

V = t3/1+q (52)

The scalar expansion is

θ = 3

(1 + q)t
(53)

The Hubble’s parameter is

H = 1

(1 + q)t
(54)

The average anisotropy parameter is

� = 2(m − 1)2

(m + 2)2
(55)

Shear scalar is

σ 2 = 3(m − 1)2

[(1 + q)(m + 2)t]2
(56)

From the above results, we can see that at the initial epoch
spatial volume vanishes and increases as t → ∞. The ex-
pansion and shear scalars diverge at t = 0 and decrease with
the increase in cosmic time. Thus the universe starts evolv-
ing with zero volume at the initial epoch with infinite rate
of expansion and expansion rate slows down for later times
of the universe. Also, the Hubble parameter, energy density
and isotropic pressure decrease in later times of the universe
and approach to zero as t → ∞. The coefficient of bulk vis-
cosity decreases with time and we, ultimately, get inflation-
ary model. However, the average anisotropic parameter �

remains constant throughout the evolution of the universe
and it becomes zero when m = 1. Therefore when m = 1
and α = 0,� = 0 and σ 2 = 0, so that the universe becomes
isotropic and shear free. It can be seen from Eq. (54) that
Hubble parameter decreases with increase in time. However,
the model will accelerate in finite time since the deceleration
parameter q < 0 which is in accordance with the present day
scenario of accelerated expansion of the universe. It is inter-
esting to note that in both the models the bulk viscosity de-
creases with time so that we obtain, ultimately, inflationary
models. Also the model does not admit initial singularity
which supports the result of Murphy (1973) that the intro-
duction of bulk viscosity avoids an initial singularity.
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4 Summary and conclusions

In this paper, we have studied a spatially homogeneous and
anisotropic Bianchi-VI0 cosmological model in the pres-
ence of bulk viscous cosmic string source. We have pre-
sented cosmological models corresponding to bulk viscous
fluid and bulk viscous cosmic strings. Exact solutions to
field equations are obtained by using the conditions that ex-
pansion scalar is proportional to shear scalar and barotropic
equation of state for the pressure and density. We have also
used the special law of variation for Hubble`s parameter pro-
posed by Berman (1983). It is observed that the bulk viscous
model is expanding and accelerating in accordance with the
present day observations.
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