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Abstract In this work a new family of relativistic models of
electrically charged compact star has been obtained by solv-
ing Einstein–Maxwell field equations with preferred form of
one of the metric potentials and a suitable form of electric
charge distribution function. The resulting equation of state
(EOS) has been calculated. The relativistic stellar structure
for matter distribution obtained in this work may reasonably
models an electrically charged compact star whose energy
density associated with the electric fields is on the same or-
der of magnitude as the energy density of fluid matter itself
(e.g. electrically charged bare strange stars). Based on the
analytic model developed in the present work, the values of
the relevant physical quantities have been calculated by as-
suming the estimated masses and radii of some well known
strange star candidates like X-ray pulsar Her X-1, millisec-
ond X-ray pulsar SAX J 1808.4-3658, and 4U 1820-30.

Keywords General relativity · Einstein–Maxwell ·
Reissner–Nordström · Relativistic Astrophysics ·
Schwarzschild coordinates · Charged fluid sphere ·
Compact star · Relativistic star · Equation of state

1 Introduction

The possibility cannot be discarded that the collapse of
spherical distribution of matter to a point singularity may
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be avoided if the matter acquires large amounts of elec-
tric charge during the gravitational collapse or during an
accretion process onto a compact object. The gravitational
attraction is then balanced by electrostatic repulsion due
to the same charge and by the pressure gradient (Beken-
stein 1971). Hence the study of the gravitational behav-
ior of stellar charged object has been remaining as one of
the main interests to the researchers (de Felice et al. 1995;
Ghezzi 2005).

The analysis and the determination of maximum mass of
very compact astrophysical objects has been a key issue in
relativistic astrophysics for the last few decades. There are
several astrophysical objects as well as cosmological phases
where one needs to consider equation of state (EOS) of mat-
ter involving energy densities of the order of 1015 g cm−3

or higher, exceeding the normal nuclear matter density. Re-
cent observations show that the estimated mass and radius
of several compact objects associated with X-ray pulsar Her
X-1, X-ray burster 4U 1820-30, millisecond pulsar SAX J
1808.4-3658, X-ray sources 4U 1728-34 are not compati-
ble with the standard neutron star models (Dey et al. 1998;
Li et al. 1999, for a recent review see Weber 2005).

The maximum mass of strange star is almost the same but
the radius is less than as that of neutron stars, with higher
compactness parameter (Weber et al. 2012). Compact ob-
jects like neutron stars or strange stars may be classified
on the basis of mass–radius (M–R) relation. The approxi-
mate (M–R) relations of strange stars follow M ∝ R3 are in
surprising contrast to that of neutron stars (M ∝ R−3), and
strange stars can have much small radii.

The EOS of compact objects such as neutron/strange
stars are not well understood at least near the core region.
Apart from the differences in the EOS, an important distinc-
tion between quark stars and conventional neutron stars is
that the quark stars are self-bound by the strong interaction,
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whereas neutron stars are bound by gravity. This allows a
quark star to rotate faster than would be possible for a neu-
tron star.

There are also striking differences between the surfaces
of bare strange stars and that of normal matter neutron stars.
The very properties of the quark surface, e.g., strong bound-
ing of particles, abrupt density change from 4×1014 g cm−3

to ∼0 in ∼1 fm. Another distinction between a strange
star and a normal neutron star is by the surface electric
fields associated with it. Strange stars, if bare, possess ultra-
strong electric fields on their surfaces, which, for ordinary
strange matter, is around 1018 V/cm (Alcock et al. 1986) and
1020 V/cm for color superconducting strange matter (Usov
2004; Usov et al. 2005; Negreiros et al. 2010). The influ-
ence of energy densities of ultra-high electric fields on the
bulk properties of compact stars was explored by Ray et al.
(2003), Malheiro et al. (2004). Weber et al. (2007, 2009,
2010), Negreiros et al. (2009) also have shown that electric
fields of this magnitude, generated by charge distributions
located near the surfaces of strange quark stars, increase
the stellar mass by up to 30 % depending on the strength
of the electric field. In contrast to the strange star the sur-
face electric field in the case of neutron star is absent. These
features may allow one to observationally distinguish quark
stars from neutron stars.

Due to the absence of reliable information about equation
of state of matter content in the interior of such compact
stars, insight into the structure can be obtained by reference
to applicable analytic solutions to the equation of relativistic
stellar structure (Lattimer and Prakash 2001).

Two traditional approaches usually followed to obtain a
realistic charged stellar model. One can start with an ex-
plicit EOS and suitable form of electric charge distribu-
tion and then integrating the equation of hydrostatic equilib-
rium, also known charged generalization of Oppenheimer-
Volkoff equation (Oppenheimer and Volkoff 1939; Beken-
stein 1971) which is obtained by requiring the conserva-
tion of mass-energy, as that determines the global struc-
ture of electrically charged stars. The integration starts at
the center of the star with a prescribed central pressure.
The integrations are iterated until the pressure decreases to
zero, indicating the surface of the star has been reached
(Some recent studies include de Felice et al. 1995; Anni-
nos and Rothman 2001; Ray et al. 2003; Siffert et al. 2007;
Negreiros and Malheiro 2007; Negreiros et al. 2009). Such
input equations of state do not normally allow for closed-
form solutions.

In the second approach one can have insight into such
structures by solving the Einstein’s gravitational field equa-
tions. Einstein-Maxwell equations represent an under-de-
termined system of nonlinear ordinary differential equations
of the second order. For the special case of a static isotropic
perfect fluid, the field equations of Einstein’s theory can be

reduced to a set of four coupled ordinary differential equa-
tions in five unknowns and arrive to exact solutions by mak-
ing an ad hoc assumption for one of the metric functions
or for the energy density. The EOS can be computed from
the resulting metric. The first exact solutions of Einstein’s
equation in this approach known to have astrophysical sig-
nificance may have been discovered by Tolman (1939). Out
of the different types of exact solutions obtained by Tol-
man, model V and VI are not considered physically viable,
as they correspond to singular solutions (infinite values of
central density and pressure). Except these models, all other
solutions are known as regular solutions (finite and positive
pressure and density at the origin). Models IV and VII are
found physically viable in the study of compact astrophys-
ical stellar objects. Out of numerous works done following
Tolman’s approach some include Nduka (1976, 1978), Mak
and Fung (1995), Patel et al. (1997), Harko and Mak (2000),
Sharma et al. (2001), Gupta and Kumar (2005a, 2005b,
2005c), Hansraj and Maharaj (2006), Maharaj and Komathi-
raj (2007), Komathiraj and Maharaj (2007), Thirukkanesh
and Maharaj (2009), Bijalwan (2012), Takisa and Maharaj
(2013). As might be expected with Tolman’s method, un-
physical pressure-density configurations are found more fre-
quently than physical ones (Delgaty and Lake 1998).

In recent years, however, several authors follow an al-
ternative approach to present analytical stellar models of
electrically neutral/charged compact strange stars within the
framework of linear equation of state (EOS) based on MIT
bag model together with a particular choice of metric po-
tentials (Mak and Harko 2004; Hansraj and Maharaj 2006;
Sharma and Maharaj 2007; Esculpi and Alomá 2010; Takisa
and Maharaj 2012; Maharaj and Takisa 2012; Kalam et al.
2013; Rahaman et al. 2012).

Some works also studied the viability of nonlinear EOS
based on suitable geometry for the description in the interior
3-spaces of such compact star (Vaidya and Tikekar 1982;
Tikekar 1990). This approach leads to physically viable and
easily tractable models of superdense stars in equilibrium.
Tikekar and Jotania (2005) have shown that the ansatz sug-
gested by Tikekar and Thomas (1998) has these features and
the general three-parameter solution based on it also leads
to physically plausible relativistic models of strange stars.
Several aspects of physical relevance and the maximum
mass of class of compact star models, based on Vaidya–
Tikekar ansatz, have been investigated by Sharma et al.
(2006) (also see Jotania and Tikekar 2006 for the relevant
references). The charged analogues of Vaidya–Tikekar mod-
els have been derived by Patel and Koppar (1987), Koppar
et al. (1991). Astrophysical consequences of the charged
analogues of Vaidya–Tikekar solutions in modeling elec-
trically charged compact star have been discussed by Patel
and Pandya (1986), Gupta and Kumar (2011), Bijalwan and
Gupta (2011), Chattopadhyay et al. (2012).
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The known analytic solutions of Einstein’s gravitational
field equations fall into two classes. The first class describes
“normal” matter neutron stars for which density vanishes at
the surface where the pressure vanishes. The Tolman VII
solution with vanishing surface energy density falls into this
class and hence is useful approximation to realistic neutron
star models. And the class that describes stars for which den-
sity is finite, about 2–3 times the normal nuclear matter satu-
ration density, at the surface where the pressure vanishes in-
cludes Tolman IV solution. This type of solutions is useful
approximation to realistic models of “self-bound” strange
quark star (Lattimer 2004).

In some recent studies (see Fatema and Murad 2013;
Murad and Fatema 2013, hereafter paper I & II, for refer-
ences) the ansatz for the metric function

eν(r) = BN

(
1 + Cr2)N (1.1)

where N is a positive integer and BN is a constant, known
as Generalized Tolman IV solution, are found useful to con-
struct stellar models of second class. The solutions corre-
sponding to different values of N represent the charged ana-
logues of Generalized Tolman IV model (for instance, see
Table 1 of paper II for references).

The principal motivation of this work is to develop
some new analytical relativistic stellar models by obtaining
closed-form solutions of Einstein-Maxwell field equations
with the help of Eq. (1.1) as a continuation of (paper I & II).
The solutions obtained in this work are expected to provide
simplified but easy to mathematically analyzed charged stel-
lar models with nonzero high surface density which could
reasonably model electrically charged strange quark stars,
by satisfying applicable physical boundary conditions.

2 New interior solutions

2.1 Einstein–Maxwell field equations

As in paper I and II we consider a static, spherically
symmetric stellar object whose interior metric is given in
Schwarzschild coordinates xμ = (t, r, θ,φ)1

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) (2.1)

With the help of the following transformation x = Cr2 and
Eq. (1.1), the equation of “pressure isotropy” yields the fol-
lowing solution (paper I),

e−λ = x

(1 + x)N−2[1 + (1 + N)x] 2
1+N

1Throughout the work we will use c = G = 1 except in the tables and
figures.

×
∫

(1 + x)N−1[1 + (1 + N)x] (1−N)
(1+N)

x2

×
(

2Cq2

x
− 1

)
dx

+ AN

x

(1 + x)N−2[1 + (1 + N)x] 2
1+N

(2.2)

where AN is a constant of integration may be determined by
imposing appropriate physical boundary conditions.

2.2 Model of electric charge distribution

To perform the integration in (2.2) a variety of choices has
been made by various authors previously (for instance, see
Table 1 of paper II). In this work we consider the following
model of electric charge distribution:

2Cq2

x2
= Kxn+1(1 + x)l+1−N

[
1 + (1 + N)x

]m+ N−1
N+1 (2.3)

where l,m are nonnegative integers, n > 0,K ≥ 0
The assumption on the charge distribution function,

2Cq2/x2, for which the electric field intensity vanishes at
the center and remains continuous and bounded in the in-
terior of the star, is physically reasonable and useful in the
study of the gravitational behavior of charged stellar objects
(paper I, II).

3 Some new charged stellar models

As Lattimer and Prakash (2005) pointed out that the choice
of metric potential (1.1) with N = 2 yields the most rele-
vant analytical EOS. Because the velocity of sound for this
case was found vs ≈ 1/

√
3 throughout most of the star, sim-

ilar to the behavior of strange quark matter and hence the
choice N = 2 may be more relevant in modeling electrically
charged strange stars than by other N . The complete closed-
form solution of the Einstein–Maxwell system, for the elec-
tric charge distribution model (2.3) is then given by,

eν = B2(1 + x)2 (3.1a)

e−λ = K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)
xn+i+j+2

(1 + 3x)
2
3

+ 1 + A2
x

(1 + 3x)
2
3

(3.1b)

2Cq2

x2
= Kxn+1(1 + x)l+1−N

[
1 + (1 + N)x

]m+ N−1
N+1

(3.1c)
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κ

C
P = K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× xn+i+j+1(1 + 5x)

(1 + 3x)
2
3 (1 + x)

+ K

2
xn+1(1 + x)l−1(1 + 3x)m+ 1

3

+ 4

(1 + x)
+ A2

(1 + 5x)

(1 + 3x)
2
3 (1 + x)

(3.1d)

κ

C
ρ = −K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)
xn+i+j+1

× [(2n + 2i + 2j + 5) + (6n + 6i + 6j + 11)x]
(1 + 3x)

5
3

− K

2
xn+1(1 + x)l−1(1 + 3x)m+ 1

3

− A2
(3 + 5x)

(1 + 3x)
5
3

(3.1e)

Equations (3.1d)–(3.1e) constitute the analytical EOS in
parametric form.

4 Elementary criteria for physical acceptability

To test the physical relevance of the obtained solutions and
obtain physically meaningful distribution of charged matter
some physical criteria have been adopted in this work [pa-
per I],

4.1 Elementary conditions to construct regular and
physically acceptable relativistic charged stellar models

(i) The solution should be free from physical and geo-
metric singularities i.e. eν > 0 and eλ > 0 in the range
0 ≤ r ≤ R

(ii) The pressure and energy density are positive, P ≥ 0
and ρ ≥ 0 throughout the fluid sphere.

(iii) Pressure P should be zero at boundary r = R i.e.
P(r = R) = 0. R is the radius of the fluid sphere.

(iv) In order to have an equilibrium configuration the mat-
ter must be stable against the collapse of local regions.
This requires, Le Chatelier’s principle also known as
local or microscopic stability condition, that P must
be a monotonically non-decreasing function of ρ,

dP

dρ
≥ 0

(v) The causality condition
√

dP/dρ ≤ 1 must be satis-
fied throughout the fluid sphere.

(vi) ρ ≥ P . This is known as dominant energy condition.
(vii) The trace of the energy momentum tensor must be

nonnegative, i.e., ρ − 3P ≥ 0, 0 ≤ r ≤ R.
(viii) Pressure and energy density, should maximum at the

centre and monotonically decreasing from the center
to the pressure free interface (i.e. boundary of the fluid
sphere). Mathematically,

(
dP

dr

)

r=0
,

(
dρ

dr

)

r=0
= 0 and

(
d2P

dr2

)

r=0
,

(
d2ρ

dr2

)

r=0
< 0

So that

dP

dr
,
dρ

dr
< 0; 0 < r ≤ R

(ix) The ratio of pressure to energy density P/ρ should be
monotonically decreasing with increasing r i.e.

d

dr

(
P

ρ

)

r=0
= 0,

d2

dr2

(
P

ρ

)

r=0
< 0

(x) In addition to (iv) and (v), the velocity of sound should
be monotonically decreasing with increasing radius,
i.e.

d

dr

(
dP

dρ

)
< 0, 0 < r ≤ R

The condition will be satisfied if d
dr

( dP
dρ

)r=0 < 0
and (ix) are found satisfied.

(xi) The interior solution should match continuously with
an exterior Reissner–Nordström solution,

ds2 =
(

1 − 2M

r
+ Q2

r2

)
dt2

−
(

1 − 2M

r
+ Q2

r2

)−1

dr2

− r2(dθ2 + sin2 θdφ2)

This requires the continuity of the metric coeffi-
cients at the surface,

eν(r) = e−λ(r) = 1 − 2M

r
+ Q2

r2
; r ≥ R

(xii) Electric field intensity E, such that E(0) = 0, is taken
to be monotonically increasing with increasing radius
i.e.,

dE

dr
> 0; 0 < r ≤ R
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4.2 Determination of the arbitrary constant A2

To specify A2 the boundary condition (iii) of previous sub-
section can be utilized,

A2 = −K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× Xn+i+j+1 − K

2

Xn+1(1 + X)l(1 + 3X)m+1

(1 + 5X)

− 4(1 + 3X)
2
3

(1 + 5X)

where X = CR2.

4.3 Total charge to radius ratio Q/R

Using X = CR2 in Eq. (2.3) we obtain the square of ratio
Q/R,

Q2

R2
= K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3 (4.1)

4.4 Total mass to radius ratio M/R

By matching the metric coefficients obtained in (3.1a)–
(3.1b) with the exterior Reissner–Nordström metric at the
boundary and with reference to the Eq. (4.1) one can estab-
lish the equation of compactness,

2M

R
= −K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× Xn+i+j+2

(1 + 3X)
2
3

+ K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3

− A2
X

(1 + 3X)
2
3

(4.2)

4.5 Total charge to mass ratio Q/M

Dividing (4.1) by (4.2) we obtain the charge to mass ratio
Q/M ,

Q

M
= Q/R

M/R
= 2

√
K
2 Xn+2(1 + X)l−1(1 + 3X)m+ 1

3

[−K
∑l

i=0
∑m

j=0
3j

(n+i+j+1)

(
l
i

)(
m
j

)
Xn+i+j+2

(1+3X)
2
3

+ K
2 Xn+2(1 + X)l−1(1 + 3X)m+ 1

3 − A2
X

(1+3X)
2
3
]

(4.3)

4.6 Determination of the constant B2

The constant B2 can be specified by the boundary condition
eν(R) = e−λ(R), which gives,

B2 = (1 + X)−2

[

K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× Xn+i+j+2

(1 + 3X)
2
3

+ 1 + A2
X

(1 + 3X)
2
3

]

4.7 Central and surface redshifts

The central and surface redshift of the charged fluid sphere
are given by

zc =
√

e−ν(0) − 1 = 1√
BN

− 1,

zs =
√

e−ν(R) − 1 = (1 + X)− N
2√

BN

− 1

5 Construction of physically realistic fluid spheres

5.1 Pressure and density gradients

Differentiating the pressure and density equations (3.1d)
and (3.1e) respectively with respect to the auxiliary variable
x one obtains the pressure and density gradients for the an-
alytical EOS,

κ

C

dP

dx
= K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× xn+i+j Pn,i(x)

(1 + 3x)
5
3 (1 + x)2

+ K

2
xn(1 + x)l−2(1 + 3x)m− 2

3

× [
(n + 1) + (4n + 3m + l + 4)x
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× +(3n + 3m + 3l + 1)x2]

− 4

(1 + x)2
+ 2A2

(1 − 5x2)

(1 + 3x)
5
3 (1 + x)2

κ

C

dρ

dx
= −K

l∑

l=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× xn+i+j Qn,i(x)

(1 + 3x)
8
3

− K

2
xn(1 + x)l−2(1 + x)m− 2

3
[
(n + 1)

+ (4n + 3m + l + 4)x + (3n + 3m + 3l + 1)x2]

+ 10A2
(1 + x)

(1 + 3x)
8
3

where,

Pn,i = (n + i + j + 1) + (9n + 9i + 9j + 11)x

+ 23(n + i + j + 1)x2 + 5(3n + 3i + 3j + 1)x3

Qn,i = (n + i + j + 1)(2n + 2i + 2j + 5) + (12n2 + 24ni

+ 24nj + 12i2 + 24ij + 12j2 + 34n + 34i

+ 34j + 12)x + (3n + 3i + 3j + 1)(6n + 6i

+ 6j + 11)x2

Once the ratios M/R and Q/R obtained then the total
mass and total charge of the fluid sphere may be calculated
by providing the values of one of the following physical
quantities,

(i) For a given radius

(a) Total Mass

M = R

2

[

−K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× Xn+i+j+2

(1 + 3X)
2
3

+ K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3

− A2
X

(1 + 3X)
2
3

]

(5.1)

where the mass M is in km.2

(b) Total Charge

Q = R

√
K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3 (5.2)

2The following physical constants, in their conventional values, have
been used for the numerical calculation: c = 1 = 2.997 × 108 m s−1,
G = 1 = 6.674 × 10−11 N m2 kg−2, M� = 1.486 km = 2 × 1030 kg.

where the mass Q is in km.3

(c) Central density

ρc = −3XA2

κR2
(5.3)

where the radius R is in unit of m and the central density
in kg m−3.

(d) Surface density

ρs = 1

R2κ

[

−K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

×
(

l

i

)(
m

j

)
Xn+i+j+2

× [(2n + 2i + 2j + 5) + (6n + 6i + 6j + 11)X]
(1 + 3X)

5
3

− K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3

× −A2X
(3 + 5X)

(1 + 3X)
5
3

]

(5.4)

where the radius R is in unit of m and the surface density
in kg m−3.

(ii) For a given surface density
The radius of the charged fluid sphere can be calculated

by the following eqn.

R2 = 1

ρsκ

[

−K

l∑

i=0

m∑

j=0

3j

(n + i + j + 1)

(
l

i

)(
m

j

)

× Xn+i+j+2

× [(2n + 2i + 2j + 5) + (6n + 6i + 6j + 11)X]
(1 + 3X)

5
3

− K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3

− A2X
(3 + 5X)

(1 + 3X)
5
3

]

(5.5)

And the total mass, total charge, and the central density
can be calculated by Eqs. (5.1)–(5.3).

(iii) For a given central density
Radius

R =
√

−3XA2

κρc

(5.6)

3The following conversion Q × 1000 × c2/

√
G

4π∈0
may be used to ob-

tain amount of charge in coulomb (C) if Q is given in km.
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where the central energy density ρc is given in the unit
kg m−3 and the radius in m.4 The total mass, total charge,
and the surface density then can be calculated by Eqs. (5.1),
(5.2), and (5.4) respectively.

(iv) For a given central pressure
The radius can be calculated by the following equation

R =
√

(4 + A2)X

κPc

(5.7)

where the central pressure Pc is given in the unit N m−2.5

The total mass, total charge, the central and surface den-
sities then can be calculated by Eqs. (5.1)–(5.3), and (5.4)
respectively.

(v) For a given electric charge
The radius can be calculated by the use of following

equation

R = Q/

√
K

2
Xn+2(1 + X)l−1(1 + 3X)m+ 1

3 (5.8)

where the charge Q is given in the unit km. Then the total
mass, total charge, the central and surface densities then can
be calculated by Eqs. (5.1)–(5.3), and (5.4) respectively.

5.2 Physical analysis of the models

A fluid sphere satisfying the inequalities (i), (ii) and (viii)–
(x) of Sect. 4.1 will be termed as well-behaved. For a par-
ticular set (l,m,n) the values of K , X have been put to the
Eqs. (5.1)–(5.8) for which the fluid distribution satisfies the
inequalities of Sect. 4.1 are reported in Table 1.

Case I: l = 1, m = 0, n = 0.2
For this particular set (l,m,n) the range of values, K ≥

0.805,0 ≤ X ≤ 0.498 are obtained for which the fluid dis-
tribution are well-behaved. Numerical investigation shows
that X decreases as K increases. And hence the maximum
value of compactness parameter is obtained (2M/R)max =
0.739068, using (4.1), at Kmin = 0.805, Xmax = 0.498.
Corresponding to the values of K and X the total charge
to radius ratio, and total charge to total mass ratio are
found to be Q/R = 0.34 and Q/M = 0.93 using Eqs. (4.2)
and (4.3) respectively. For a chosen stellar central den-
sity ρc as parameter the radius, R, of the fluid sphere can
be calculated by using Eq. (5.6). In particular we choose
ρc = 3.4 × 1015 g cm−3 and we obtain R = 7.91 km.
Then the total mass and other physical quantities are cal-
culated as M = 1.96M�, Pc = 318.6319 MeV fm−3, ρs =
8.26 × 1014 g cm−3, Q = 3.15 × 1020C. A lower choice

4MeV fm−3 = 1.7827 × 1012 g cm−3.
5N m−2 = 10 dyne cm−2 and MeV fm−3 = 1.6022 × 1033 dyne cm−2.

of the stellar central density ρc = 1.65 × 1015 g cm−3 the
total mass and other physical quantities are calculated as
M = 2.82M�, R = 11.36 km, Pc = 154.63 MeV fm−3,
ρs = 4.009 × 1014 g cm−3, Q = 4.52 × 1020C.6

Case II: l = 0,m = 1, n = 0.2
Corresponding to the values Kmin = 0.68,Xmax = 0.408

the compactness parameter, total charge to radius ratio, and
total charge to total mass ratio are found to be (2M/R)max =
0.679556, Q/R = 0.31, Q/M = 0.92. Choosing stellar
central density ρc = 3.4 × 1015 g cm−3 as parameter the
mass and other physical values comes out to be M =
1.66M�, R = 7.28 km, Pc = 287.86 MeV fm−3, ρs =
9.83 × 1014 g cm−3, Q = 2.64 × 1020C. Choosing stel-
lar central density ρc = 1.39 × 1015 g cm−3as parameter
the mass and other physical values comes out to be M =
2.60M�, R = 11.39 km, Pc = 117.68 MeV fm−3, ρs =
4.02 × 1014 g cm−3, Q = 4.13 × 1020 C.

Case III: l = 1,m = 1, n = 0.2

Kmin = 0.58, Xmax = 0.368

2M/R = 0.646764, Q/R = 0.29, Q/M = 0.91

Choosing stellar central density ρc = 3.4 × 1015 g cm−3

we obtain a charged fluid sphere with total mass, ra-
dius, central pressure, surface density and total charge
M = 1.51M�, R = 6.95 km, Pc = 277.60 MeV fm−3,
ρs = 10.80 × 1014 g cm−3, Q = 2.38 × 1020C respectively.
Choosing stellar central density ρc = 1.26×1015 g cm−3 we
obtain a charged fluid sphere with total mass, radius, central
pressure, surface density and total charge M = 2.48M�,
R = 11.43 km, Pc = 102.87 MeV fm−3, ρs = 4.002 ×
1014 g cm−3, Q = 3.9 × 1020 C respectively.

Though it is difficult to obtain an explicit analytical re-
lation among n,Kmin,Xmax but for some particular choices
of (l,m,n) the variations are plotted in Figs. 1–2a, 2b. The
mass and other physical quantities of compact charged fluid
spheres, can be obtained by specifying one of the following:
(i) radius, (ii) central density, (iii) surface density, (iv) cen-
tral pressure, (v) electric charge as parameter. We particu-
larly choose central density (Table 2). Numerical investiga-
tions show that for each particular choice of l,m the max-
imum value of the compactness parameter, 2M/R, is ob-
tained at n = 0.2 (Fig. 3).

6The choice of stellar central density ρc < 1.65 × 1015 g cm−3 into the
Eq. (5.6), Eq. (5.4) yields ρs < 4 × 1014 g cm−3. The surface density
of bare strange stars is equal to that of SQM at zero pressure. Hence, a
fluid sphere with stellar surface density ρs < 4 × 1014 g cm−3 may not
serve as a realistic model of strange star (paper I).
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Table 1 Some values of parameters (l,m,n,K,X) for which well-behaved charge fluid sphere can be generated

l m (n,Kmin,Xmax) A2 B2 ( P

c2ρ
)c

√
( dP

c2dρ
)c

2M (km)
R (km)

Q (km)
R (km)

Q (km)
M (km)

zc zs

1 0 (0.1, 0.789, 0.487) −2.72108 0.172763 0.15767 0.589067 0.735543 0.34 0.93 1.405881 0.617943

1 0 (0.2, 0.805, 0.498) −2.66399 0.168754 0.167168 0.591735 0.739068 0.34 0.93 1.434296 0.625031

1 0 (0.3, 0.857, 0.496) −2.6339 0.16985 0.172886 0.593183 0.735619 0.34 0.92 1.426426 0.621943

2 0 (0.1, 0.637, 0.432) −2.7409 0.198171 0.153126 0.586165 0.696875 0.32 0.92 1.244361 0.568688

2 0 (0.2, 0.659, 0.44) −2.6939 0.19462 0.161606 0.590323 0.699627 0.32 0.92 1.266764 0.574142

2 0 (0.3, 0.72, 0.436) −2.67505 0.196817 0.165101 0.591211 0.695386 0.31 0.91 1.254079 0.569693

3 0 (0.1, 0.534, 0.355) −2.76044 0.247084 0.149681 0.587286 0.617279 0.26 0.86 1.011766 0.484698

3 0 (0.2, 0.567, 0.393) −2.73364 0.219991 0.154416 0.588494 0.664503 0.30 0.91 1.132052 0.530547

3 0 (0.3, 0.634, 0.388) −2.72247 0.223118 0.156417 0.589004 0.659669 0.30 0.91 1.117056 0.525257

4 0 (0.1, 0.471, 0.371) −2.80722 0.246671 0.141632 0.585226 0.631666 0.28 0.90 1.013451 0.490342

4 0 (0.2, 0.503, 0.355) −2.77511 0.24424 0.147128 0.586633 0.633196 0.28 0.90 1.023445 0.493318

4 0 (0.3, 0.572, 0.35) −2.76827 0.247834 0.148314 0.586936 0.628241 0.28 0.90 1.008722 0.487942

5 0 (0.1, 0.746, 0.248) −3.0568 0.336872 0.102853 0.575201 0.533593 0.24 0.90 0.72293 0.380553

5 0 (0.2, 0.456, 0.324) −2.81607 0.267055 0.140139 0.584843 0.605492 0.27 0.89 0.935084 0.461544

5 0 (0.3, 0.526, 0.319) −2.81211 0.271146 0.140807 0.585015 0.600204 0.26 0.89 0.92043 0.455974

0 1 (0.1, 0.67, 0.394) −2.81250 0.218302 0.14074 0.584998 0.671978 0.31 0.92 1.140282 0.535353

0 1 (0.2, 0.68, 0.408) −2.75279 0.21084 0.151024 0.587628 0.679556 0.31 0.92 1.177829 0.546753

0 1 (0.3, 0.738, 0.407) −2.72813 0.211667 0.155401 0.588745 0.677105 0.31 0.91 1.17357 0.544826

0 2 (0.1, 0.49, 0.308) −2.90115 0.279106 0.126254 0.581271 0.595209 0.27 0.90 0.892847 0.447131

0 2 (0.2, 0.516, 0.316) −2.85966 0.272824 0.132923 0.58299 0.601194 0.27 0.90 0.914514 0.454798

0 3 (0.1, 0.385, 0.255) −2.97982 0.33 0.114121 0.578132 0.538053 0.24 0.89 0.740778 0.387074

0 3 (0.2, 0.42, 0.259) −2.95081 0.326004 0.11852 0.579272 0.541299 0.24 0.89 0.751413 0.391114

0 3 (0.3, 0.485, 0.257) −2.94174 0.328326 0.119913 0.579632 0.538195 0.24 0.87 0.745208 0.388391

0 4 (0.1, 0.322, 0.217) −3.05266 0.375593 0.103444 0.575355 0.490667 0.21 0.88 0.631704 0.340759

0 4 (0.2, 0.358, 0.22) −3.02891 0.37191 0.106869 0.576247 0.493614 0.21 0.88 0.639762 0.344067

0 4 (0.3, 0.428, 0.217) −3.02664 0.375977 0.107199 0.576333 0.489122 0.21 0.87 0.630869 0.340073

0 5 (0.1, 0.278, 0.189) −3.11511 0.415638 0.094687 0.573067 0.451199 0.19 0.87 0.55111 0.30455

0 5 (0.2, 0.317, 0.191) −3.09771 0.412708 0.097093 0.573697 0.453631 0.19 0.87 0.556606 0.306974

0 5 (0.3, 0.381, 0.189) −3.09396 0.415937 0.097614 0.573833 0.450082 0.19 0.86 0.550551 0.30408

1 1 (0.1, 0.549, 0.362) −2.82307 0.238655 0.138965 0.584542 0.643896 0.29 0.91 1.046983 0.502925

1 1 (0.2, 0.58, 0.368) −2.78371 0.235078 0.145644 0.586254 0.646764 0.29 0.91 1.062501 0.507676

1 1 (0.3, 0.653, 0.362) −2.77229 0.239319 0.147618 0.586758 0.640128 0.29 0.90 1.044145 0.500841

Fig. 1 K–X relation for
particular l, m, and n



Astrophys Space Sci (2014) 350:293–305 301

Table 2 Maximum mass and the various physical variables of charged fluid spheres for given central density

l m (n,Kmin,Xmax) ρc,15

2 2.5 3.4

M(M�) R (km) ρs,14 Q20

1 0 (0.1, 0.789, 0.487) 2.55 2.28 1.96 10.31 9.22 7.91 4.84 6.05 8.23 4.10 3.67 3.14

1 0 (0.2, 0.805, 0.498) 2.56 2.29 1.96 10.32 9.23 7.91 4.86 6.07 8.26 4.11 3.67 3.15

1 0 (0.3, 0.857, 0.496) 2.53 2.26 1.94 10.24 9.16 7.85 4.95 6.19 8.42 4.04 3.61 3.09

2 0 (0.1, 0.637, 0.432) 2.28 2.02 1.75 9.75 8.72 7.48 5.48 6.85 9.31 3.63 3.25 2.78

2 0 (0.2, 0.659, 0.44) 2.29 2.05 1.76 9.75 8.72 7.48 5.49 6.87 9.34 3.63 3.25 2.79

2 0 (0.3, 0.72, 0.436) 2.26 2.02 1.74 9.67 8.65 7.42 5.60 7.00 9.52 3.57 3.19 2.74

3 0 (0.1, 0.534, 0.355) 1.84 1.64 1.41 8.87 7.93 6.80 6.84 8.55 11.63 2.74 2.45 2.10

3 0 (0.2, 0.567, 0.393) 2.07 1.85 1.59 9.29 8.30 7.12 6.08 7.60 10.34 3.25 2.91 2.49

3 0 (0.3, 0.634, 0.388) 2.04 1.82 1.57 9.21 8.23 7.06 6.19 7.75 10.54 3.19 2.86 2.45

4 0 (0.1, 0.471, 0.351) 1.89 1.69 1.45 8.89 7.95 6.82 6.60 8.25 11.22 2.95 2.64 2.26

4 0 (0.2, 0.503, 0.355) 1.89 1.69 1.45 8.89 7.95 6.82 6.63 8.28 11.26 2.94 2.63 2.26

4 0 (0.3, 0.572, 0.35) 1.86 1.66 1.43 8.82 7.89 6.76 6.74 8.43 11.46 2.89 2.58 2.22

5 0 (0.1, 0.746, 0.248) 1.40 1.25 1.07 7.80 6.98 5.98 8.18 10.23 13.91 2.18 1.95 1.67

5 0 (0.2, 0.456, 0.324) 1.74 1.56 1.33 8.56 7.65 6.56 7.12 8.90 12.10 2.69 2.41 2.06

5 0 (0.3, 0.526, 0.319) 1.71 1.53 1.31 8.48 7.59 6.51 7.24 9.05 12.31 2.64 2.36 2.02

0 1 (0.2, 0.680, 0.408) 2.17 1.94 1.66 9.49 8.49 7.28 5.78 7.23 9.83 3.44 3.08 2.64

0 2 (0.2, 0.549, 0.362) 1.72 1.54 1.32 8.51 7.62 6.53 7.13 8.92 12.13 2.68 2.40 2.06

1 1 (0.1, 0.549, 0.362) 1.96 1.75 1.50 9.06 8.10 6.94 6.34 7.92 10.7 3.09 2.76 2.37

1 1 (0.2, 0..58, 0.368) 1.97 1.76 1.51 9.07 8.11 6.95 6.35 7.95 10.8 3.09 2.77 2.38

1 1 (0.3, 0.653, 0.362) 1.93 1.73 1.48 8.97 8.03 6.88 6.50 8.12 11.0 3.01 2.70 2.32

Fig. 2a K vs. Xmax(l = 1,m = 0) for 0 < n < 0.34. The maximum
value Xmax = 0.498, is obtained at K = 0.805

The behaviors of various physical variables in the inte-
rior of the star have been investigated and found regular and
well behaved throughout the fluid sphere. To reduce the size
of the paper the behaviors are not plotted in figures. From
the Fig. 4 it can be observed that the speed of sound al-
ways remain less than the speed of light and the condition
of causality is satisfied. Moreover, the speed of sound found
vs ≈ 1/

√
3 throughout most of the fluid sphere, similar to

the behavior of strange quark matter. As in paper I and II
the choice of electric charge distribution function (2.3) is

Fig. 2b n vs. Xmax(l = 1,m = 0) for 0.788 < K < 0.887. The maxi-
mum value Xmax = 0.498, is obtained at n = 0.2

physically reasonable in the study of gravitational behavior
of electrically charged compact stellar objects as it is zero
at the stellar center and monotonically increasing towards
the pressure free interface (boundary). The analytical EOS
obtained in Eqs. (3.1d) and (3.1e) is plotted for particular
values of constant parameters in Fig. 5.

The compactness parameter (mass to radius ratio) of
charged fluid spheres are found to satisfy the lower limit of
the allowable mass–to–radius ratio (M/R) for charged fluid
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Fig. 3 n vs. 2M/R(l = 0,m = 1) for 0 < n < 0.4. The maximum
value of 2M/R is obtained at n = 0.2

Fig. 4 Behaviors of speed of sound
√

dP/c2dρ for the fluid spheres
generated by the same input as in Fig. 1

Fig. 5 Pressure-density profile for a fluid sphere generated by the in-
put (l, m, n, K , X) = (1, 0, 0.2, 0.805, 0.498) with given central density
ρc = 3.4 × 1015 g cm−3

sphere (Böhmer and Harko 2007)

3

2

Q2

R2

(1 + Q2

18R2 )

(1 + Q2

12R2 )
≤ 2M

R

Fig. 6 Mass-radius relation for fluid spheres generated by the inputs
(l, m, n, K) = (1, 1, 0.2, 0.58) and 0 ≤ X ≤ 0.368 with surface
density ρs = 4.6 × 1014 g cm−3

And the mass of the charged fluid sphere also satisfies the
Andréasson inequality (Andréasson 2009),

√
M ≤

√
R

3
+

√
R

9
+ Q2

3R

The mass–radius relationship of electrically charged
fluid spheres for the particular set of values (l,m,n,K) =
(1,1,0.2,0.58) and a sequence of spheres described by
0 ≤ X ≤ 0.368 is plotted in Fig. 6. The behavior of Fig. 6
reproduces that of other quark star models (e.g., Negreiros
et al. 2009).

6 An application of the model for some strange star
candidates

Based on the analytic model developed so far, to get an es-
timate of the range of various physical parameters, let us
now consider some potential strange star candidates like Her
X-1, SAX J 1808.4-3658, 4U 1820-30. Using the mass and
radius reported in Gangopadhyay et al. (2013) for each of
these pulsars we have calculated the values of the relevant
physical quantities and the values are reported in Table 3.

7 Concluding remarks

In this work we have studied a new family of analytical rel-
ativistic stellar models which may be considered as charged
analogues of Generalized Tolman IV model. In contrast, so
far the literature known to present authors, the charged ana-
logues of Tolman V-VI models obtained by Pant and Sah
(1979), Patiño and Rago (1989), Singh et al. (1995), Ray
and Das (2002, 2004, 2007), Ray et al. (2007) are not phys-
ically viable in the description of compact astrophysical ob-
jects as the infinite values of central density and pressure.
However, the charged analogues of Tolman IV and VII mod-
els obtained by Maurya and Gupta (2011), Kiess (2012), as
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Table 3 Physical values of energy density and pressure for different strange stars

Strange star candidate (n, l,m,K,X) M (M�) R (km) Pc,35 ρc,15 ρs,14

PSR J1614-2230 (0.2, 1, 0, 0.807, 0.369) 1.97 9.69 2.49 1.69 5.98

(0.2, 0, 1, 0.684, 0.348) 2.22 1.63 5.80

(0.2, 1, 1, 0.586, 0.338) 2.11 1.61 5.69

PSR J1903+327 (0.2, 1, 0, 0.817, 0.291) 1.667 9.438 1.97 1.44 6.27

(0.2, 0, 1, 0.681, 0.282) 1.85 1.41 6.16

(0.2, 1, 1, 0.593, 0.277) 1.79 1.40 6.09

Vela X-1 (0.2, 1, 0, 0.808, 0.316) 1.77 9.56 2.13 1.51 6.16

(0.2, 0, 1, 0.686, 0.303) 1.96 1.47 6.01

(0.2, 1, 1, 0.591, 0.297) 1.89 1.46 5.94

4U 1538-52 (0.2, 1, 0, 0.835, 0.133) 0.87 7.866 0.92 1.07 7.12

(0.2, 0, 1, 0.698, 0.133) 0.92 1.07 7.12

(0.2, 1, 1, 0.601, 0.133) 0.93 1.07 7.12

LMC X-4 (0.2, 1, 0, 0.840, 0.162) 1.04 8.301 1.12 1.13 6.96

(0.2, 0, 1, 0.695, 0.162) 1.12 1.13 6.95

(0.2, 1, 1, 0.601, 0.162) 1.13 1.13 6.95

SMC X-4 (0.2, 1, 0, 0.820, 0.210) 1.29 8.831 1.45 1.24 6.72

(0.2, 0, 1, 0.695, 0.207) 1.41 1.23 6.66

(0.2, 1, 1, 0.603, 0.206) 1.40 1.23 6.63

Cen X-3 (0.2, 1, 0, 0.815, 0.252) 1.49 9.178 1.72 1.34 6.50

(0.2, 0, 1, 0.691, 0.246) 1.64 1.32 6.40

(0.2, 1, 1, 0.606, 0.243) 1.61 1.32 6.35

Her X-1 (0.2, 1, 0, 0.834, 0.123) 0.85 8.1 0.77 0.94 6.74

(0.2, 0, 1, 0.701, 0.123) 0.77 0.94 6.47

(0.2, 1, 1, 0.605, 0.123) 0.77 0.94 6.47

4U 1820-30 (0.2, 1, 0, 0.813, 0.283) 1.58 9.1 2.04 1.51 6.73

(0.2, 0, 1, 0.695, 0.271) 1.88 1.47 6.59

(0.2, 1, 1, 0.600, 0.270) 1.86 1.47 6.54

4U1608-52 (0.2, 1, 0, 0.810, 0.309) 1.74 9.528 2.08 1.49 6.19

(0.2, 0, 1, 0.695, 0.296) 1.91 1.45 6.04

(0.2, 1, 1, 0.601, 0.290) 1.91 1.45 6.04

SAX J1808.4-3658 (0.2, 1, 0, 0.832, 0.138) 0.9 7.951 0.95 1.08 7.09

(0.2, 0, 1, 0.698, 0.138) 0.96 1.08 7.09

(0.2, 1, 1, 0.599, 0.138) 0.96 1.08 7.09

EXO 1785-248 (0.2, 1, 0, 0.837, 0.144) 1.3 8.849 0.82 0.91 5.83

(0.2, 0, 1, 0.698, 0.144) 0.82 0.90 5.83

(0.2, 1, 1, 0.600, 0.144) 0.83 0.90 5.83

the neutral ones, exhibit the physical features required for
the construction of physically realizable relativistic compact
stellar structure.

Numerical studies show that the solutions obtained in
this work can generate charged fluid spheres with maximum
mass 2.83M�, radius 11.37 km, central and surface densi-
ties on the order 1.65 × 1015 g cm−3 and 4 × 1014 g cm−3

respectively, with electric charge on the order 1020 C. More-

over, the speed of sound is obtained ∼1/
√

3 at the cen-
ter and remains almost the same throughout most of the
fluid sphere. An analytical stellar model with such physi-
cal features is most likely to present an approximated re-
alistic model of strange quark star. And hence the an-
alytical EOS given by our models could play a signif-
icant role, besides the usual linear EOS based on phe-
nomenological MIT bag model, in the description of in-
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ternal structure of electrically charged bare strange quark
stars.

Acknowledgements Authors are very much grateful to the anony-
mous reviewers for their useful suggestions and constructive com-
ments.

References

Alcock, C., Farhi, E., Olinto, A.: Strange stars. Astrophys. J. 310, 261
(1986). doi:10.1086/164679

Andréasson, H.: Commun. Math. Phys. 288, 715 (2009). doi:10.1007/
s00220-008-0690-3

Anninos, P., Rothman, T.: Phys. Rev. D 65, 024003 (2001). doi:10.
1103/PhysRevD.65.024003

Bekenstein, J.D.: Phys. Rev. D 4, 2185 (1971). doi:10.1103/
PhysRevD.4.2185

Bijalwan, N.: Int. J. Theor. Phys. 51, 23 (2012). doi:10.1007/
s10773-011-0874-z

Bijalwan, N., Gupta, Y.K.: Astrophys. Space Sci. 334, 293 (2011).
doi:10.1007/s10509-011-0735-5

Böhmer, C.G., Harko, T.: Gen. Relativ. Gravit. 39, 757 (2007). doi:10.
1007/s10714-007-0417-3

Chattopadhyay, P.K., Deb, R., Paul, B.C.: Int. J. Mod. Phys. D 21,
1250071 (2012). doi:10.1142/S021827181250071X

de Felice, F., et al.: Mon. Not. R. Astron. Soc. 277, L17 (1995)
Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998).

doi:10.1016/S0010-4655(98)00130-1
Dey, M., et al.: Phys. Lett. B 438, 123 (1998). doi:10.1016/S0370-

2693(98)00935-6
Esculpi, M., Alomá, E.: Eur. Phys. J. C 67, 521 (2010).

doi:10.1140/epjc/s10052-010-1273-y
Fatema, S., Murad, H.M.: Int. J. Theor. Phys. 52, 2508 (2013). doi:10.

1007/s10773-013-1538-y
Gangopadhyay, T., et al.: (2013). doi:10.1093/mnras/stt401
Ghezzi, C.R.: Phys. Rev. D 72, 104017 (2005). doi:10.1103/

PhysRevD.72.104017
Gupta, Y.K., Kumar, M.: Gen. Relativ. Gravit. 37, 233 (2005a).

doi:10.1007/s10714-005-0012-4
Gupta, Y.K., Kumar, M.: Gen. Relativ. Gravit. 37, 575 (2005b).

doi:10.1007/s10714-005-0043-x
Gupta, Y.K., Kumar, M.: Astrophys. Space Sci. 299, 43 (2005c).

doi:10.1007/s10509-005-2794-y
Gupta, Y.K., Kumar, J.: Astrophys. Space Sci. 334, 273 (2011).

doi:10.1007/s10509-011-0723-9
Hansraj, S., Maharaj, S.D.: Int. J. Mod. Phys. D 15, 1311 (2006).

doi:10.1142/S0218271806008826
Harko, T., Mak, M.K.: J. Math. Phys. 41, 4752 (2000). doi:10.

1063/1.533375
Jotania, K., Tikekar, R.: Int. J. Mod. Phys. D 15, 1175 (2006).

doi:10.1142/S021827180600884X
Kalam, M., et al.: Int. J. Theor. Phys. 52, 3319 (2013).

doi:10.1007/s10773-013-1629-9
Kiess, T.: Astrophys. Space Sci. 339, 329 (2012). doi:10.1007/

s10509-012-1013-x
Komathiraj, K., Maharaj, S.D.: J. Math. Phys. 48, 042501 (2007).

doi:10.1063/1.2716204
Koppar, S.S., et al.: Acta Phys. Hung. 69, 53 (1991). doi:10.1007/

BF03054133
Lattimer, J.M.: J. Phys. G, Nucl. Part. Phys. 30, S479 (2004). doi:10.

1088/0954-3899/30/1/056
Lattimer, J.M., Prakash, M.: Astrophys. J. 550, 426 (2001). doi:10.

1086/319702

Lattimer, J.M., Prakash, M.: Phys. Rev. Lett. 94, 111101 (2005).
doi:10.1103/PhysRevLett.94.111101

Li, X.-D., et al.: Phys. Rev. Lett. 83, 3776 (1999). doi:10.1103/
PhysRevLett.83.3776

Maharaj, S.D., Komathiraj, K.: Class. Quantum Gravity 24, 4513
(2007). doi:10.1088/0264-9381/24/17/015

Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 44, 1419 (2012).
doi:10.1007/s10714-012-1347-2

Mak, M.K., Fung, P.C.W.: Nuovo Cimento B 110, 897 (1995).
doi:10.1007/BF02722858

Mak, M.K., Harko, T.: Int. J. Mod. Phys. D 13, 149 (2004).
doi:10.1142/S0218271804004451

Malheiro, M., et al.: Int. J. Mod. Phys. D 13, 1375 (2004). doi:10.1142/
S0218271804005560

Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 301 (2011).
doi:10.1007/s10509-011-0736-4

Murad, H.M., Fatema, S.: Int. J. Theor. Phys. 52, 4342 (2013).
doi:10.1007/s10773-013-1752-7

Nduka, A.: Gen. Relativ. Gravit. 7, 493 (1976). doi:10.1007/
BF00766408

Nduka, A.: Acta Phys. Pol. B 9, 569 (1978)
Negreiros, R.P., Malheiro, M.: Int. J. Mod. Phys. D 16, 303 (2007).

doi:10.1142/S0218271807010055
Negreiros, R.P., et al.: Phys. Rev. D 80, 083006 (2009). doi:10.

1103/PhysRevD.80.083006
Negreiros, R.P., et al.: Phys. Rev. D 82, 103010 (2010). doi:10.1103/

PhysRevD.82.103010
Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939). doi:10.

1103/PhysRev.55.374
Pant, D.N., Sah, A.: J. Math. Phys. 20, 2537 (1979). doi:10.

1063/1.524059
Patel, L.K., Koppar, S.S.: Aust. J. Phys. 40, 441 (1987). doi:10.1071/

PH870441
Patel, L.K., Pandya, B.M.: Acta Phys. Hung., Heavy Ion Phys. 60, 57

(1986). doi:10.1007/BF03157418
Patel, L.K., Tikekar, R., Sabu, M.C.: Gen. Relativ. Gravit. 29, 489

(1997). doi:10.1023/A:1018886816863
Patiño, A., Rago, H.: Gen. Relativ. Gravit. 21, 637 (1989). doi:10.

1007/BF00760624
Rahaman, F., et al.: Eur. Phys. J. C 72, 2071 (2012). doi:10.1140/

epjc/s10052-012-2071-5
Ray, S., Das, B.: Astrophys. Space Sci. 282, 635 (2002). doi:10.1023/

A:1021133019415
Ray, S., Das, B.: Mon. Not. R. Astron. Soc. 349, 1331 (2004).

doi:10.1111/j.1365-2966.2004.07602.x
Ray, S., Das, B.: Gravit. Cosmol. 13, 224 (2007)
Ray, S., et al.: Phys. Rev. D 68, 084004 (2003). doi:10.1103/

PhysRevD.68.084004
Ray, S., et al.: Int. J. Mod. Phys. D 16, 1745 (2007). doi:10.1142/

S021827180701105X
Sharma, R., Maharaj, S.D.: Mon. Not. R. Astron. Soc. 375, 1265

(2007). doi:10.1111/j.1365-2966.2006.11355.x
Sharma, R., et al.: Gen. Relativ. Gravit. 33, 999 (2001). doi:10.1023/

A:1010272130226
Sharma, R., et al.: Int. J. Mod. Phys. D 15, 405 (2006). doi:10.1142/

S0218271806008012
Siffert, B.B., et al.: Braz. J. Phys. 37, 609 (2007)
Singh, T., et al.: Lett. Nuovo Cimento 110B, 387 (1995). doi:10.1007/

BF02741446
Takisa, P.M., Maharaj, S.D.: Astrophys. Space Sci. 343, 569 (2012).

doi:10.1007/s10509-012-1271-7
Takisa, P.M., Maharaj, S.D.: Gen. Relativ. Gravit. (2013). doi:10.1007/

s10714-013-1570-5
Thirukkanesh, S., Maharaj, S.D.: Math. Methods Appl. Sci. 32, 684

(2009). doi:10.1002/mma.1060
Tikekar, R.: J. Math. Phys. 31, 2454 (1990). doi:10.1063/1.528851

http://dx.doi.org/10.1086/164679
http://dx.doi.org/10.1007/s00220-008-0690-3
http://dx.doi.org/10.1007/s00220-008-0690-3
http://dx.doi.org/10.1103/PhysRevD.65.024003
http://dx.doi.org/10.1103/PhysRevD.65.024003
http://dx.doi.org/10.1103/PhysRevD.4.2185
http://dx.doi.org/10.1103/PhysRevD.4.2185
http://dx.doi.org/10.1007/s10773-011-0874-z
http://dx.doi.org/10.1007/s10773-011-0874-z
http://dx.doi.org/10.1007/s10509-011-0735-5
http://dx.doi.org/10.1007/s10714-007-0417-3
http://dx.doi.org/10.1007/s10714-007-0417-3
http://dx.doi.org/10.1142/S021827181250071X
http://dx.doi.org/10.1016/S0010-4655(98)00130-1
http://dx.doi.org/10.1016/S0370-2693(98)00935-6
http://dx.doi.org/10.1016/S0370-2693(98)00935-6
http://dx.doi.org/10.1140/epjc/s10052-010-1273-y
http://dx.doi.org/10.1007/s10773-013-1538-y
http://dx.doi.org/10.1007/s10773-013-1538-y
http://dx.doi.org/10.1093/mnras/stt401
http://dx.doi.org/10.1103/PhysRevD.72.104017
http://dx.doi.org/10.1103/PhysRevD.72.104017
http://dx.doi.org/10.1007/s10714-005-0012-4
http://dx.doi.org/10.1007/s10714-005-0043-x
http://dx.doi.org/10.1007/s10509-005-2794-y
http://dx.doi.org/10.1007/s10509-011-0723-9
http://dx.doi.org/10.1142/S0218271806008826
http://dx.doi.org/10.1063/1.533375
http://dx.doi.org/10.1063/1.533375
http://dx.doi.org/10.1142/S021827180600884X
http://dx.doi.org/10.1007/s10773-013-1629-9
http://dx.doi.org/10.1007/s10509-012-1013-x
http://dx.doi.org/10.1007/s10509-012-1013-x
http://dx.doi.org/10.1063/1.2716204
http://dx.doi.org/10.1007/BF03054133
http://dx.doi.org/10.1007/BF03054133
http://dx.doi.org/10.1088/0954-3899/30/1/056
http://dx.doi.org/10.1088/0954-3899/30/1/056
http://dx.doi.org/10.1086/319702
http://dx.doi.org/10.1086/319702
http://dx.doi.org/10.1103/PhysRevLett.94.111101
http://dx.doi.org/10.1103/PhysRevLett.83.3776
http://dx.doi.org/10.1103/PhysRevLett.83.3776
http://dx.doi.org/10.1088/0264-9381/24/17/015
http://dx.doi.org/10.1007/s10714-012-1347-2
http://dx.doi.org/10.1007/BF02722858
http://dx.doi.org/10.1142/S0218271804004451
http://dx.doi.org/10.1142/S0218271804005560
http://dx.doi.org/10.1142/S0218271804005560
http://dx.doi.org/10.1007/s10509-011-0736-4
http://dx.doi.org/10.1007/s10773-013-1752-7
http://dx.doi.org/10.1007/BF00766408
http://dx.doi.org/10.1007/BF00766408
http://dx.doi.org/10.1142/S0218271807010055
http://dx.doi.org/10.1103/PhysRevD.80.083006
http://dx.doi.org/10.1103/PhysRevD.80.083006
http://dx.doi.org/10.1103/PhysRevD.82.103010
http://dx.doi.org/10.1103/PhysRevD.82.103010
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1103/PhysRev.55.374
http://dx.doi.org/10.1063/1.524059
http://dx.doi.org/10.1063/1.524059
http://dx.doi.org/10.1071/PH870441
http://dx.doi.org/10.1071/PH870441
http://dx.doi.org/10.1007/BF03157418
http://dx.doi.org/10.1023/A:1018886816863
http://dx.doi.org/10.1007/BF00760624
http://dx.doi.org/10.1007/BF00760624
http://dx.doi.org/10.1140/epjc/s10052-012-2071-5
http://dx.doi.org/10.1140/epjc/s10052-012-2071-5
http://dx.doi.org/10.1023/A:1021133019415
http://dx.doi.org/10.1023/A:1021133019415
http://dx.doi.org/10.1111/j.1365-2966.2004.07602.x
http://dx.doi.org/10.1103/PhysRevD.68.084004
http://dx.doi.org/10.1103/PhysRevD.68.084004
http://dx.doi.org/10.1142/S021827180701105X
http://dx.doi.org/10.1142/S021827180701105X
http://dx.doi.org/10.1111/j.1365-2966.2006.11355.x
http://dx.doi.org/10.1023/A:1010272130226
http://dx.doi.org/10.1023/A:1010272130226
http://dx.doi.org/10.1142/S0218271806008012
http://dx.doi.org/10.1142/S0218271806008012
http://dx.doi.org/10.1007/BF02741446
http://dx.doi.org/10.1007/BF02741446
http://dx.doi.org/10.1007/s10509-012-1271-7
http://dx.doi.org/10.1007/s10714-013-1570-5
http://dx.doi.org/10.1007/s10714-013-1570-5
http://dx.doi.org/10.1002/mma.1060
http://dx.doi.org/10.1063/1.528851


Astrophys Space Sci (2014) 350:293–305 305

Tikekar, R., Jotania, K.: Int. J. Mod. Phys. D 14, 1037 (2005).
doi:10.1142/S021827180500722X

Tikekar, R., Thomas, V.: Pramana J. Phys. 50, 95 (1998).
doi:10.1007/BF02847521

Tolman, R.C.: Phys. Rev. 55, 364 (1939). doi:10.1103/PhysRev.55.364
Usov, V.V.: Phys. Rev. D, Part. Fields 70, 067301 (2004).

doi:10.1103/PhysRevD.70.067301
Usov, V.V., et al.: Astrophys. J. 620, 915 (2005). doi:10.1086/427074
Vaidya, P.C., Tikekar, R.J.: Astron. Astrophys. 3, 325 (1982)
Weber, F.: Prog. Part. Nucl. Phys. 54, 193 (2005). doi:10.1016/

j.ppnp.2004.07.001
Weber, F., et al.: Int. J. Mod. Phys. E 16, 1165 (2007). doi:10.1142/

S0218301307006599

Weber, F., et al.: Neutron star interiors and the equation of state of
superdense matter. In: Becker, W. (ed.) Neutron Stars and Pulsars.
Astrophysics and Space Science Library, vol. 357, pp. 213–245.
Springer, Berlin (2009)

Weber, F., et al.: Int. J. Mod. Phys. D 19, 1427 (2010). doi:10.1142/
S0218271810017329

Weber, F., et al.: Structure of quark stars. In: van Leeuwen, J. (ed.)
Neutron Stars and Pulsars: Challenges and Opportunities After 80
Years. Proceedings IAU Symposium, vol. 291, pp. 61–66 (2012).
doi:10.1017/S1743921312023174

http://dx.doi.org/10.1142/S021827180500722X
http://dx.doi.org/10.1007/BF02847521
http://dx.doi.org/10.1103/PhysRev.55.364
http://dx.doi.org/10.1103/PhysRevD.70.067301
http://dx.doi.org/10.1086/427074
http://dx.doi.org/10.1016/j.ppnp.2004.07.001
http://dx.doi.org/10.1016/j.ppnp.2004.07.001
http://dx.doi.org/10.1142/S0218301307006599
http://dx.doi.org/10.1142/S0218301307006599
http://dx.doi.org/10.1142/S0218271810017329
http://dx.doi.org/10.1142/S0218271810017329
http://dx.doi.org/10.1017/S1743921312023174

	Some static relativistic compact charged ﬂuid spheres in general relativity
	Abstract
	Introduction
	New interior solutions
	Einstein-Maxwell ﬁeld equations
	Model of electric charge distribution

	Some new charged stellar models
	Elementary criteria for physical acceptability
	Elementary conditions to construct regular and physically acceptable relativistic charged stellar models
	Determination of the arbitrary constant A2
	Total charge to radius ratio Q / R
	Total mass to radius ratio M / R
	Total charge to mass ratio Q / M
	Determination of the constant B2
	Central and surface redshifts

	Construction of physically realistic ﬂuid spheres
	Pressure and density gradients
	Physical analysis of the models

	An application of the model for some strange star candidates
	Concluding remarks
	Acknowledgements
	References


