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Abstract In this paper we have studied a particular class of
exact solutions of Einstein’s gravitational field equations for
spherically symmetric and static perfect fluid distribution in
isotropic coordinates. The Schwarzschild compactness pa-
rameter, GM/c2R, can attain the maximum value 0.1956 up
to which the solution satisfies the elementary tests of physi-
cal relevance. The solution also found to have monotonic de-
creasing adiabatic sound speed from the centre to the bound-
ary of the fluid sphere. A wide range of fluid spheres of dif-
ferent mass and radius for a given compactness is possible.
The maximum mass of the fluid distribution is calculated by
using stellar surface density as parameter. The values of dif-
ferent physical variables obtained for some potential strange
star candidates like Her X-1, 4U 1538–52, LMC X-4, SAX
J1808.4 − 3658 given by our analytical model demonstrate
the astrophysical significance of our class of relativistic stel-
lar models in the study of internal structure of compact star
such as self-bound strange quark star.
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1 Introduction

The search for exact solutions of Einstein’s field equa-
tions with certain geometry that satisfy physical constraints
has been remaining the subject of great interest to the re-
searchers. Such findings are also important in relativistic as-
trophysics because they enable the distribution of matter in
the interior of stellar object to be modeled in terms of simple
algebraic relations. Due to the strong nonlinearity of Ein-
stein’s field equations and the lack of a comprehensive algo-
rithm to generate all solutions, it becomes difficult to obtain
new exact solutions. A well number of exact solutions of
Einstein’s field equations are known to date but not all of
them are physically relevant in the description of relativistic
structure of compact stellar objects. Now there exist a num-
ber of comprehensive collections (Delgaty and Lake 1998;
Stephani et al. 2003) of static, spherically symmetric solu-
tions which provide a useful guide to the literature.

Since the pioneering work of Oppenheimer and Volkoff
(1939) the analysis and determination of maximum mass of
very compact astrophysical objects has been a key issue in
relativistic astrophysics. There are several astrophysical ob-
jects such as normal matter neutron star (bound by grav-
ity) or self-bound strange quark star (bound by the strong
interaction) where one needs to consider equation of state
(EOS) of matter involving energy densities of the order of
1015 g cm−3 or higher, exceeding the normal nuclear mat-
ter density. The strange star with surface energy density
greater than the normal nuclear matter density has maxi-
mum mass almost the same but the radius is less than as that
of neutron stars, with higher compactness parameter (Weber
et al. 2012). Compact objects like neutron stars or strange
stars may be classified on the basis of mass-radius relation
(Haensel et al. 1986). Recent observations show that the es-
timated mass and radius of several compact objects such as
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X-ray pulsar Her X-1 are not compatible with the standard
neutron star models, a strange star model could be more con-
sistent with these objects (Li et al. 1995, Dey et al. 1998, for
a recent review see Table 5 of Weber 2005). This claim is re-
inforced by the refined mass measurement of 12 pulsars that
obey the strange star equation of state developed in (Gan-
gopadhyay et al. 2013) and revised radii for these stars have
been predicted.

Due to the absence of reliable information about equa-
tion of state of matter content in the interior of such com-
pact stars, insight into the structure can be obtained by
reference to applicable analytic solutions to the equation
of relativistic stellar structure (Lattimer and Prakash 2001;
Lattimer 2004).

Two traditional approaches usually followed to obtain a
realistic stellar model. In the first approach one can start
with an explicit equation of state and the integration starts
at the center of the star with a prescribed central pressure
(Oppenheimer-Volkoff method). The integrations are iter-
ated until the pressure decreases to zero, indicating the sur-
face of the star has been reached. Such input equations of
state do not normally allow for closed form solutions.

In the second approach one needs to solve Einstein’s
gravitational field equations. It is almost impossible to ob-
tain an exact solution of such an under-determined system
of nonlinear ordinary differential equations of second or-
der. For the special case of a static isotropic perfect fluid
the field equations can be reduced to a set of three coupled
ordinary differential equations in four unknowns. In arriving
to exact solutions, one can solve the field equations by mak-
ing an ad hoc assumption for one of the metric functions
or for the energy density (Tolman 1939 method). Hence the
equation of state can be computed from the resulting met-
ric. As might be expected with Tolman’s method, unphysical
pressure-density configurations are found more frequently
than physical ones. Hence a new solution which should be
regular, well behaved, and can reasonably model a compact
astrophysical stellar object is always welcome.

A class of fluid spheres for whose surface density van-
ishes at where the pressure vanishes may be good approx-
imation for normal matter neutron stars (this class include
Tolman (1939) III, VII and Buchdahl 1967 solutions). And
the class of solutions for which surface density is finite,
about 2–3 times the normal nuclear matter saturation den-
sity, at the surface where pressure vanishes may be taken as
an analytical model of self-bound strange quark star. Such
models include Tolman IV solution and the solutions dis-
cussed in Wyman (1949), Buchdahl (1964), Mehra (1966),
Leibovitz (1969), Heintzmann (1969), Adler (1974), Adams
and Cohen (1975), Kuchowicz (1975), Vaidya and Tikekar
(1982), Durgapal (1982), Durgapal and Bannerji (1983),
Durgapal and Fuloria (1985), Tikekar (1990), Pant and Pant
(1993), Pant (1994, 1996). This approach leads to physi-
cally viable and easily tractable models of compact stars in

equilibrium. Tikekar and Jotania (2005) have shown that the
ansatz suggested by Tikekar and Thomas (1998) has these
features and the general three-parameter solution based on
it also leads to physically plausible relativistic models of
strange stars. Several aspects of physical relevance and the
maximum mass of class of compact star models, based on
Vaidya–Tikekar ansatz, have been investigated by Sharma
et al. (2006) (also see Jotania and Tikekar 2006 for relevant
references).

All the solutions mentioned so far are in curvature coordi-
nates. Out of 127 static spherically symmetric solutions very
few solutions (Nariai 1950; Goldman 1978) in isotropic co-
ordinates are known to pass the elementary tests of physical
relevance and hence relevant in modelling compact stellar
objects in astrophysics (Delgaty and Lake 1998). Knutsen
(1991) have investigated Goldman’s method for construct-
ing physically valid fluid spheres. The main defect of the
method, pointed out by Knutsen, was that it did not exam-
ine whether the pressure gradient is larger than the den-
sity gradient. However, taking this condition into account,
the method is very valuable and yields new models with
interesting physical properties. Kuchowicz presented some
practical methods to solve Einstein’s equations in isotropic
coordinates. The method outlined in his series of papers
(Kuchowicz 1971a, 1971b, 1972a, 1972b, 1973) is able
to yield all possible exact solutions for spheres of perfect
fluid in isotropic coordinates. Such exact solutions provide
simplified models of static relativistic objects. The genera-
tion technique used by Hajj-Boutros (1986) leads directly
to several new solutions in isotropic coordinates. Rahman
and Visser (2002) and Lake (2003) also discussed a sim-
plified algorithm for constructing all possible spherically
symmetric perfect fluid solutions of Einstein’s equations in
isotropic coordinates. By means of a matrix transformation
Mak and Harko (2005) have reduced Einstein’s equations
to two independent Riccati differential equations for which
three classes of solutions are obtained. John and Maharaj
(2006) reduced the condition for pressure isotropy to a re-
currence equation with variable, rational coefficients of or-
der three. They found an exact solution to the field equations
corresponding to a static spherically symmetric gravitational
potential in terms of elementary functions. The metric func-
tions, the energy density and the pressure are found continu-
ous and well behaved which implies that this solution could
be used to model the interior of a relativistic star.

In recent years the description of compact astrophysi-
cal objects in the framework Extended Theory of Gravity
has drawn considerable attention (Capozziello et al. 2011).
Among the modified gravity theories the f (R) theories are
relatively simple to handle. However, even for these the-
ories, the field equations are complicated and obtaining
MTOV (modified Tolman-Oppenheimer-Volkoff) equations
in a standard fashion is difficult. This difficulty is mainly
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due to field equations being fourth order unlike in the case
of general relativity, which has second order field equations.
However, the hydrostatic equilibrium for normal matter neu-
tron stars and self-bound quark stars by solving MTOV
equations and the stability of such compact relativistic stars
in the context of perturbative gravity models with some par-
ticular f (R) models with realistic equations of states have
been discussed in (Alavirad and Weller 2013). It has been
shown that such models of f (R) gravity can give rise to
neutron stars with smaller radii than in General Relativity
and can describe the existence of peculiar neutron stars with
mass ∼ 2M� (the measured mass of PSR J1614-2230) and
compact stars (R ∼ 9 km) with masses M ∼ 1.6–1.7M�
that evade explanation in the framework of standard Gen-
eral Relativity (Astashenok et al. 2013). Although the appli-
cability of perturbative approach at high densities is doubt-
ful, it indicates the possibility of a stabilization mechanism
in f (R) gravity. This mechanism leads to the existence of
stable neutron stars which are more compact objects than in
General Relativity. Moreover, the observation of such com-
pact stable objects could be an experimental probe for mod-
ified gravity at astrophysical level.

The discussion of compact astrophysical objects within
the frame work of general relativity is relatively simple. Our
principle motivation of this work is to present a simple par-
ticular class of exact relativistic compact stellar astrophys-
ical objects by solving Einstein’s gravitational field equa-
tions in isotropic coordinates. In recent past one successful
attempt in isotropic coordinates has been made by one of us
(Pant et al. 2010). These solutions are not only well behaved
but also simple in terms of expressions of field and physical
variables. Our class comprises two particular well behaved
solutions previously derived by one of us (Pant et al. 2012,
2013). Such solutions are expected to provide simplified but
easy to mathematically analyzed compact stellar models of
bare strange quark star, a star with nonzero ultra-high sur-
face density.

2 Solutions of field equations in isotropic coordinates

The interior metric of a static spherically symmetric matter
distribution in isotropic coordinates may be taken as,

ds2 = eα(ρ)c2dt2 −eβ(ρ)
(
dρ2 +ρ2(dθ2 +sin2 θdϕ2)) (2.1)

where α and β are functions of ρ only.
For the metric (2.1) the Einstein’s field equations of grav-

itation for a nonempty space-time reduces to the following
set of relevant equations

κP = e−β
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where prime (′) denotes the differentiation with respect to ρ.
Eliminating the pressure, P , from (2.2) and (2.3) we ob-

tain following differential equation in α and β , known as
“pressure isotropy” equation,
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= 0 (2.5)

By introducing the transformation, x = Cρ2, Eqs. (2.2) and
(2.4) can be expressed in terms of the new auxiliary variable
x, as,
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And Eq. (2.5) becomes,
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Equation (2.8) is a Riccati type differential equation in
dα/dx or dβ/dx. In the next subsection we explore its solu-
tion and obtain a physically meaningful matter distribution
described by the fluid parameters P and μ from Eqs. (2.6)
and (2.7).

2.1 Class of interior solutions

To solve the equation of pressure isotropy (2.8), by assum-
ing an ad hoc relation of gravitational potential in x, analo-
gous to Hajj-Boutros (1986) and Tewari (2013) and consid-
ering the parameters in such a manner so that the solution
should be well behaved for perfect fluid. We may thus make
a choice,

e
β
2 = B(1 + x)N (2.9)

Inserting Eq. (2.9) into Eq. (2.8) we obtain the following
Riccati differential equation,

dy

dx
− 2N

(1 + x)
y + 1

2
y2 = 2N(1 + N)

(1 + x)2
(2.10)

where y = dα/dx.
The substitution y = 2dz/zdx transforms Eq. (2.10) into

a second order homogeneous linear Legendre differential
equation (Riley et al. 2006)

(1 + x)2 d2z

dx2
− 2N(1 + x)

dz

dx
− (

N + N2)z = 0
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and this yields the following solution,

z = e
α
2 = 1

B2

[
(1 + x)n1 + A(1 + x)n2

]
(2.11)

where,
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2
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√
8N2 + 8N + 1

]

n2 = 1

2
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√
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]

In Eqs. (2.9) and (2.11) A, B , and Care constants. For n1

and n2 to be real number we must have,

−(2 − √
2)/4 ≤ N < 0 or, −1 ≤ N ≤ −(2 + √

2)/4

The expressions for pressure and density are obtained by
inserting (2.9) and (2.11) into Eqs. (2.6) and (2.7) as,

κ

C
P = 4
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κ

C
c2μ = − 4N

(1 + x)2+2NB2

[
3 + (1 + N)x

]
(2.13)

Hence, Eqs. (2.9), and (2.11)–(2.13) constitute the complete
solution of Einstein’s field equation.

2.2 Some particular solutions

Solution I: N = −3/23
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Solution III: N = −(2 − √
2)/4
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3 Elementary criteria for physical acceptability

From the physical point of view, the mathematical solutions
must satisfy certain physical conditions to render them phys-
ically meaningful. The following requirements have been
accepted in this paper which are available in the follow-
ing papers (Kuchowicz 1971a, 1971b, 1972a, 1972b, 1973,
Glass and Goldman 1978; Stewart 1982; Hajj-Boutros 1986;
Knutsen 1991; Delgaty and Lake 1998),

(i) The solution should be free from physical and geo-
metrical singularities i.e. finite and positive values of
central pressure, central density and non zero positive
values of eα and eβ . Mathematically,

eα > 0, eβ > 0, Pc > 0, μc > 0

(ii) The solution should have positive values of pressure
and density and monotonically decreasing functions
for pressure and density (P,μ) with increasing ra-
dius. Mathematically,

P(r) ≥ 0, μ(r) > 0,
dP

dr
< 0,

dμ

dr
< 0

Or, in terms of auxiliary variable,

P(x) ≥ 0, μ(x) > 0,
dP

dx
< 0,

dμ

dx
< 0

(See theorem in Pant et al. 2011)
(iii) To be isolated it is required that the pressure must be

zero at some finite boundary radius. Mathematically,

P(r = R) ≥ 0 or, P (ρ = ρΣ) ≥ 0

(iv) c2μ > P everywhere in the interior of the fluid sphere
(dominant energy condition).

(v) The trace condition, T i
i = c2μ− 3P > 0, must be sat-

isfied in the interior of the star.
(vi) The solution should have positive and monotonically

decreasing expression for the pressure and density and
the fluid parameter P/c2μ with increasing radius.
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(vii) The solution should have positive and monotoni-
cally decreasing expression for velocity of sound,√

dP/c2dμ, with increasing radius. Also the causal-
ity condition should be obeyed at the centre i.e.,
0 <

√
(dP/c2dμ)c ≤ 1.

(viii) The red shift z should be positive, finite and monoton-
ically decreasing in nature with the increase of radius.
The central red shift zc and surface redshift zs should
be positive and finite.

zc = e− 1
2 α(r=0) −1, zs = (

1−2GM/c2R
)− 1

2 −1

(ix) The interior solution must match continuously with
the Schwarzschild exterior solution (Schwarzschild
1916), which requires the continuity of metric coef-
ficients and their first derivatives across the boundary
ρ = ρΣ (Nariai 1965; Bonnor and Vickers 1981).

4 Physical boundary conditions

Schwarzschild exterior solution in canonical coordinates can
be written as,

ds2 = c2
(

1 − 2GM

c2r

)
dt2 −

(
1 − 2GM

c2r

)−1

dr2

− r2(dθ2 + sin2 θdϕ2) (4.1)

By the use of following transformation,

r = ρ

(
1 + GM

2c2ρ

)2

(4.2)

Equation (4.1) can be transformed in the so called isotropic
form (Adler et al. 1975),

ds2 = c2
(1 − GM

2c2ρ
)2

(1 + GM

2c2ρ
)2

dt2 −
(

1 + GM

2c2ρ

)4

× (
dρ2 + ρ2(dθ2 + sin2 θdϕ2)) (4.3)

In Eq. (4.1) M is the gravitational mass of the fluid sphere
and R is the coordinate radius measured by the external ob-
server. In order that the interior solution joins properly to the
exterior Schwarzschild solution the usual boundary condi-
tions are that the first and second fundamental forms are con-
tinuous over the boundary, ρ = ρΣ (e.g. see Hajj-Boutros
1986), which read,
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,
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Σ

= −
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Σ
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)

By the use of condition (iv) X(= Cρ2
Σ) can expressed in

terms of “compactness” parameter u(= GM/c2ρΣ) as fol-
lowing.

X ≡ Cρ2
Σ = − u

2N + (1 + N)u

The condition X > 0 also constrains u over the interval 0 <

u < −2N/(1 + N).

4.1 Determination of A

Using the boundary condition P(ρΣ) = 0 the constant A

can be calculated by the following equation,

A = − (N + n1) + (2Nn1 + N + n1 + N2)X

(N + n2) + (2Nn2 + N + n2 + N2)X
(1+X)(n1−n2)

4.2 Determination of B

From the boundary condition iii) the constant B can be spec-
ified as follows,

B =
(

1 + u

2

)2

(1 + X)−N

5 Physical analysis of the models

In this section we derive the pressure and density gradients
to investigate the behavior of the equation of state numeri-
cally.

5.1 Pressure and density gradients

Differentiating Eqs. (2.12) and (2.13), with respect to the
auxiliary variable x, the pressure and density gradients be-
come,

κ
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κ

C
c2 dμ

dx
= 4N(1 + N)(5 + (1 + 2N)x)

B2(1 + x)3+2N

The central values of pressure and density gradients are then
given by

κ

C
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dP
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= − 4

B2
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n2 + N + N2) + (n2 − n1)

× (1 + 2N)(1 + A) − [(2 + 2N)(1 + A) + (n2 − n1)A]
(1 + A)2

)

κ

C
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dμ
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)

c

= 20N(1 + N)

B2

The mass and other physical quantities of the fluid sphere
may be determined for a given (i) radius, (ii) surface density,
(iii) central density, or (iv) central pressure.

(i) For a given radius
Boundary value of the coordinate, ρ = ρΣ ,

ρΣ = R

B
(1 + X)−N (5.1)

Then the central density, surface density and the total mass
of the fluid sphere can be calculated by the use of following
eqs.

μc = − 12NX

B2ρ2
Σκc2

(5.2)

μs = − 4NX[3 + (1 + N)X]
(1 + X)2+2NB2ρ2

Σκc2
(5.3)

M = uc2ρΣ

G
(5.4)

(ii) For a given surface density
Boundary value of the coordinate ρ = ρΣ

ρΣ =
√

− 4NX[3 + (1 + N)x]
(1 + X)2+2NB2κc2μs

(5.5)

From the Eq. (4.2) together with the boundary condition
(iii), the radius of the fluid sphere can be calculated by

R = ρΣB(1 + X)N (5.6)

The central density and the total mass can be calculated by
the Eqs. (5.2) and (5.4).

(iii) For a given central density
Boundary value of the coordinate, ρ = ρΣ ,

ρΣ =
√

− 12NX

B2κc2μc

(5.7)

The total mass, radius and surface density can be calculated
by Eqs. (5.4), (5.6), and (5.3) respectively.

(iv) For a given central pressure
Boundary value of the coordinate, ρ = ρΣ ,

ρΣ =
√

4X

B2κPc

[
(N + n2) − (n2 − n1)

(1 + A)

]
(5.8)

The total mass, radius and surface density can be calculated
by Eqs. (5.4), (5.6), and (5.3) respectively.

5.2 Construction of fluid spheres

For the particular set of values of (N,u) for which the
fluid distribution satisfies the following inequalities (i)–(vii)
of Sect. 3 are reported in Tables 1–2.1 The mass, radius
and other physical quantities of compact well-behaved fluid
spheres obtained by specifying stellar surface density as pa-
rameter are reported in Table 3.

5.3 Discussions on numerical results

For N = −(2 − √
2)/4, the condition X > 0 constrains u

over the interval 0 < u < (2 − √
2)2. But the fluid distribu-

tion satisfies inequalities (i)–(vii) for the range of values 0 <

u ≤ 0.247. The metric functions eα and eβ are found regu-
lar and positive. The behaviors of isotropic pressure and en-
ergy density and the ratio of their respective gradients which
are found positive and monotonically decreasing in the inte-
rior of the star are shown in Fig. 1. However, corresponding
to any value of 0.247 < u < (2 − √

2)2, though the causal-
ity condition is obeyed throughout the sphere but the trend
of adiabatic sound speed is erratic. Thus, the solution ob-
tained in eqs. (2.9), and (2.11)–(2.13) is well behaved for all
values of u satisfying the inequality 0 < u ≤ 0.247. Corre-
sponding to maximum value umax = 0.247, the model yield
a physically acceptable perfect fluid sphere with maximum
compactness which is obtained (GM/c2R)max = 0.1956.
Once the compactness of the compact fluid sphere is ob-
tained the maximum mass can then be calculated by us-
ing one of the following quantity: (i) radius, (ii) central
density, (iii) surface density, or, (iv) central pressure as pa-
rameter. For a particular choice of stellar surface density2

1The following physical constants, in their conventional values, have
been used for numerical calculation: c = 2.997 × 108 ms−1, G =
6.674 × 10−11 N m2 kg−2, M� = 2 × 1030 kg.
2The surface density of bare strange stars is equal to that of strange
quark matter (SQM) at zero pressure. By using the formula given in
Zdunik (2000) the SQM density with msc

2 = 150 MeV, αc = 0.17,
B = 60 MeV fm−3 is calculated to be μs = 4.6 × 1014 g cm−3. It is
therefore some fourteen orders of magnitude larger than the surface
density of normal neutron stars.



Astrophys Space Sci (2014) 350:349–359 355

Table 1 Maximum value of umax(= GM/c2ρΣ) for which the inequalities (ii) and (vii) are satisfied

N 0 < u < −2N/(1 + N) umax (GM

c2R
)max X A B

−2/17 0 < u < 4/15 0.152 0.131 1.502326 −0.07309 1.289699

−14/113 0 < u < 28/99 0.171 0.145 1.745371 −0.09726 1.335364

−3/23 0 < u < 3/10 0.191 0.159 2.015138 −0.13854 1.385936

−12/89 0 < u < 24/77 0.206 0.1693 2.252888 −0.18351 1.426333

−10/73 0 < u < 20/63 0.213 0.1739 2.362711 −0.2156 1.445613

−21/151 0 < u < 21/65 0.221 0.1792 2.51477 −0.25631 1.468779

−28/193 0 < u < 56/165 0.242 0.1925 2.906409 −0.55293 1.531317

−15/103 0 < u < 15/44 0.244 0.1938 2.946998 −0.63266 1.53752

−20/137 0 < u < 40/117 0.246 0.1950 3.004279 −0.70821 1.544256

−6/41 0 < u < 12/35 0.247 0.1956 3.01848 −0.8481 1.547196

−(2 − √
2)/4 0 < u < (2 − √

2)2 0.247 0.1956 3.00979 −1 1.546932

Table 2 Central values of the various physical quantities for particular fluid spheres

N umax X κ
C

Pc
κ
C

c2μc
1
c2 ( P

μ
)c

κ
C

( dP
dx

)c
κ
C

c2(
dμ
dx

)c

√
1
c2 ( dP

dμ
)c zc zs

−2/17 0.152 1.502326 0.063378 0.848761 0.074672 −0.13135 −1.24818 0.324397 0.318353 0.16405

−14/113 0.171 1.745371 0.071123 0.833742 0.085306 −0.14079 −1.21741 0.340078 0.375406 0.186782

−3/23 0.191 2.015138 0.079152 0.81487 0.097135 −0.15059 −1.18097 0.357094 0.439883 0.210899

−12/89 0.206 2.252888 0.084627 0.795299 0.106409 −0.15651 −1.14678 0.369435 0.492104 0.229054

−10/73 0.213 2.362711 0.087245 0.7866 0.110914 −0.15954 −1.13141 0.375508 0.520435 0.238444

−21/151 0.221 2.51477 0.089834 0.773589 0.116126 −0.16191 −1.11001 0.381923 0.550537 0.248051

−28/193 0.242 2.906409 0.096998 0.742424 0.130651 −0.16951 −1.05786 0.400303 0.644430 0.276191

−15/103 0.244 2.946998 0.097649 0.739254 0.132092 −0.17018 −1.05266 0.402074 0.651359 0.278275

−20/137 0.246 3.004279 0.098073 0.734602 0.133505 −0.17024 −1.0456 0.403509 0.659042 0.280369

−6/41 0.247 3.01848 0.098486 0.733597 0.134251 −0.17081 −1.04374 0.404541 0.657834 0.280369

−(2 − √
2)/4 0.247 3.00979 0.098606 0.734375 0.134272 −0.17113 −1.04471 0.404724 0.65748 0.280369

Table 3 Maximum mass and the various physical variables of fluid spheres with given surface density

N umax μs,14

4 4.6 5.4

Mmax(M�) R (km) μc,15

−2/17 0.152 0.71 0.66 0.61 8.06 7.52 6.93 1.39 1.59 1.87

−14/113 0.171 0.81 0.75 0.69 8.32 7.76 7.16 1.56 1.79 2.11

−3/23 0.191 0.91 0.85 0.78 8.55 7.98 7.36 1.73 1.99 2.33

−12/89 0.206 0.99 0.92 0.85 8.70 8.11 7.49 1.87 2.15 2.53

−10/73 0.213 1.02 0.95 0.88 8.76 8.17 7.54 1.94 2.23 2.62

−21/151 0.221 1.06 0.99 0.91 8.83 8.23 7.59 2.03 2.33 2.74

−28/193 0.242 1.16 1.08 1.00 8.98 8.38 7.73 2.26 2.59 3.05

−15/103 0.244 1.17 1.09 1.01 9.00 8.39 7.74 2.28 2.62 3.08

−20/137 0.246 1.18 1.10 1.01 9.00 8.40 7.75 2.31 2.66 3.12

−6/41 0.247 1.18 1.10 1.02 9.01 8.41 7.76 2.32 2.67 3.13

−(2 − √
2)/4 0.247 1.18 1.11 1.02 9.02 8.41 7.76 2.31 2.66 3.13

Where central density μc = μc,15 × 1015 g cm−3 and surface density μs = μs,14 × 1014 g cm−3
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Fig. 1 Behavior of (a) pressure, (b) energy density within fluid sphere
described by the input N = −(2 − √

2)/4 and umax = 0.247

μs = 4.6 × 1014 g cm−3, the total mass and other physical
quantities are calculated by the use of Eqs. (5.2), (5.4)–(5.6)
M = 1.1078M�, R = 8.41 km,Pc = 200.61 MeV fm−3,
μc = 2.66 × 1015 g cm−3. The central and surface redshifts
are obtained 0.666459 and 0.282473 respectively. The vari-
ation of the maximum mass Mmax, radius R, and the central
density with respect to the parameter |N | are demonstrated
in Figs. 2(a)–2(c). The mass-radius relation for a sequence
of stars described by the input N = −(2 − √

2)/4 and 0 <

u ≤ 0.247 with stellar surface density 4.6×1014 g cm−3 has
been demonstrated in Fig. 3(a). In Fig. 3(b) the mass versus
central density for the same configurations are plotted and
this shows the necessary condition of stability is satisfied
(dM/dμc > 0). However, no value of N belonging to the
interval −1 ≤ N < −(2 + √

2)/4 yields physically mean-
ingful matter distribution as failed to satisfy necessary the
physical conditions P ≥ 0,μ ≥ 0.

6 An application of the model for some possible strange
star candidates

Based on the analytic model developed so far, to get an esti-
mate of the range of various physical parameters, let us now
consider some potential strange star candidates like Her X-
1, 4U 1538–52, LMC X-4, SAX J1808.4−3658. Using the

Fig. 2 Variation of (a) maximum mass Mmax, (b) radius R, and (c)
central density μc,15 with respect to |N | with particular stellar surface
density 4.6 × 1014 g cm−3

mass and radius reported in Gangopadhyay et al. (2013) for
each of these pulsars we have calculated the values of the
relevant physical quantities and reported in Table 4.

7 Concluding remarks

We thus have studied a particular simple class of exact rel-
ativistic compact astrophysical stellar objects with nonzero
ultrahigh surface density in the framework of general rela-
tivity. In order to obtain a realistic stellar model Einstein’s
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Table 4 Physical values of
energy density and pressure for
some strange stars candidates

Where
Pc = Pc.35 × 1035 dyne cm−2,
μc = μc,15 × 1015 g cm−3,
μs = μs,14 × 1014 g cm−3

Strange star candidate N u M (M�) R (km) Pc,35 μc,15 μs,14

Her X-1 −12/89 0.1863 0.85 8.1 1.48 1.73 4.57
−15/103 1.35 1.56 4.83
−20/137 1.35 1.55 4.84
−6/41 1.35 1.55 4.84
−(2 − √

2)/4 1.35 1.55 4.85

4U 1538 − 52 −12/89 0.1986 0.87 7.866 1.93 2.11 4.88
−15/103 1.74 1.86 5.19
−20/137 1.73 1.86 5.20
−6/41 1.73 1.85 5.21
−(2 − √

2)/4 1.73 1.85 5.22

LMC X-4 −12/89 0.2318 1.04 8.301 – – –
−15/103 2.62 2.35 4.72
−20/137 2.60 2.33 4.73
−6/41 2.59 2.32 4.74
−(2 − √

2)/4 2.59 2.32 4.75

SAX J1808.4 − 3658 −12/89 0.2043 0.9 7.951 2.08 2.20 4.79
−15/103 1.86 1.93 5.11
−20/137 1.85 1.92 5.12
−6/41 1.85 1.91 5.13
−(2 − √

2)/4 1.84 1.91 5.13

Fig. 3 (a) Mass-radius relationship, (b) Mass-central density for a se-
quence of strange stars described by the input N = −(2 − √

2)/4 and
0 < u ≤ 0.247 with stellar surface density 4.6 × 1014 g cm−3

gravitational field equations have been solved by making an
ad hoc assumption on one of the metric functions eβ/2 =
B(1+x)N and the equation of state has been computed from
the resulting metric.

Due to the complicacy it is difficult to eliminate the aux-
iliary variable from Eqs. (2.12) and (2.13) and obtain an ex-
plicit relation for isotropic pressure in terms of energy den-
sity.

Numerical analysis reveals that the maximum compact-
ness of the fluid sphere is obtained GM/c2R = 0.1956 at
N = −(2 − √

2)/4. To specify the mass and radius of the
fluid sphere we have set the stellar surface density equal
to the strange quark matter density at zero pressure which
is much larger than the nuclear matter saturation density.
A particular choice of stellar surface density μs = 4.6 ×
1014 g cm−3 could give rise a stable configuration of total
mass M = 1.1078M�, radius R = 8.41 km, and central den-
sity as high as μc = 2.66 × 1015 g cm−3. The mass-radius
relation for a sequence of compact star demonstrates that
the isotropic solution discussed in this work could reproduce
strange stars.

To justify our results, for some suitable choices of in-
put parameters N and u, we have generated compact fluid
spheres similar to the mass and radius of some possible
strange star candidates like Her X-1, 4U 1538−52, LMC
X-4, SAX J1808.4−3658 (Gangopadhyay et al. 2013). The
pressure-density profiles for these strange stars given by
our analytical model, using Eqs. (2.12)–(2.13) are plotted
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Fig. 4 (a) Pressure density profile P (μ) and (b) Adiabatic speed of
sound

√
(dP/c2dμ) given by our model for N = −(2−√

2)/4 for po-
tential strange star candidates like Her X-1, 4U 1538 − 52, LMC X-4,
SAX J1808.4 − 3658 with mass and radius reported in Gangopadhyay
et al. (2013)

in Fig. 4(a) and the behaviors of the quantity (dP/c2dμ ≈
constant) shown in Fig 4(b) demonstrates that the isotropic
pressure varies almost linearly with respect to energy den-
sity. The values of various physical quantities for these pul-
sars have been calculated and the results endorse the astro-
physical significance and viability of our model in the study
of relativistic stellar structure of non-rotating compact ob-
jects like self-bound strange quark star.

As strange quark matter stars are not gravitationally
bound, alternative gravity models do not produce differ-
ent mass-radius relations for such objects (Arapoğlu et al.
2011). But, in principle, the formation, evolution, and ob-
servation of such objects could be an experimental probe to
check the viability of for alternative theories of gravity such
as f (R) gravity models.
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