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Abstract This paper is devoted to the study of static axi-
ally symmetric spacetime with anisotropic fluid by means
of structure scalars in the presence of electromagnetic field.
The structure scalars in terms of physical variables are eval-
uated through the Einstein-Maxwell field equations and the
inhomogeneity factors are identified. We also explore ana-
lytic solutions for isotropic as well as anisotropic fluids. It
is found that isotropic solution turns out to be a charged so-
lution which has no correspondence with the Weyl metrics
while the anisotropic solution has the correspondence with
the Weyl metrics.

Keywords Relativistic fluids · Electromagnetic field ·
Axial symmetry

1 Introduction

In general relativity, the solution of the field equations of
static axially symmetric source is referred to the Weyl met-
rics. It is well-known that Schwarzschild solution is the only
static and asymptotically flat vacuum solution which has a
regular horizon (Israel 1976). Zipoy-Voorhees solution be-
longs to the family of the Weyl metrics and has a correspon-
dence with the Schwarzschild metric (Zipoy 1966; Voorhees
1970). This is the only solution for which the physical com-
ponents of the Riemann tensor does not contain singularity.
For all other Weyl solutions (there are as many distinct Weyl
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solutions as there are distinct harmonic functions), these
components contain singularity (Weyl 1917,1919; Stephani
et al. 2003). A natural question arises which is the better ex-
act vacuum solution to describe the deviation from spherical
to non-spherical axially symmetric static source? There is
no unique answer to this question.

In the study of self-gravitating objects, the spherical sym-
metry plays an important role to describe the occurrence of
white dwarfs, neutron stars and black holes. However, in the
presence of strong gravitational fields, it is essential to de-
viate from spherical to non-spherical symmetries to find ex-
act solutions. It is well-known that different spacetimes may
satisfy the field equations for different physically meaning-
ful energy-momentum tensors. Herrera and his collaborators
(Herrera et al. 2000, 2001a, 2003; Herrera 2005) used the
M–Q spacetime and γ -metric as a source of Weyl solutions
to illustrate deviations to non-spherical symmetry.

Tiwari et al. (1991) have discussed static axially symmet-
ric (cylindrical coordinates) charged dust and found a new
class of electromagnetic mass models. Tiwari and Ray gen-
eralized this work for static spherical symmetric spacetime
(1991a) and for static axially symmetric spacetime (spheri-
cal coordinates) (1991b). Regardless of the symmetry condi-
tions, they concluded that static charged dust distribution is
of purely electromagnetic origin. Similarly, the electromag-
netic mass models were obtained for the static Levi-Civita
axially symmetric spacetime (Ray et al. 1993). They con-
cluded that any charged dust source is of electromagnetic
origin.

Many investigations are devoted to understand the in-
teraction between electromagnetic and gravitational fields.
Bekenstein (1971) was the first who extended the work
from neutral to charge case by generalizing Oppenheimer-
Volkoff equations (Oppenheimer and Volkoff 1939). Since
then a large amount of work has been done in this sce-
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nario. Young and Bentley (1975) found exact solutions to the
Einstein-Maxwell field equations for static axially symmet-
ric distribution of matter. Ardavan and Partovi (1977) inves-
tigated dust solutions for axially symmetric spacetime with
electromagnetic field. Tsagas and his collaborators (Tsagas
2005, 2007; Spyrou and Tsagas 2008) used electromagnetic
field in many astrophysical scenarios. Sharif and his collab-
orators (Sharif and Abbas 2010, 2012; Sharif and Yousaf
2013a, 2013b, 2013c) have explored the effects of electro-
magnetic field on different aspects of spherical and cylindri-
cal backgrounds. Pinheiro and Chan (2010, 2013) explored
the effects of electromagnetic field and bulk viscosity on the
collapsing process of spherical symmetric anisotropic star.
They concluded that charge slows down the collapse rate.

Inhomogeneity and anisotropy play a key role to un-
derstand the formation of galaxies during the early stages
of evolution. Inhomogeneous spherically symmetric models
were first proposed by Tolman (1934) and later by Bondi
(1947). Wainwright and Goode (1980) explored some new
exact spatially inhomogeneous perfect fluid models with an
equation of state P = kρ, where P is the pressure and ρ

is the energy density. Senovilla (1990) investigated inho-
mogeneous perfect fluid models and showed that curvature
and matter invariants are regular and smooth everywhere in
the absence of initial singularity. Bali and Tyagi (1990) also
presented inhomogeneous models of plane symmetry with
charged perfect fluid distribution. Sharif and Yousaf (2012a,
2012b, 2012c) have found several exact models of inhomo-
geneous and anisotropic distribution of matter.

Herrera et al. (2009, 2010, 2011a, 2011b) obtained a set
of equations through the orthogonal splitting of the Reimann
tensor named as structure scalars. They found the relation-
ship between these scalars and fluid properties which de-
scribe the evolution of the shear tensor and expansion scalar
of self-gravitating objects. The structure scalars have differ-
ent physical meanings and play key role to find the inho-
mogeneity in matter configuration. Sharif and Bashir (2012)
have analyzed energy density inhomogeneity in electromag-
netic field through one of these structure scalars. Herrera
et al. (2011a, 2011b) analyzed the structure scalars in spheri-
cal symmetry in the presence of electromagnetic field. They
also studied cylindrically symmetric matter distribution in
the framework of structure scalars (Herrera et al. 2012).
Recently, we have studied the effects of electromagnetic
field on structure scalars in the scenario of cylindrical and
plane symmetries (Sharif and Bhatti 2012a, 2012b). In a re-
cent paper, Herrera et al. (2013) found structure scalars for
static axially symmetric spacetime and identified the inho-
mogeneity factor. They also found some analytic solutions
and showed that in spherical limit, the solution corresponds
to the Schwarzschild metric.

In this paper, we generalize this work in the presence of
electromagnetic field to study these structure scalars with

the same configuration. The paper is organized as follows.
In the next section, we formulate the Einstein-Maxwell field
equations and the electric part of the Weyl tensor for static
axially symmetric spacetime. Section 3 investigates struc-
ture scalars and inhomogeneity factor. In Sect. 4, we ex-
plore analytic solutions for isotropic pressure as well as con-
stant energy density. Section 5 provides anisotropic solution
which has correspondence with the Weyl exterior. In the last
section, we summarize the results.

2 Charged anisotropic source

The axially symmetric spacetime in spherical coordinates is
given as (Herrera et al. 2013)

ds2 = −A2(r, θ)dt2 + B2(r, θ)
(
dr2 + r2dθ2)

+ C2(r, θ)dφ2. (1)

In order to provide full description of the fluid, we assume
that the system is filled with anisotropic fluid for which the
energy-momentum tensor is

T
(m)
αβ = (ρ + P)VαVβ + Pgαβ + Παβ, (2)

where

Παβ = (Pxx − Pzz)

(
KαKβ − 1

3
hαβ

)

+ (Pyy − Pzz)

(
LαLβ − 1

3
hαβ

)
+ 2PxyK(αLβ),

P = 1

3
(Pxx + Pyy + Pzz), hαβ = gαβ + VαVβ,

here ρ is the energy density, Pxx, Pyy, Pzz are different
pressures, Pxy = Pyx and Pxx �= Pyy �= Pzz. Also, Vα is the
four velocity, Kα and Lα are unit four-vectors, α and β are
the Lorentz indices. For comoving coordinate system, we
have

Vα = −Aδ0
α, Kα = Bδ1

α, Lα = Brδ2
α. (3)

The energy-momentum tensor for electromagnetic field
is (Sharif and Bhatti 2013)

T
(em)
αβ = 1

4π

(
Fγ

α Fβγ − 1

4
FγδFγ δgαβ

)
, (4)

where Fαβ = φβ,α −φα,β is an anti-symmetric tensor known
as Maxwell field tensor and φα represents the four potential.
The Maxwell field equations are

Fαβ ;β = μ0J
α, F[αβ;γ ] = 0, (5)

where μ0 = 4π is the magnetic permeability and Jα is the
four current. In comoving coordinates, we can assume that
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charge per unit length of the system is at rest, so the mag-
netic field will be zero. Thus the four potential and four cur-
rent are

φα = φδ0
α, J α = σV α,

here φ is the scalar potential and σ is the charge density,
both are functions of r and θ . The non-zero components of
the Maxwell field tensor are F01 = −F10 = − ∂φ

∂r
, F02 =

−F20 = − ∂φ
∂θ

. Using these values, the first Maxwell field
equation (5) yields

∂2φ

∂r2
+ ∂φ

∂r

(
−A′

A
+ C′

C
+ 1

r

)
= −4πσAB2, (6)

∂2φ

∂θ2
+ ∂φ

∂θ

(
−Aθ

A
+ Cθ

C

)
= −4πσAB2r2, (7)

where prime is the differentiation with respect to r . Integra-
tion of Eq. (6) yields ∂φ

∂r
= − sA

Cr
, where

s(r, θ) = 4π

∫ r

0
σB2Crdr, (8)

is the total amount of charge. Equation (7) gives charge as a
function of θ which is not possible, so we neglect the second
non-zero component of the Maxwell field tensor.

The Einstein-Maxwell field equations yield the following
set of equations

κ

(
ρ + s2

8πB2C2r2

)

= − 1

B2

[
B ′′

B
−

(
B ′

B

)2

+ 1

r

(
B ′

B
+ C′

C

)
+ C′′

C

+ 1

r2

{
Bθθ

B
−

(
Bθ

B

)2

+ Cθθ

C

}]
, (9)

κ

(
Pxx − s2

8πB2C2r2

)

= 1

B2

[
A′B ′

AB
+ B ′C′

BC
+ A′C′

AC
+ 1

r

(
A′

A
+ C′

C

)

+ 1

r2

(
Aθθ

A
− BθCθ

BC
+ AθCθ

AC
− AθBθ

AB
+ Cθθ

C

)]
,

(10)

κ

(
Pyy + s2

8πB2C2r2

)

= 1

B2

[
A′′

A
+ C′′

C
+ A′C′

AC
− A′B ′

AB
− B ′C′

BC

+ 1

r2

(
AθBθ

AB
+ BθCθ

BC
+ AθCθ

AC

)]
, (11)

κ

(
Pzz + s2

8πB2C2r2

)

= 1

B2

[
A′′

A
+ B ′′

B
−

(
B ′

B

)2

+ 1

r

(
A′

A
+ B ′

B

)

+ 1

r2

{
Aθθ

A
+ Bθθ

B
−

(
Bθ

B

)2}]
, (12)

κPxy = 1

B2

[
1

r

{
A′

θ

A
+ B ′Cθ

BC
− C′

θ

C
+ Bθ

B

(
A′

A
+ C′

C

)

+ AθB
′

AB

}
+ 1

r2

(
Aθ

A
+ Cθ

C

)]
. (13)

The Weyl tensor can be decomposed in its electric and mag-
netic parts as

Eαβ = CανβδV
νV δ, Hαβ = 1

2
ηανερCερ

βδV
νV δ.

The electric part of the Weyl tensor for Eq. (1) is exactly
the same as given in Eq. (24) of Herrera et al. (2013) while
the scalars E1, E2 and E3 are given in the Appendix and the
magnetic part vanishes identically (Herrera et al. 2013).

3 Structure scalars and inhomogeneity factors

In this section, we formulate structure scalars for the charged
fluid from the orthogonal splitting of the Riemann tensor
(Bel 1961). Structure scalars have their own importance for
the study of inhomogeneity in the energy density and pres-
sure anisotropy of the system and have utmost relevance in
the collapsing relativistic fluids. For this purpose, we take
the tensors known as the electric part and the dual of the
Riemann tensor obtained through the decomposition of the
Riemann tensor and split it into its trace and trace-free parts
as given in Eqs. (26), (32) of Herrera et al. (2013).

Using Eqs. (9)–(13), we obtain the trace and trace-free
parts in terms of the physical variables for the charged case
as follows

YT = κ

2
(ρ + Pxx + Pyy + Pzz) + s2

B2C2r2
, (14)

YT F1 = E1 − κ

2
Pxy, (15)

YT F2 = E2 − κ

2
(Pxx − Pzz) + s2

B2C2r2
, (16)

YT F3 = E3 − κ

2
(Pyy − Pzz), (17)

XT = κρ + s2

B2C2r2
, (18)

XT F1 = −
(
E1 + κ

2
Pxy

)
, (19)
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XT F2 = −E2 − κ

2
(Pxx − Pzz) + s2

B2C2r2
, (20)

XT F3 = −E3 − κ

2
(Pyy − Pzz). (21)

These scalar functions (trace and trace-free parts) YT , XT ,
YT F1, YT F2, YT F3, XT F1, XT F2, XT F3, are named as the
structure scalars. The conservation law, T αβ ;β = 0, yields
the following non-vanishing components with the variation
of the Lorentz indices

ρ̇ = 0, (22)

P ′
xx + A′

A
(ρ + Pxx) + B ′

B
(Pxx − Pyy) + C′

C
(Pxx − Pzz)

+ 1

r

[
Pxy

(
Aθ

A
+ 2

Bθ

B
+ Cθ

C

)
+ Pxy,θ + Pxx − Pyy

]

− ss′

4πB2C2r2

= 0, (23)

Pyy,θ + Aθ

A
(ρ + Pyy) + Bθ

B
(Pyy − Pxx) + Cθ

C
(Pyy − Pxx)

+ r

[
Pxy

(
A′

A
+ 2

B ′

B
+ C′

C

)
+ P ′

xy

]

+ 2Pxy + s2

4πB2C2r2

(
Aθ

A
− Cθ

C

)

= 0. (24)

Equation (22) is a trivial result of staticity, while Eqs. (23)
and (24) are the hydrostatic equilibrium equations.

There are two important differential equations which re-
late the Weyl tensor to various physical variables and can
be found using Bianchi identities. Here we generalize these
equations for static axially symmetric spacetime in the pres-
ence of electromagnetic field. These are given as follows

E1θ

r
+ 1

3
(2E2 − E3) + E1

r

(
2
Bθ

B
+ Cθ

C

)

+ E2

(
B ′

B
+ C′

C
+ 1

r

)
− E3

(
B ′

B
+ 1

r

)

= κ

6
(2ρ + Pxx + Pyy + Pzz)

′ + κ

2

A′

A
(ρ + Pxx)

+ κ

2

Aθ

A
Pxy + 1

B2C2r2

[
ss′ − s2

(
B ′

B
+ C′

C
+ 1

r

)]
,

(25)

E ′
1 + 1

3r
(2E3 − E2)θ + E1

(
2
B ′

B
+ C′

C
+ 2

r

)

− E2
Bθ

Br
+ E3

r

(
Bθ

B
+ Cθ

C

)

= κ

6r
(2ρ + Pxx + Pyy + Pzz)θ + κ

2

Aθ

rA
(ρ + Pyy)

+ κ

2

A′

A
Pxy + s2

B2C2r2

(
Aθ

A
− Bθ

B
− Cθ

C
− 1

r

)
. (26)

We can write these equations in terms of structure scalars
using Eqs. (19)–(21) as follows

8πρ′

3
= −1

r

[
XT F1θ + XT F1

(
lnB2C

)
θ

]

−
[

2

3
X′

T F2 + XT F2(lnBCr)′
]

+
[

1

3
X′

T F3 + XT F3(lnBr)′
]

+
(

2s2

3B2C2r2

)′
, (27)

8πρθ

3r
= 1

r

[
1

3
XT F2θ + XT F2(lnB)θ

]

− 1

r

[
2

3
XT F3θ + XT F3(lnBC)θ

]

− [
X′

T F1 + XT F1
(
lnB2Cr2)′]

+ s2

B2C2r3

(
2Bθ

3B
+ 2Cθ

C

)
. (28)

Now we find the inhomogeneity factor which is the com-
bination of different geometrical and physical variables. The
vanishing of this factor is a necessary and sufficient for the
homogeneity of the energy density. This factor has already
been found in literature for cylindrical, spherical and plane
symmetric distributions and also in the presence of electro-
magnetic field. In spherical, cylindrical and plane symmetric
cases, the inhomogeneity factor is identified as the trace-free
part of the tensor Xαβ (Herrera et al. 2011a, 2011b, 2012;
Sharif and Bhatti 2012a, 2012b). We evaluate this factor
in charged axially symmetric case. Equations (27) and (28)
yield

XT F1 = XT F2 = XT F3 = 0 ⇒ ρ′eff = ρ
eff
θ = 0,

where

ρ′eff = ρ′ − s

2πB2C2r2

[
s′ − s

(
B ′

B
+ C′

C
+ 1

r

)]
,

ρ
eff
θ = ρθ − s2

4πB2C2r2

(
Bθ

B
+ Cθ

C

)
.

To determine these scalars as the inhomogeneity factors, we
have to prove that the converse is also true, i.e.

ρ′eff = ρ
eff
θ = 0 ⇒ XT F1 = XT F2 = XT F3 = 0.
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The required proof to identify the inhomogeneity factor is
exactly the same as in Herrera et al. (2013) but now for the
ρeff (which contains the charge contribution) suggests three
structure scalars XT F1, XT F2, XT F3 as the inhomogeneity
factor. We can have the uncharged matter distribution by re-
placing the effective energy density with the energy density.

4 Analytic solution of isotropic sphere

Here, we find analytic solution for a bounded spheroid hav-
ing homogeneous energy density and isotropic pressure.
We assume that ρ = ρ0 = constant, Pxx = Pyy = Pzz = P

and Pxy = 0. For the sake of convenience, we consider the
boundary surface Σ defined by r = constant = r1. To sat-
isfy the Darmois conditions, we require that all the metric
functions as well as r derivatives are continuous across Σ .
Using this isotropic condition on Σ , it follows that P

Σ= 0
(Sharif and Yousaf 2012a, 2012b, 2012c). Conformally flat
solutions provide an efficient tool to study the effects of lo-
cal anisotropy, energy density inhomogeneity in the evo-
lution of self-gravitating fluids. This motivates many au-
thors to evaluate conformally flat solutions (Wang 1987;
Herrera et al. 2001b; Di Prisco et al. 2011; Sharif and Yousaf
2012a, 2012c). It is found that charge affects the conformal
flat condition (Sharif and Bashir 2012). Equations (15)–(17)
and (19)–(21) show that such a solution is conformally flat
in the absence of electromagnetic field. Using the above con-
ditions in Eq. (23), we obtain

ρ0 + P = η(θ)

A
+ 1

4πA

∫
ss′A

B2C2r2
dr, (29)

where η is an arbitrary function.
We know that charge on the boundary of any sphere is

constant (Sharif and Bhatti 2012c). Thus, from the above
boundary conditions, we can find

A(r1, θ) = h

ρ0
= constant, η = constant. (30)

As our solution is conformally flat in the absence of charge,
so using Pxy = 0 and E1 = E2 = E3 = 0 in Eqs. (13) and in
(A.6) of Herrera et al. (2013), it follows that

A′
θ

A
− Aθ

A

(
1

r
+ B ′

B

)
− A′Bθ

AB
= 0, (31)

C′
θ

C
− Cθ

C

(
1

r
+ B ′

B

)
− C′Bθ

CB
= 0. (32)

Defining the auxiliary function Ā(r, θ) such that

A(r, θ) = Ā(r, θ)B(r, θ), (33)

and assuming

C(r, θ) = r sin θB(r, θ). (34)

Equations (31) and (32) can be integrated to yield

Ā(r, θ) = Ã(r) + rχ(θ),

B(r, θ) = 1

R(r) + rω(θ)
,

(35)

where Ā, ω, χ and R are arbitrary functions of their argu-
ment. Using Eqs. (A.7), (A.8) of Herrera et al. (2013) with
(34) and (35), we obtain

Ã(r) = f r2 + g, χ = a cos θ, (36)

where f, g and a are constants of integration.
The corresponding line element of the conformally flat

solution is

ds2 = 1

[R(r) + rω(θ)]2

[−(
f r2 + g + ar cos θ

)2
dt2

+ dr2 + r2dθ2 + r2 sin2 θdφ2]. (37)

Using Pxx − Pzz = 0, Pxx − Pyy = 0 and Eqs. (9)–(13), it
follows that

ω(θ) = b cos θ, R(r) = γ r2 + δ, (38)

where b, δ and γ are constants of integration. Finally, the
line element of conformally flat, isotropic, incompressible
fluid can be written in the form

ds2 = 1

(γ r2 + δ + rb cos θ)2

[−(
f r2 + g + ar cos θ

)2
dt2

+ dr2 + r2dθ2 + r2 sin2 θdφ2]. (39)

The physical quantities like energy density and pressure can
easily be evaluated. Using Eq. (39) in (9), the energy density
turns out to be

κρ = 12γ δ − 3b2 − s2(γ r2 + δ + br cos θ)4

r4 sin2 θ
. (40)

The pressure is found by using the boundary condition

P
Σ= 0 as well as Eqs. (29) and (30)

κP =
(

12γ δ − 3b2 − s2(γ r2 + δ + br cos θ)4

r4 sin2 θ

)

×
(

f r2
1 + g

γ r2
1 + δ

γ r2 + δ + rb cos θ

f r2 + g + ra cos θ
− 1

)

+ 2
γ r2 + δ + rb cos θ

f r2 + g + ra cos θ
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×
∫

ss′

r4 sin2 θ

[(
γ r2 + δ + rb cos θ

)3(
f r2 + g

+ ra cos θ
) − (

f r2
1 + g

)(
γ r2

1 + δ
)]

dr, (41)

where

η = ρ0
f r2

1 + g

γ r2
1 + δ

, a = b
f r2

1 + g

γ r2
1 + δ

.

It would be interesting to recover the spherically sym-
metric case, i.e., a = 0 = b. For this purpose, we use the
coordinate transformations

r̄ = r

γ r2 + δ
, θ̄ = θ, t̄ = t, φ̄ = φ,

where overbar denotes the usual Schwarzschild coordinates.
It can easily be found from Eqs. (39) and (41) that these
correspond to charged fluid and becomes the interior (not to
be confused with the exterior) Schwarzschild metric (72)–
(74) in Herrera et al. (2013) in the non charged case.

gt̄ t̄ = 1

4

[
3

(
1 − 2M

r̄1
+ Q2

r̄2
1

) 1
2 −

(
1 − 2m(r̄)

r̄
+ s2

r̄2

) 1
2
]
,

gr̄r̄ =
[

1 − 2m(r̄)

r̄
+ s2

r̄2

]−1

,

P = ρ

[ (1 − 2m(r̄)
r̄

+ s2

r̄2 )
1
2 − (1 − 2M

r̄1
+ Q2

r̄2
1

)
1
2

3(1 − 2M
r̄1

+ Q2

r̄2
1

)
1
2 − (1 − 2m(r̄)

r̄
+ s2

r̄2 )
1
2

]
,

where m(r̄), s, r̄1, Q and M denote the mass function,
charge in the interior, radius of the sphere, total charge on
the boundary and the total mass, respectively. The following
relationships are satisfied

m = 2γ δr3

(γ r2 + δ)3
+ s2

2r

(
γ r2 + δ

)

= κρr̄3

6
+ s2

2r

(
4

3
csc2 θ − cot2 θ

)
,

m(r̄1) = M, s(r̄, θ) = Q and r2
1 = g + δ

γ − f
.

In order to satisfy the Darmois conditions, i.e., the con-
tinuity of the first and second fundamental forms, it is re-
quired that the metric functions and their r as well as θ

derivatives are continuous across the hypersurface Σ . The
continuity of gtt and gφφ components at r = r1 leads to any
Weyl exterior solution AW(r1, θ) from

√
gtt on the bound-

ary surface

AW(r1, θ) = f r2
1 + g + ar1 cos θ

γ r2
1 + δ + br1 cos θ

,

AW(r1, θ) = γ r2
1 + δ + br1 cos θ.

This cannot be satisfied unless a = 0 = b which corresponds
to the static spherically symmetric case (since perfect fluid
sources are spherical (Masood-ul-Alama 2007)). This solu-
tion does not have any correspondence with the Weyl exte-
rior in this case when we get A(r1, θ) = constant, though it
has zero pressure on the surface.

5 Anisotropic sphere

Here, we find a solution which has the correspondence with
the Weyl exterior. Since the result obtained in the last section
is the consequence of our assumption (34), so for such a
solution matchable to the Weyl exterior, we have to relax
the condition of energy density inhomogeneity and isotropy
of pressure. We assume E1 = E3 = Pxy = Pyy − Pzz = 0,
Pxx �= Pyy and E2 �= 0, then Eqs. (13) with (A.9) of Herrera
et al. (2013) yield Eqs. (31) and (32). Moreover, we define
the auxiliary functions Ã(r, θ) and R(r, θ) as

A(r, θ) = rÃ(r, θ)B(r, θ), C(r, θ) = rB(r, θ)R(r, θ),

so that Eqs. (31) and (32) can be rewritten as

R′
θ

R
= Ã′

θ

Ã
= rB

(
1

rB

)′

θ

. (42)

Using E3 = Pyy − Pzz = 0 as well as Eqs. (A.8) and (A.11)
of Herrera et al. (2013), we obtain

R′′

R
− R′

R

(
Ã′

Ã
− 1

r

)
− 1

r2

(
ÃθRθ

ÃR
− Ãθθ

Ã

)
= 0, (43)

R′

R

(
1

r
+ Ã′

Ã
+ B ′

B

)
+ 1

r2

(
ÃθRθ

ÃR
+ RθBθ

RB

+ 2

(
Bθ

B

)2

− Ãθθ

Ã
− Bθθ

B

)
= 0. (44)

To find a solution which satisfies the boundary condition,
we consider

R(r, θ) = [
γ cos θ + b(r1)

]
sin θ, (45)

such that Eqs. (42)–(44) turn out to be

Ã(r, θ) = p

[
γ

2
sin2 θ − b(r1) cos θ

]
+ a(r),

B(r, θ) = 1

rq[ γ
2 sin2 θ − b(r1) cos θ ] + b(r)

,

where a(r), b(r) and p, q, γ are functions of integration
and arbitrary constants, respectively, a(r), p and q have
dimensions of 1

L
, while the rest have no dimensions. The
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Einstein-Maxwell field equations for the above metric leads
to

κρ +
(

s2(rqΓ + b)4

r4 sin2 θΛ2

)

= (rqΓ + b)2
[

2b′′

rqΓ + b
− 3

(
qΛ sin θ

rqΓ + b

)2

− 3

(
qΓ + b′

rqΓ + b

)2

+ 1

r

{
4qΣ

rqΓ + b
+ 4

qΛ + b′

rqΓ + b

}

+ 1

r2

{
b1 + 4γ cos θ

Λ
− 1

}]
,

κPxx −
(

s2(rqΓ + b)4

r4 sin2 θΛ2

)

= (rqΓ + b)2
[
− 2a′(qΓ + b′)

(pΓ + a)(rqΓ + b)

+ 3

(
qΓ + b′

rqΓ + b

)2

+ 3

(
qΛ sin θ

rqΓ + b

)2

+ 1

r

{
2a′

pΓ + a
− 6

qΓ + b′

rqΓ + b
− 4

qΣ

rqΓ + b

− 2
pqΛ2 sin2 θ

(rqΓ + b)(pΓ + a)

}

− 1

r2

{
2

pΣ

pΓ + a
− b1 + 4γ cos θ

Λ
+ 3

}]
,

κPyy +
(

s2(rqΓ + b)4

r4 sin2 θΛ2

)

= κPzz +
(

s2(rqΓ + b)4

r4 sin2 θΛ2

)

= (rqΓ + b)2
[

a′′

pΓ + a
− 2

a′(qΓ + b′)
(pΓ + a)(rqΓ + b)

− 2
b′′

rqΓ + b
+ 3

(
qΓ + b′

rqΓ + b

)2

+ 3

(
qΛ sin θ

rqΓ + b

)2

+ 1

r

{
3

a′

pΓ + a
− 2

qΣ

rqΓ + b
− 4

qΓ + b′

rqΓ + b

− 2
pqΛ2 sin2 θ

(rqΓ + b)

1

(pΓ + a)

}
+ 1

r2

(
pΣ

pΓ + a
+ 1

)]
,

where

Λ = b1 + γ cos θ,

Γ = γ sin2 θ

2
− b1 cos θ, b(r1) = b1,

Σ = Λ cos θ − γ sin2 θ.

These provide a variety of such solutions which have a cor-
respondence with the Weyl metric. For this purpose, one has

to choose reasonable constants of integration and functions
of their arguments. Since electromagnetic mass models are
those in which mass appears only due to the electromagnetic
field. In view of the results obtained by Tiwari et al. (1991),
Tiwari and Ray (1991a, 1991b), Ray et al. (1993), we can
say that our investigation for charged anisotropic fluid dis-
tribution should provide electromagnetic mass model but in
the absence of anisotropic pressure as electromagnetic mass
model does not possess the character of normal matter. We
(Sharif and Bhatti 2012a) have already obtained the mass
function as a possible extension of Misner-Sharp mass func-
tion in cylindrical symmetry and found that it has the elec-
tromagnetic origin which depends on the anisotropic nature
of pressure. Here, we have provided the basic equations re-
quired to construct the electromagnetic mass model but such
a model is beyond the scope of this work. One can find that
charged dust case is of purely electromagnetic origin.

6 Conclusions

In this paper, we have investigated the effects of electromag-
netic field on structure scalars of static axially symmetric
spacetime having anisotropic fluid in the interior as a Weyl
source. We have found eight structure scalars in this sce-
nario unlike the usual spherical symmetry where there are
only five such scalars. These scalar functions have the fol-
lowing properties:

• YT and XT correspond to the energy density of the
charged fluid.

• YT F1, YT F2 and YT F3 describe the energy density inho-
mogeneity due to scalar parts of the Weyl tensor as it tends
to make the object more inhomogeneous as the evolu-
tion proceeds. Also, they describe the local anisotropy of
pressure for a system in equilibrium. These indicate that
charge increases the inhomogeneity as well as anisotropy
of the matter configuration.

• We have evaluated that the necessary and sufficient con-
dition for the vanishing of the derivative of the effective
energy density is the vanishing of the scalar associated
with the trace-free part of the dual of the Riemann tensor,
i.e., XT F1, XT F2 and XT F3. This reflects the importance
of these scalars as the inhomogeneity factors. It is found
that the inhomogeneity is increased due to the presence of
electromagnetic field.

• The static solution of the field equations can be expressed
in terms of structure scalars (Sharif and Bhatti 2012a).
It is found that charge destroys conformal flatness and
our results will be conformally flat only in the absence
of charge. These solutions lead to homogeneous energy
density (Sharif and Yousaf 2012a, 2012c).

• For constant energy density and isotropic pressure, we
have found a solution which corresponds to a charged
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fluid and becomes the interior in the spherical limit. This
type of solution has no such correspondence with the
Weyl exterior solutions. In order to overcome this issue,
we have found another solution which has the correspon-
dence with the Weyl exterior.

• All our results reduce to charge free case when we take
s = 0 (Herrera et al. 2013).
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