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Abstract Bifurcations of nonlinear electron acoustic soli-
tary waves and periodic waves in an unmagnetized quan-
tum plasma with cold and hot electrons and ions has been
investigated. The one dimensional quantum hydrodynamic
model is used to study electron acoustic waves (EAWs) in
quantum plasma. Applying the well known reductive per-
turbation technique (RPT), we have derived a Korteweg-de
Vries (KdV) equation for EAWs in an unmagnetized quan-
tum plasma. By using the bifurcation theory and methods
of planar dynamical systems to this KdV equation, we have
presented the existence of two types of traveling wave solu-
tions which are solitary wave solutions and periodic travel-
ing wave solutions. Under different parametric conditions,
some exact explicit solutions of the above waves are ob-
tained.

Keywords Quantum plasma · Reductive perturbation
technique · Bifurcation theory · Solitary wave · Periodic
wave

1 Introduction

In last few decades, the study of nonlinear evolution of elec-
trostatic waves in quantum plasma is growing and it be-
comes an interesting research topic in the area of plasma
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physics. The electron acoustic waves (EAWs) is an elec-
trostatic wave with high frequency in comparison with the
ion plasma frequency. Electron acoustic waves (EAWs) have
been observed in the laboratory for the plasma consist-
ing of hot and cold electrons (Derfler and Simonen 1969;
Ikezawa and Nakamura 1981) and in an electron ion plasma
consisting of ions hotter than electrons (Fried and Gould
1961). The propagation of EAWs plays a significant role in
laboratory as well as in space plasma. Several authors have
carried out investigations on linear (Yu and Shukla 1983;
Gary and Tokar 1985; Dell et al. 1987) as well as nonlin-
ear (Dubouloz et al. 1991; Mace et al. 1991; Berthomier
et al. 2000; Ghosh et al. 2002; Masood and Shah H. A 2003)
properties of EAWs in unmagnetized plasma. Dubouloz
et al. (1991) have investigated the one dimensional elec-
tron acoustic solitary waves (EASWs) in the present of
two-electron population and motionless ions in unmagne-
tized and collisionless plasma. Mace et al. (1991) have in-
vestigated the EASWs in unmagnetized plasma consisting
of ions with finite temperature. Furthermore, many inves-
tigations have been presented on the nonlinear features of
EAWs in magnetized plasma (Mace and Hellberg 2001;
Dubouloz et al. 1993; Mamun et al. 2002). Since the two-
electron populations (one hot and one cold) take place fre-
quently in fusion devices and in the auroral ionosphere
(Bezzerides et al. 1978), EAWs may exist in such a two-
electron temperature plasma. It is well known that EAWs
can also describe the electrostatic component of the broad-
band electrostatic noise (BEN) which is observed in magne-
tosphere (Tokar and Gary 1984) and in the geomagnetic tail
(Schriver and Ashour-Abdalla 1989).

The study on the investigation of quantum plasma is
growing day by day because of its huge applications in
many areas of laboratory plasma and astrophysics. Most
of them include the fabrication of semiconductor devices
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(Markowhich et al. 1990), quantum dots and quantum wires
(Shpatakovskaya 2006), carbon nanotubes and quantum
diodes (Ang et al. 2006; Ang and Zhang 2007; Shukla
and Eliasson 2008), ultracold plasmas (Killian 2006), mi-
croplasma (Becker et al. 2005) etc. Mahmood and Ma-
sood (2008) investigated EAWs in an unmagnetized quan-
tum plasma with two population electrons with the help of
Sagdeev potential approach and found hot electron density
hump structures in the subsonic region of the mentioned
plasmas. Sah and Manta (2009) considered one dimen-
sional quantum hydrodynamical model and studied electron
acoustic solitary waves in an unmagnetized dense quantum
plasma consisting of two types of electrons which are in-
ertial cold electron, inertialess hot electrons and immobile
ions. By applying RPT they obtained KdV equation gov-
erning the dynamics of EAWs. They derived both compres-
sive and rarefactive solitons along with periodical structures.
Sahu et al. (2012) investigated the nonlinear wave structures
of electron acoustic waves in an unmagnetized quantum
plasma consisting of cold electrons, hot electrons and ions.
Mahmood et al. (2010) studied acoustic solitons and dou-
ble layers in an unmagnetized quantum electron-positron
plasma in the presence of stationary ions. They used quan-
tum hydrodynamic model and by applying RPT they derived
KdV equation and modified KdV equation for solitons and
double layers. In 2012, Abdelsalam et al. studied linear and
nonlinear properties of low frequency electrostatic excita-
tions of charge dust particles in a dense collisionless, un-
magnetized Thomas–Fermi plasma. Hass et al. (2003) have
investigated the linear and nonlinear ion acoustic waves in
unmagnetized quantum plasma by using quantum hydro-
dynamic (QHD) model. Masood and Mushtaq (2008) have
carried out a theoretical investigation for the first time to
understand the linear and nonlinear properties of obliquely
propagating EASWs in a two-electron quantum magneto-
plasma. Several authors (Roy et al. 2011; Ghosh et al. 2012;
Pakzad 2010; Chatterjee et al. 2012) have devoted their at-
tention to understand and to investigate the nonlinear prop-
agation of waves in plasmas over the last few years.

Some authors (Chatterjee et al. 2008; Ghorui et al. 2013;
Saha and Chatterjee 2009) studied nonlinear solitary waves
in different angles in magnetized plasma. Using quantum
hydrodynamic model, Misraa et al. (2007) investigated the
propagation characteristics of nonlinear electron-acoustic
solitary waves (EASWs) in a dense quantum plasma whose
constituents are inertial cold electrons and inertialess hot
electrons, and the stationary ions which form the neutraliz-
ing background. Chatterjee et al. (2013) studied the nonlin-
ear propagation of electron-acoustic waves in three compo-
nents unmagnetized dense quantum plasma consisting of in-
ertially cold electrons, inertia-less hot electrons and immo-
bile ions using a one dimensional quantum hydrodynamic
model. Sahu and Ghosh (2013) studied different properties

of IAWs deriving KP equation in quantum dusty plasma. Re-
cently, Samanta et al. (2013a) studied dust ion acoustic trav-
elling waves in the framework of a KP equation in magne-
tized dusty plasma with a q-nonextensive electron velocity
distribution using the bifurcation theory of planar dynamical
systems and derived exact solitary wave solutions and peri-
odic travelling wave solutions depending on the values of
the parameters. By applying bifurcation theory and methods
of planar dynamical systems, Samanta et al. (2013b) inves-
tigated nonlinear propagation of ion acoustic waves (IAWs)
in the framework of a ZK equation in a magnetized plasma
whose constituents are cold ions and kappa distributed elec-
tron using a two component plasma model. The existence
of solitary wave solutions and periodic travelling wave so-
lutions was established. They also have obtained all exact
explicit solutions of these travelling waves. Very recently,
Samanta et al. (2013c) studied bifurcation behavior of non-
linear dust ion acoustic travelling waves of KP equation in
a magnetized quantum dusty plasma with the help of the bi-
furcation theory of planar dynamical systems depending on
the parameters.

But, no work has been reported in the study of nonlinear
waves in plasmas in the framework of a KdV equation by
using the bifurcation theory of planar dynamical systems to
the best of our knowledge. In the present work, our aim is to
study the bifurcation behavior of electron acoustic traveling
waves in a three-component unmagnetized quantum plasma
with cold and hot electrons and ions in the framework of a
KdV equation depending on the system parameters.

The remaining part of the paper is organized as fol-
lows: In Sect. 2, we consider one dimensional hydrodynamic
model equations. We obtain the KdV equation in Sect. 3 us-
ing reductive perturbation technique (RPT). In Sect. 4, we
find the traveling wave system of this KdV equation. Bi-
furcations of phase portraits are considered in Sect. 5. Two
exact traveling wave solutions (solitary and periodic wave
solutions) of the KdV equation are derived in Sect. 6. Sec-
tion 7 is kept for conclusions.

2 Model equations

In this work, we consider an unmagnetized and collision-
less quantum plasma whose constituents are cold electrons,
hot electrons and ions. We consider the dynamics of cold
electrons in the background of hot electrons and ions. The
phase speed of EAWs lies in between vFc and vFh, i.e.,
vFc � ω/k � vFh, where vFc and vFh are Fermi veloci-
ties of cold and hot electrons, respectively. The model equa-
tions (Mahmood and Masood 2008) in normalized form are
as follows:

∂n

∂t
+ ∂(nu)

∂x
= 0, (1)
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where n is the cold electron number density normalized
by n0, nh is the hot electron number density normal-
ized by nh0, u is the cold electron velocity normalized
by

√
2kBTFh/αme , α = nh0/n0 > 1, me is the electron

mass, TFh is the Fermi temperature of hot electron, e is
the electron charge, kB is the Boltzman constant, φ is the
electrostatic wave potential normalized by 2kBTFh/e, H is
nondimensional quantum parameter due to hot electron de-
fined by H = h̄ωph/2kBTFh, ωph = √

4πnh0e2/me is the
hot electron plasma frequency, h̄ is the Planck’s constant,
space variables are normalized by Fermi wave length of
hot electron λFh = √

2kBTFh/4πnh0e2 and time is nor-
malized by the inverse of cold electron plasma frequency
ω−1

pc = √
me/4πn0e2. In unperturbed state n0 + nh0 = ni0.

The Fermi temperature of hot electrons is given by the rela-
tion mev

2
Fh/2 = kBTFh.

3 Derivation of KdV equation

we apply the reductive perturbation technique (RPT) to de-
rive KdV equation which describes the behavior of small
amplitude electron acoustic waves in quantum plasma. Ac-
cording to RPT, stretched coordinates are as follows:

ξ = ε
1
2 (x − vt), (5)

τ = ε
3
2 t, (6)

where v is the phase velocity of electron acoustic wave in
quantum plasma and ε is a small parameter which charac-
terizes the strength of the nonlinearity. Expanding the de-
pendent quantities in a power series, we have

n = 1 + εn1 + ε2n2 + · · · (7)

nh = 1 + εn
(1)
h + ε2n

(2)
h + · · · (8)

u = εu1 + ε2u2 + · · · (9)

φ = εφ1 + ε2φ2 + · · · (10)

Substituting the Eqs. (5)–(10) into the system of Eqs. (1)–
(4) and equating the coefficients of lowest power of ε, we
have

n1 = 1

v
u1, (11)

u1 = −α

v
φ1, (12)

n
(1)
h = − 1

α
n1, (13)

φ1 = n
(1)
h . (14)

Equating the coefficients of next power of ε, we have
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From the relations (11)–(14), we get

v2 = 1. (19)

From the relations (11)–(19), we obtain KdV equation as

∂φ1

∂τ
+ v

2
(1 − 3α)φ1

∂φ1

∂ξ
+ v

2

(
1 − H 2

4

)
∂3φ1

∂ξ3
= 0. (20)

4 Travelling wave system of Eq. (20)

We transform the obtained KdV Eq. (20) to travelling wave
system defining a variable as

χ = (ξ − cτ), (21)

where c is the velocity of the travelling wave. Substituting
ψ(χ) = φ1(ξ, τ ) into the kdV Eq. (20), we have

−c
dψ

dχ
+ v

2
(1 − 3α)ψ

dψ

dχ
+ v

2

(
1 − H 2

4

)
d3ψ

dχ3
= 0. (22)

Integrating Eq. (22) with respect to χ and neglecting inte-
grating constant, we have

−cψ + v

4
(1 − 3α)ψ2 + v

2

(
1 − H 2

4

)
d2ψ

dχ2
= 0. (23)

Then Eq. (23) is equivalent to the following dynamical sys-
tem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dψ

dχ
= z,

dz

dχ
= 1

v(1 − H 2
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2
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)
ψ.

(24)
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The Eq. (24) is a planar dynamical system with Hamiltonian
function:

Hm(ψ, z) = z2

2
− 1

3v(1 − H 2

4 )

(
3c − v

2
(1 − 3α)ψ

)
ψ2

= h, say. (25)

The system Eq. (24) is a planar dynamical system with
four parameters α, v, H and c. It is clear that the phase
orbits defined by the vector fields of Eq. (24) will repre-
sent all traveling wave solutions of the KdV Eq. (20). we
will search the bifurcations of phase portraits of Eq. (24)
in the (ψ, z) phase plane when the parameters α,v,H and
c change. We want to point out that we are considering
a physical system for which only bounded traveling wave
solutions are meaningful. So, we only concentrate to the
bounded traveling wave solutions of Eq. (20). A solitary
wave solution of Eq. (20) corresponds to a homoclinic or-
bit of Eq. (24). A periodic orbit of Eq. (24) corresponds
to a periodic traveling wave solution of Eq. (20). The bi-
furcation theory and methods of planar dynamical systems
play a significant role in this work (Samanta et al. 2013a;
Guckenheimer and Holmes 1983).

5 Bifurcations of phase portraits of Eq. (24)

In this section, we investigate the bifurcations of phase por-
traits of the dynamical system Eq. (24). When H 2 �= 4 and
α > 1, then there are two fixed points at E0(ψ0,0) and
E1(ψ1,0), where ψ0 = 0 and ψ1 = 4c

v(1−3α)
. Let M(ψi,0)

be the coefficient matrix of the linearized system of the dy-
namical system Eq. (24) at a fixed point Ei(ψi,0). Then we
have

J = detM(ψi,0) = − 2c

v(1 − H 2

4 )
+ 1 − 3α

(1 − H 2

4 )
ψi. (26)

By the theory of planar dynamical systems (Samanta et al.
2013a; Guckenheimer and Holmes 1983), it is well known
that the fixed point Ei(ψi,0) of the planar dynamical system
is a saddle point when J < 0 and the fixed point Ei(ψi,0)

of the planar dynamical system is a center when J > 0.
Then we have the following cases:

Case 1: When v = 1, c > 0, α > 1 and H 2 < 4, then the
dynamical system Eq. (24) has two fixed points
at E0(ψ0,0) and E1(ψ1,0), where ψ0 = 0 and
ψ1 < 0. Here E0(ψ0,0) is a saddle point and
E1(ψ1,0) is a center. There is a homoclinic orbit
to E0(ψ0,0) surrounding the center E1(ψ1,0) (see
Fig. 1).

Case 2: When v = 1, c > 0, α > 1 and H 2 > 4, then
the system (24) has two fixed points at E0(ψ0,0)

Fig. 1 Phase portrait of Eq. (24) for α = 1.2, v = 1,H = 1.001 and
c = 0.808

Fig. 2 Phase portrait of Eq. (24) for α = 1.302, v = 1,H = 2.81 and
c = 1.2594

and E1(ψ1,0), where ψ0 = 0 and ψ1 < 0. Here
E0(ψ0,0) is a centre and E1(ψ1,0) is a saddle
point. There is a homoclinic orbit to E1(ψ1,0) sur-
rounding the center E0(ψ0,0) (see Fig. 2).

Applying the systematic analysis, we obtain the different
phase portraits of Eq. (24) depending on both cases, shown
in Figs. 1–2.

6 Exact explicit travelling wave solutions of Eq. (20)

By using the planar dynamical system Eq. (24) and the
Hamiltonian function Eq. (25) with h = 0, we derive two
exact traveling wave solutions of Eq. (20) depending on dif-
ferent parameters which are the blow up solitary wave solu-
tion and periodic traveling wave solution.

(1) When v = 1, c > 0, α > 1 and H 2 < 4, (see Figs. 1
and 3), the system Eq. (20) has the blow up solitary
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Fig. 3 Graph of the blow up solitary wave solution of Eq. (20) for
α = 1.2, v = 1,H = 1.001 and c = 0.808

Fig. 4 Graph of the periodic traveling wave solution of Eq. (20) for
α = 1.302, v = 1,H = 2.81 and c = 1.2594

wave solution given by

φ1 = − 6c

v(1 − 3α)
cosech2

(
1

2

√
2c

v(1 − H 2

4 )
χ

)
. (27)

(2) When v = 1, c > 0, α > 1 and H 2 > 4, (see Figs. 2
and 4), the system Eq. (20) has periodic traveling wave
solution given by

φ1 = 6c

v(1 − 3α)
cosec2

(
1

2

√
− 2c

v(1 − H 2

4 )
χ

)
. (28)

By using symbolic computations, we obtain two graphs
of these exact explicit solitary wave solution and periodic
traveling wave solution of Eq. (20) depending on some par-
ticular values of the system parameters, shown in Figs. 3–4.

In the Fig. 3, we have presented the graph for the blow up
solitary wave solution (27) in which φ1 is ploted against χ

for α = 1.2, v = 1,H = 1.001 and c = 0.808 satisfying the

conditions of case 1. The amplitude of the blow up solitary
wave solution is dependent on α, c, v but not on H . The
width of the blow up solitary wave solution is dependent
on c, v, H but not on α.

In the Fig. 4, we have presented the graph for the periodic
traveling wave solution (28) in which φ1 is ploted against χ

for α = 1.302, v = 1,H = 2.81 and c = 1.2594 satisfying
the conditions of case 2. The amplitude of the periodic wave
solution is dependent on α, c, v but not on H . The width of
the periodic traveling wave solution is dependent on c, v, H

but not on α.

7 Conclusions

By using the bifurcation theory of planar dynamical sys-
tems, we have studied electron acoustic traveling waves
in an unmagnetized quantum plasma in the (ψ, z) phase
plane depending on the systematic analysis of the param-
eters α, c,H and v. With the help of well known RPT, the
KdV equation is derived for our model equations. By apply-
ing the bifurcation theory and methods of planar dynamical
systems, we have established that our system has the blow
up solitary wave solution and periodic traveling wave solu-
tion. All possible cases of the system parameters are consid-
ered and the effect of different situations are shown in detail.
We have obtained the blow up solitary wave solution and pe-
riodic traveling wave solution depending on the parameters
α, c,H and v. From these exact traveling wave solutions,
it is clear that the amplitude of these solitary and periodic
wave solutions depends on α, c and v and width of these ex-
act solutions depends on c,H and v. This work may help
one to understand the salient features in laboratory plasma
and space plasma.
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