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Abstract Dust-ion-acoustic (DIA) waves in an unmagne-
tized dusty plasma system consisting of inertial ions, nega-
tively charged immobile dust, and superthermal (kappa dis-
tributed) electrons with two distinct temperatures are in-
vestigated both numerically and analytically by deriving
Korteweg–de Vries (K-dV), modified K-dV (mK-dV), and
Gardner equations along with its double layers (DLs) so-
lutions using the reductive perturbation technique. The ba-
sic features of the DIA Gardner solitons (GSs) as well as
DLs are studied, and an analytical comparison among K-dV,
mK-dV, and GSs are also observed. The parametric regimes
for the existence of both the positive as well as negative
SWs and negative DLs are obtained. It is observed that su-
perthermal electrons with two distinct temperatures signif-
icantly affect on the basic properties of the DIA solitary
waves and DLs; and depending on the parameter μc (the
critical value of relative electron number density μe1), the
DIA K-dV and Gardner solitons exhibit both compressive
and rarefactive structures, whereas the mK-dV solitons sup-
port only compressive structures and DLs support only the
rarefactive structures. The present investigation can be very
effective for understanding and studying various astrophysi-
cal plasma environments (viz. Saturn magnetosphere, pulsar
magnetosphere, etc.).
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1 Introduction

Dusty plasmas have opened up a completely new and fas-
cinating research area, because of their vital applications
in understanding various collective processes in space en-
vironments (Shukla 2001; Mendis and Rosenberg 1994;
Shukla and Mamun 2002) and laboratory devices (Barkan
et al. 1995, 1996; Merlino et al. 1998; Homann et al. 1997).
The presence of highly negatively charged and massive
grains of dust particles in an electron ion plasma is respon-
sible for the appearance of new types of waves, depending
on whether the dust grains are considered to be static or mo-
bile. One type of these waves is the dust-ion-acoustic (DIA)
wave, which is the usual ion-acoustic wave modified by the
presence of dust grains. In DIA waves, ion mass provides the
inertia and restoring force comes from the thermal pressure
of electrons. The phase speed of such DIA waves is much
larger (smaller) than the ion (electron) thermal speed.

Shukla and Silin (1992) have first theoretically shown the
existence of low frequency DIA waves in a dusty plasma
system. Barkan et al. (1996) and Nakamura et al. (1999)
have observed the DIA waves in laboratory experiments.
Nowadays, the linear properties of the DIA waves in dusty
plasmas are well understood from both theoretical and ex-
perimental points of view (Shukla and Mamun 2002; Barkan
et al. 1996; Merlino et al. 1998; Shukla and Silin 1992;
Shukla and Rosenberg 1999). Recently, the nonlinear waves
particularly the DIA solitary waves (DIA SWs) have re-
ceived an impressive interest in realizing the basic prop-
erties of localized electrostatic perturbations in space and
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laboratory dusty plasmas. The DIA SWs have been theo-
retically investigated by several authors (Popel et al. 2003;
Mamun 2008; El-Labany et al. 2008; Mamun et al. 2009;
Alinejad 2011; Hossain et al. 2011; Kundu et al. 2012). In
those works (Popel et al. 2003; Mamun 2008; El-Labany
et al. 2008; Mamun et al. 2009; Alinejad 2011; Hossain et al.
2011; Kundu et al. 2012), the interactions of multiple ions
or electrons were not considered.

Yu and Luo (2008) provided an important note on multi-
species model for identical particles. They proposed that un-
less the electrons are physically separated in the space/time
domain of interest, it is fallacious to partition identical elec-
trons into different species following different dynamics or
kinetics. Thus, it is possible to partition identical electrons
into different species following different dynamics or ki-
netics, when the electrons are physically separated in the
space/time domain of interest.

During the last few decades, the DIA and IA waves in
a two electron/ion components plasma in different plasma
environments have been studied by several authors both
theoretically (Alinejad 2011; Buti 1980; Moslem and El-
Taibany 2005; Masood et al. 2009; Masud et al. 2012a,
2012b, 2013b; Masud and Mamun 2013) and experimentally
(Nakamura and Sugai 1996). Most of the investigations have
been focused on Maxwellian plasmas. However, a lot of the-
oretical observations of space plasmas (Vasyliunas 1968;
Leubner 1982) are often characterized by a particle distri-
bution function with high energy tail and they may devi-
ate from the Maxwellian. Superthermal particles may arise
due to the effect of external forces acting on the natural
space environment plasmas or to wave particle interaction.
Plasmas with an excess of superthermal non-Maxwellian
electrons are generally characterized by a long tail in the
high energy region. Such space plasmas can be modeled
by generalized Lorentzian or kappa distribution (Vasyliunas
1968; Summers and Thorne 1991; Mace and Hellberg 1995;
Baluku and Hellberg 2008; Hellberg et al. 2009) rather than
the Maxwellian distribution.

A three dimensional generalized Lorentzian or kappa
distribution function takes the form (Summers and Thorne
1991)

Fκ(v) = Γ (κ + 1)

(πκθ2)3/2Γ (κ − 1/2)

(
1 + v2

κθ2

)−(κ+1)

,

where θ is the most probable speed (effective thermal
speed), related to the usual thermal velocity Vt =
(KBT/m)1/2 by θ = [(2κ − 3)/κ]Vt , T being the character-
istic kinetic temperature, i.e., the temperature of the equiva-
lent Maxwellian with the same average kinetic energy (Hell-
berg et al. 2009), and KB is the Boltzmann constant. The
most probable speed, and hence the κ distribution, is de-
fined for κ > 3/2. The parameter κ is the spectral index,
which is a measure of the slope of the energy spectrum of

the superthermal particles forming the tail of the velocity
distribution function. Low values of κ represent a “hard”
spectrum with a strong non-Maxwellian (power law-like)
tail, an enhanced velocity distribution at low speeds, and a
depressed distribution at intermediate speeds (Summers and
Thorne 1991). In the limit κ → ∞, the above kappa dis-
tribution function for electrons reduces to the well known
Maxwell-Boltzmann distribution.

Recently, a numerous investigations have been made by
many authors on DIA or IA SWs with single-temperature
superthermal (kappa distributed) electrons (Baluku and
Hellberg 2008; Baluku et al. 2010; Choi et al. 2011;
Shah et al. 2011; Hussain 2012; Shahmansouri et al. 2013;
Sultana and Kourakis 2011). In many non-equilibrium plas-
mas, electrons can often be grouped into two or more dis-
tinct components with different temperatures (Buti 1980;
Moslem and El-Taibany 2005; Masood et al. 2009; Ma-
sud et al. 2012a, 2012b; Yu and Shukla 1988). This usually
happen because certain electrons are preferentially heated
by external sources (viz. waves and beams). Before reach-
ing at the final equilibrium, there can exist a time scale in
which the separation of the electrons into different tem-
perature groups is possible. A plasma system containing
two groups of electrons with different temperatures can
excite/support the waves which are unique in the system.
These two groups of electrons in such plasmas can be termed
as two-temperature superthermal electrons, when both of the
groups follow the kappa distributions with distinct tempera-
tures.

Schippers et al. (2008) have combined a hot and a cold
electron component, while both electrons are kappa dis-
tributed and found a best fit for the electron velocity dis-
tribution. Baluku et al. (2011) used this model as base of
a kinetic theory study for electron-acoustic waves in Sat-
urn’s magnetosphere and then they have studied IA soli-
tons in a plasma with two-temperature kappa distributed
electrons (Baluku and Hellberg 2012). Recently, Masud
et al. (2013a) have studied the characteristic of DIA shock
waves in an unmagnetized dusty plasma consisting of neg-
atively charged static dust, inertial ions, positively charged
positrons following Maxwellian distribution, and superther-
mal electrons with two distinct temperatures. Alam et al.
(2013) have also analyzed the effects of DIA shock waves
in an unmagnetized dusty plasma with two-temperature
kappa distributed electrons. The plasmas composed of
two-temperature superthermal (kappa-distributed) electrons
(Shahmansouri et al. 2013; Schippers et al. 2008; Baluku
et al. 2011; Baluku and Hellberg 2012; Masud et al. 2013a;
Alam et al. 2013) are very relevant to the Saturnian magne-
tosphere (Baluku et al. 2011).

In the last few years, the formation of DIA GSs and DLs
(Masud et al. 2012a; Deeba et al. 2012; Akhter et al. 2013a;
Zobaer et al. 2013) has been a topic of great interest. Akhter
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et al. (2013b) investigated the DIA GSs and DLs in an un-
magnetized dusty plasma system consisting of inertial pos-
itive and negative ions, negatively charged static dust, and
single temperature kappa distributed electrons.

Recently, Saini and Kohli (2013) have studied the small
amplitude dust-acoustic SWs and DLs. They have consid-
ered an unmagnetized four component dusty plasma system
consisting of extremely massive, highly negatively charged
inertial dust grains, inertialess nonextensively distributed
electrons and two temperature ions (Masud and Mamun
2012, Tasnim et al. 2013a).

But up to now, there is no investigation has been made
to study the DIA SWs and DLs with two temperature su-
perthermal (kappa distributed) electrons in planar geome-
try. Therefore, in our present work, we consider a dusty
plasma system containing inertial ions, negatively charged
static dust, and superthermal electrons with two distinct tem-
peratures. We analyze the basic features of DIA GSs and
DLs, which exist beyond limits for the K-dV solitons. The
manuscript is organized as follows: The governing equa-
tions are provided in Sect. 2. The K-dV, mK-dV, and stan-
dard Gardner (SG) equations are derived and numerically
solved in Sects. 3, 4, and 5 respectively. The solitary wave
solution of SG equation is given in Sect. 6, DL solution is
discussed in Sect. 7, and a brief discussion is provided in
Sect. 8.

2 Governing equations

We consider the nonlinear propagation of the DIA waves
in an unmagnetized dusty plasma system containing iner-
tial ions, negatively charged immobile dust, and kappa dis-
tributed electrons with two distinct temperatures. Hence, at
equilibrium, ni0 = ne10 + ne20 + Zdnd0, where ni0 is the
unperturbed ion number density, ne10 (ne20) is the density
of unperturbed lower (higher) temperature electron, nd0 is
the unperturbed dust number density, and Zd is the number
of electrons residing on the dust grain surface. The nonlin-
ear dynamics of the DIA waves, whose phase speed is much
smaller (larger) than the electron (ion) thermal speed in a
planar geometry is governed by

∂ni

∂t
+ ∂

∂x
(niui) = 0, (1)

∂ui

∂t
+ ui

∂ui

∂x
= −∂φ

∂x
, (2)

∂2φ

∂x2
= μe1

(
1 − σ1φ

κe1 − 3
2

)−κe1+ 1
2 − ni + μ

+ μe2

(
1 − σ2φ

κe2 − 3
2

)−κe2+ 1
2 = −ρ, (3)

where ni is the ion particle number density normalized by its
equilibrium value ni0, ui is the ion fluid speed normalized
by Ci = (kBTef /mi)

1/2, φ is the electrostatic wave poten-
tial normalized by kBTef /e, σ1 = Tef /Te1, σ2 = Tef /Te2,
μe1 = ne10/ni0, μe2 = ne20/ni0, μ = Zdnd0/ni0 = 1 −
μe1 − μe2 where Tef = ne0Te1Te2/(ne10Te2 + ne20Te1).
Here ne0 is the total electron number density at equilibrium.
It should be noted that Te1 (Te2) is the lower (higher) elec-
tron temperature, Tef is the effective temperature of two
electrons, Ti is the ion temperature, kB is the Boltzmann
constant, and e is the magnitude of the electron charge. The
time variable t is normalized by ω−1

pi = (mi/4πni0e
2)1/2

and the space variable x is normalized by the effective elec-
tron Debye length λDm = (kBTef /4πni0e

2)1/2.

3 Derivation of K-dV equation

We first derive the well known K-dV equation using the
reductive perturbation method. The K-dV equation has
been introduced by the stretched coordinates (Nahar et al.
2013):

ζ = ε
1
2 (x − Vpt), (4)

τ = ε
3
2 t, (5)

where Vp is the phase speed of the DIA wave and ε is a
smallness parameter measuring the weakness of the disper-
sion (0 < ε < 1). To obtain a dynamical equation, we also
expand the perturbed quantities ni , ui , φ, and ρ in power se-
ries of ε. Let M be any of the system variables ni , ui , and φ,
describing the system’s state at a given position and instant.
We consider small deviations from the equilibrium state
M(0)—which explicitly is n

(0)
i = 1, u

(0)
i = 0, and φ(0) = 0

by taking

M = M(0) +
∞∑

n=1

εnM(n). (6)

To the lowest order in ε, Eqs. (1)–(6) give

u
(1)
i = 1

Vp

ψ, n
(1)
i = 1

V 2
p

ψ, (7)

1

V 2
p

= μe1(κe1 − 1
2 )σ1

κe1 − 3
2

+ μe2(κe2 − 1
2 )σ2

κe2 − 3
2

, (8)

where ψ = φ(1). Equation (8) represents the linear disper-
sion relation for the DIA waves. To the next higher or-
der of ε, we obtain a set of equations, which, after using
Eqs. (7)–(8), can be simplified as

∂n
(1)
i

∂τ
− Vp

∂n
(2)
i

∂ζ
+ ∂u

(2)
i

∂ζ
+ ∂

∂ζ

[
n

(1)
i u

(1)
i

] = 0, (9)
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∂u
(1)
i

∂τ
− Vp

∂u
(2)
i

∂ζ
+ u

(1)
i

∂u
(1)
i

∂ζ
+ ∂φ(2)

∂ζ
= 0, (10)

∂2ψ

∂ζ 2
− μe1

P1P2σ
2
1 ψ2

2P 2
3

+ μe1
P2σ1φ

(2)

P3

− μe2
P4P5σ

2
2 ψ2

2P 2
6

+ μe2
P5σ2φ

(2)

P6
+ n

(2)
i = 0, (11)

where P1 = −1/2 − κe1, P2 = 1/2 − κe1, P3 = −3/2 + κe1,
P4 = −1/2 − κe2, P5 = 1/2 − κe2, and P6 = −3/2 + κe2.

Now, combining Eqs. (9)–(11), we obtain a equation of
the form:

∂ψ

∂τ
+ Aψ

∂ψ

∂ζ
+ β

∂3ψ

∂ζ 3
= 0, (12)

where

A = V 3
p

2

[
3

V 4
p

− μe1P1P2σ
2
1

P 2
3

− μe2P4P5σ
2
2

P 2
6

]
, (13)

β = V 3
p

2
. (14)

Equation (12) is known as K-dV (Korteweg-de Vries) equa-
tion. The stationary localized solution of Eq. (12) is given
by

ψ = ψmsech2
(

ζ

δ1

)
, (15)

where the amplitude ψm and the width δ1 are given by
ψm = 3U0/A and δ1 = √

4β/U0, respectively. As U0 > 0,
Eq. (15) clearly indicates that (i) small amplitude SWs with
ψ > 0, i.e. hump shape (positive potential) solitons exist if
μe1 > 0.342, (ii) SWs with ψ < 0, i.e. dip shape (negative
potential) solitons exist if μe1 ≤ 0.342. To have some nu-
merical appreciations of our results, we have numerically
analyzed the solitary height, the solitary width and solitary
profile by using the general expressions for the coefficients
A and β [i.e., by using Eqs. (13), (14), and (15)]. It is found
that K-dV solitons associated with positive (negative) po-
tential formed far above (below) the critical value (shown
in Figs. 2 and 3). This is happened due to the fact that the
amplitude of the K-dV solitons goes to the infinite value,
which then breaks down the validity of the reductive per-
turbation method. Therefore, more higher order nonlinear
equation should be taken into account to get the formation
of solitons around critical value.

4 Derivation of mK-dV equation

A modified K-dV (mK-dV) equation (Tasnim et al. 2013b)
is obtained by taking the next higher order calculation of ε.

To analyze the nonlinear evolution near the critical param-
eter μe1 � μc, mK-dV equation is obtained from the third
order calculation, which utilizes another set of stretched co-
ordinates. The stretched co-ordinates for mK-dV equation
(Nahar et al. 2013) is:

ζ = ε(x − Vpt), (16)

τ = ε3t. (17)

By using Eqs. (16) and (17) in Eqs. (1)–(3) and (6), we have

found the same values of n
(1)
i , u

(1)
i , and Vp as like as that of

the K-dV equation. To the next higher order of ε, we obtain
a set of equations, which, after using the values of n

(1)
i , u

(1)
i ,

and Vp can be simplified as

u
(2)
i = 1

2V 3
p

ψ2 + φ(2)

Vp

, n
(2)
i = 3

2V 4
p

ψ2 + φ(2)

V 2
p

, (18)

ρ(2) = −1

2
Aψ2 = 0. (19)

To the next higher order of ε, we obtain a set of equations:

∂n
(1)
i

∂τ
− Vp

∂n
(3)
i

∂ζ
+ ∂u

(3)
i

∂ζ
+ ∂

∂ζ

(
n

(1)
i u

(2)
i

)

+ ∂

∂ζ

(
n

(2)
i u

(1)
i

) = 0, (20)

∂u
(1)
i

∂τ
− Vp

∂u
(3)
i

∂ζ
+ u

(1)
i

∂u
(2)
i

∂ζ
+ u

(2)
i

∂u
(1)
i

∂ζ

+ ∂φ(3)

∂ζ
= 0, (21)

∂2ψ

∂ζ 2
+ μe1

P1P2P3σ
3
1 ψ3

6P 3
3

− μe1
P1P2σ

2
1 ψφ(2)

P 2
3

+ μe1
P2σ1φ

(3)

P3
+ μe2

P4P5P6σ
3
2 ψ3

6P 3
6

− μe2
P4P5σ

2
2 ψφ(2)

P 2
6

+ μe2
P5σ2φ

(3)

P6
+ n

(3)
i = 0. (22)

Now, combining Eqs. (20)–(22) we obtain a equation of the
form:

∂ψ

∂τ
+ α1α2ψ

2 ∂ψ

∂ζ
+ α2

∂3ψ

∂ζ 3
= 0, (23)

where

α1 = 15

2V 6
p

+ μe1
P1P2P3σ

3
1

2P 3
3

+ μe2
P4P5P6σ

3
2

2P 3
6

, (24)

α2 = V 3
p

2
. (25)
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Equation (23) is known as mK-dV equation. The stationary
SW solution of Eq. (23) is, therefore, directly given by

ψ = ψmsech

(
ζ

δ2

)
, (26)

where the amplitude ψm and the width δ2 are given by
ψm = √

6U0/α1α2 and δ2 = ψm
√

γ1, γ1 = α1/6. The am-
plitude and width variation of mK-dV solitons are nearly
valid around critical value. The mK-dV equation has a soli-
tary wave solution around μe1 = μc, but not any DLs so-
lution. Therefore, we proceed into next higher order equa-
tion known as standard-Gardner (sG) equation (higher order
nonlinear equation), because the sG equation has both SWs
and DLs.

5 Derivation of SG equation

To derive the DIA GSs we follow Eq. (19) by analyzing
the ingoing solutions of Eqs. (1)–(3) which provides A = 0
as ψ �= 0. A feasible feature expressed from Eq. (15) is,
for A > (<)0 the dusty plasma supports hump (dip) shape
DIA SWs which are associated with a positive (negative)
potential, and no SW can exist at A = 0 and A ∼ 0. It is
to be noted that A is a function of μe1, μe2, κe1, κe2, σ1,
and σ2. Hence, to find the parametric regimes correspond-
ing to A = 0, we have to express one (viz. μe1) of these six
parameters in terms of the other parameters (viz. μe2, κe1,
κe2, σ1, and σ2). Therefore, A(μe1 = μc) = 0, and the criti-
cal condition (μc) can be written as

μe1 = μc = 1

6R1R2σ
2
1

[
Q1Q2σ

2
1 − 6Q3Q4μe2σ1σ2

+
√

R1R2R3σ
2
1

]
, (27)

where Q1 = −1+4κ2
e1, Q2 = (3−2κe2)

2, Q3 = 3+4(−2+
κe1)κe1, Q4 = 3 + 4(−2 + κe2)κe2, R1 = (1 − 2κe1)

2, R2 =
(3 − 2κe2)

2, R3 = (1 + 2κe1)
2R2σ

2
1 − 12(−3 + 2κe1)(1 +

2κe1)Q4μe2σ1σ2 + 12(3 − 2κe1)
2(−1 + 4κ2

e2)μe2σ
2
2 .

Equation (27) represents the critical value of μe1 above
(below) which the SWs with a positive (negative) potential
exists, gives the value of μc. We note that A = 0 at its critical
value μe1 = μc � 0.342 (which is a solution of A = 0). One
can find from Eq. (27) that μc � 0.342 for a set of dusty
plasma parameters (Masud et al. 2013a) (viz. μe2 = 0.04,
σ1 = 2.5, σ2 = 0.1, κe1 = 20, and κe2 = 2). We note that μc

can vary with σ1 and μe2 (shown in Fig. 1), and one can
take any other critical value within this range that supports
the dusty plasma situation under consideration. Using this
dusty plasma parameters (Masud et al. 2013a), σ1 = 1.8−5,
and μe2 = 0.01−0.09, we have the existence of the small
amplitude SWs with a positive potential for μe1 > μc, and

Fig. 1 The A = 0 graph which represents the variation of μc with σ1
and μe2, where μc is the critical value of μe1 above (below) which
compressive (rarefactive) DIA solitary structures are formed

with a negative potential for μe1 < μc. So, for μe1 around
its critical value (μc), A = A0 can be expressed as

A0 � s

(
∂A

∂μe1

)
μe1=μc

|μe1 − μc| = c1sε, (28)

where |μe1 − μc| is a small and dimensionless parameter,
and can be taken as the expansion parameter ε, i.e. |μe1 −
μc| � ε, and s = 1 for μe1 > μc and s = −1 for μe1 < μc.
c1 is a constant depending on the dusty plasma parameters
(κe1, κe2, σ1, σ2, μe1, and μe2) and is given by

c1 = 6P 2
2 μe1σ

2
1

P 2
3

+ 6P2P5μe2σ1σ2

P3P6
− P1P2σ

2
1

P 2
3

. (29)

The value of c1 for a set of dusty plasma parameters (Masud
et al. 2013a) (viz. μe1 = 0.342, μe2 = 0.04, σ1 = 2.5, σ2 =
0.1, κe1 = 20, and κe2 = 2) is 7.13865. Now, ρ(2) can be
expressed as

ε2ρ(2) � −ε3 1

2
c1sψ

2, (30)

which, therefore, must be included in the third order Pois-
son’s equation. To the next higher order in ε, we obtain the
following equation

∂2ψ

∂ζ 2
+ 1

2
c1sψ

2 + μe1
P1P2P3σ

3
1 ψ3

6P 3
3

− μe1
P1P2σ

2
1 ψφ(2)

P 2
3

+ μe1
P2σ1φ

(3)

P3
+ μe2

P4P5P6σ
3
2 ψ3

6P 3
6

− μe2
P4P5σ

2
2 ψφ(2)

P 2
6

+ μe2
P5σ2φ

(3)

P6
+ n

(3)
i = 0. (31)
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After simplification, we can write from Eq. (31)

∂ψ

∂τ
+ sc1α2ψ

∂ψ

∂ξ
+ α2α3ψ

2 ∂ψ

∂ξ
+ α2

∂3ψ

∂ξ3
= 0, (32)

where

α3 = 15

2V 6
p

+ μe1
P1P2P3σ

3
1

2P 3
3

+ μe2
P4P5P6σ

3
2

2P 3
6

. (33)

Equation (32) is known as SG equation. It is also called
mixed mK-dV equation. It contains both ψ -term of K-dV
and ψ2-term of mK-dV equation. If we neglect ψ2 term and
put c1sα2 = A and α2 = β then the Gardner equation re-
duces to K-dV equation which is derived in Eq. (12). How-
ever, in this K-dV equation the nonlinear term vanishes at
μe1 = μc, and is not valid around μe1 = μc, and μe1 � μc ,
which make soliton amplitude large enough to break down
its validity. But the Gardner equation derived here is valid
for μe1 ∼ μc.

6 SW solution of SG equation

To analyze stationary GSs, we first introduce a transforma-
tion ζ = ξ − U0τ which allows us to write Eq. (32), under
the steady state condition, as

1

2

(
dψ

dζ

)2

+ V (ψ) = 0, (34)

where the pseudo-potential V (ψ) is

V (ψ) = − U0

2α2
ψ2 + c1s

6
ψ3 + α3

12
ψ4. (35)

We note here that U0 and α2 are always positive. It is obvi-
ous from Eq. (35) that

V (ψ)|ψ=0 = dV (ψ)

dψ

∣∣∣∣
ψ=0

= 0, (36)

d2V (ψ)

dψ2

∣∣∣∣
ψ=0

< 0. (37)

The conditions Eqs. (36) and (37) imply that SW solutions
of Eq. (34) exist if

V (ψ)|ψ=ψm = 0. (38)

The latter can be solved as

U0 = c1sα2

3
ψm1,2 + α2α3

6
ψ2

m1,2, (39)

ψm1,2 = ψm

[
1 ∓

√
1 + U0

V0

]
, (40)

where ψm = −c1s/α3, and V0 = c2
1s

2α2/6α3. Now, using
Eqs. (35) and (40) in Eq. (34) we have

(
dψ

dζ

)2

+ γψ2(ψ − ψm1)(ψ − ψm2) = 0, (41)

where γ = α3/6. The SW solution of Eq. (34) or Eq. (41) is,
therefore, directly given by

ψ =
[

1

ψm2
−

(
1

ψm2
− 1

ψm1

)
cosh2

(
ξ

�

)]−1

, (42)

where ψm1,2 are given in Eq. (40), and SWs width � is

� = 2√−γψm1ψm2
. (43)

Equation (42) represents the SW solution of SG equation
(32).

7 DL solution

The DL solution of Eq. (32) is given by

ψ = ψm

2

[
1 + tanh

(
ζ

�

)]
, (44)

with

U0 = − s2α2

6α3
, (45)

ψm = 6U0

sα2
, (46)

� = 2

ψm
√−γ

, (47)

where γ = α3/6 and ψm (�) is the DL height (thickness).
This clearly indicates that Eq. (44) represents a DL solution
if and only if γ < 0, i.e., α3 < 0. When α2α3 = 0, then, in
this case, we can find the value of the parameter μe1 as the
critical one (μe1 = μd ≈ 0.271) for a set of dusty plasma pa-
rameters (viz. μe2 = 0.04, σ1 = 2.5, σ2 = 0.1, κe1 = 20, and
κe2 = 2) (Masud et al. 2013a). For μd > 0.271, α3 > 0, DL
does not form. Therefore, negative potential DLs exist for
μd < 0.271 and s = −1 in our present considered plasma
system.

8 Discussion

We have considered an unmagnetized dusty plasma sys-
tem consisting of negatively charged immobile dust, inertial
ions, and inertialess superthermal electrons with two distinct
temperatures. We have investigated the basic features (am-
plitude, width, polarity etc.) of such a dusty plasma system
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Fig. 2 Showing the variation of amplitude of the positive K-dV soli-
tons with μe2 for μe1 = 0.45, σ1 = 2.5, σ2 = 0.1, κe1 = 20, κe2 = 2,
and U0 = 0.1. The upper (pink) curve is for μe2 = 0.01, the mid-
dle (blue) one is for μe2 = 0.05, and the lower (green) one is for
μe2 = 0.09

Fig. 3 Showing the variation of amplitude of the negative K-dV soli-
tons with κe2 for σ1 = 2.5, σ2 = 0.1, μe1 = 0.25, μe2 = 0.04, κe1 = 20,
and U0 = 0.1. The upper (green) curve is for κe2 = 2, the middle (blue)
one is for κe2 = 1.8, and the lower (pink) one is for κe2 = 1.6

by deriving the K-dV, mK-dV and SG equations using the
reductive perturbation method. The DLs solution obtained
from SG equation is also analyzed. The results that we have
obtained from this investigation can be summarized as fol-
lows:

1. We have found that K-dV equation supports either com-
pressive (positive) or rarefactive (negative) SWs, while
depending on the critical value μc, the co-existence of
both compressive and rarefactive SWs are found in SG
solitons. But only compressive structures are formed for
mK-dV solitons and rarefactive structures are formed for
DLs.

2. The basic features of hump and dip types DIA-GSs are
identified, which are found to exist beyond the K-dV
limit, i.e. for μe1 ∼ 0.342. The DIA GSs are completely
different from the K-dV solitons because μe1 = 0.342

Fig. 4 Showing the variation of amplitude of the positive mK-dV soli-
tons with μe1 for μe2 = 0.04, κe1 = 20, κe2 = 2, σ1 = 2.5, σ2 = 0.1,
and U0 = 0.1. The upper (green) curve is for μe1 = 0.36, the middle
(blue) one is for μe1 = 0.38, and the lower (pink) one is for μe1 = 0.4

corresponds to the vanishing of the nonlinear coeffi-
cient of the K-dV equation, and μe1 ∼ 0.342 corresponds
to extremely large amplitude K-dV solitons for which
the validity of the reductive perturbation method breaks
down.

3. The critical value of μe1 (μc) varies with relative electron
number density μe2 and relative temperature ratio σ1 as
displayed in Fig. 1. It is observed that the critical value μc

increases gradually with the increase of σ1, but decreases
abruptly with the increase of μe2.

4. The K-dV solitons are found for both above or below the
critical value (i.e., when μe1 > μc or μe1 < μc).

5. It is observed that at μe1 > 0.342, the positive potential
K-dV solitons exist, whereas at μe1 < 0.342, the negative
potential K-dV solitons exist (shown in Figs. 2 and 3).

6. It is clear that the amplitude of the positive potential
K-dV solitons decreases (increases) with the increase
(decrease) of μe2 (shown in Fig. 2). On the other hand,
the amplitude of the negative potential K-dV solitons de-
creases (increases) with the increase (decrease) of spec-
tral index parameter κe2 (shown in Fig. 3).

7. Only positive potential (compressive) SWs are found for
mK-dV solitons. It is observed that with the increase (de-
crease) of relative electron number density μe1, the am-
plitude of the SWs decreases (increases) slightly as de-
picted in Fig. 4.

8. We have found both compressive and rarefactive GSs co-
exist in the system under consideration. It is to be noted
that the amplitude of the positive potential GSs decreases
(increases) abruptly with the increase (decrease) of rela-
tive temperature ratio σ1 (displayed in Fig. 5) and the
amplitude of the negative potential GSs increases (de-
creases) slightly with the increase (decrease) of relative
temperature ratio σ2 (depicted in Fig. 6).
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Fig. 5 Showing the variation of amplitude of the positive GSs with σ1
for μe1 = 0.35, μe2 = 0.04, κe1 = 20, κe2 = 2, σ2 = 0.1, c1 = 7.139,
s = 1, and U0 = 0.1. The upper (green) curve is for σ1 = 4.5, the mid-
dle (blue) one is for σ1 = 3.5, and the lower (pink) one is for σ1 = 2.5

Fig. 6 Showing the variation of amplitude of the negative GSs with σ2
for μe1 = 0.32, μe2 = 0.04, κe1 = 20, κe2 = 2, σ1 = 2.5, c1 = 7.139,
s = −1, and U0 = 0.1. The upper (pink) curve is for σ2 = 0.1, the
middle (blue) one is for σ2 = 0.3, and the lower (green) one is for
σ2 = 0.5

9. It is observed that negative potential (rarefactive) DLs
exist around μe1 < μd and s = −1. No DLs are found
above the critical value (i.e. μe1 > μd ). Furthermore, it
is seen that for larger values of spectral index parameter
κe1, the amplitude of the negative potential DLs increases
as displayed in Fig. 7.

The ranges of the dusty plasma parameters (Masud et al.
2013a) (viz. σ1 = 1.8−5, σ2 = 0.1−0.8, μe1 = 0.1−0.9 and
μe2 = 0.01−0.09) used in this numerical analysis are very
wide, and correspond to space and laboratory dusty plasma
situations. It is observed that superthermality effects play an
important role on the variation of amplitude of solitary struc-
tures as well as DLs. It may be stressed that the results of
our current investigation should be useful in understanding
the nonlinear features of electrostatic disturbances in space
dusty plasmas, viz. Saturn’s magnetosphere (Baluku and

Fig. 7 Formation of the negative potential DLs due to the variation
of κe1 for μe1 = 0.18, μe2 = 0.04, κe2 = 2, σ1 = 2.5, σ2 = 0.1, and
s = −1. The upper (pink) curve is for κe1 = 20, the middle (blue) one
is for κe1 = 25, and the lower (green) one is for κe1 = 30

Hellberg 2012), pulsar magnetosphere (Kundu et al. 2011),
earth’s magnetospheric plasma sheet (Christon et al. 1988),
solar wind (Pierrard and Lemaire 2013) etc., in which nega-
tively charged dust fluid, ions, and electrons of two different
temperatures (hot and cold) can be the major plasma species.

References

Akhter, T., Hossain, M.M., Mamun, A.A.: IEEE Trans. Plasma Sci. 41,
1607 (2013a)

Akhter, T., Hossain, M.M., Mamun, A.A.: Astrophys. Space Sci. 345,
283 (2013b)

Alam, M.S., Masud, M.M., Mamun, A.A.: Chin. Phys. B (2013).
doi:10.1088/1674-1056/22/11/000001

Alinejad, H.: Astrophys. Space Sci. 334, 331 (2011)
Baluku, T.K., Hellberg, M.A.: Phys. Plasmas 15, 123705 (2008)
Baluku, T.K., Hellberg, M.A.: Phys. Plasmas 19, 012106 (2012)
Baluku, T.K., Hellberg, M.A., Kourakis, I., Saini, N.S.: Phys. Plasmas

17, 053702 (2010)
Baluku, T.K., Hellberg, M.A., Mace, R.L.: J. Geophys. Res. 116,

A04227 (2011)
Barkan, A., Merlino, R.L., D’Angelo, N.: Phys. Plasmas 2, 3563

(1995)
Barkan, A., D’Angelo, N., Merlino, R.L.: Planet. Space Sci. 44, 239

(1996)
Buti, B.: Phys. Lett. 76A, 251 (1980)
Choi, C.-R., Min, K.-W., Rhee, T.-N.: Phys. Plasmas 18, 092901

(2011)
Christon, S.P., Mitchell, D.G., Williams, D.J., Frank, L.A., Huang,

C.Y., Eastman, T.E.: J. Geophys. Res. 93, 2562 (1988)
Deeba, F., Tasnim, S., Mamun, A.A.: IEEE Trans. Plasma Sci. 40, 2247

(2012)
El-Labany, S.K., El-Sharmy, E.F., El-Warraki, S.A.: Astrophys. Space

Sci. 315, 287 (2008)
Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., Saini, N.S.:

Phys. Plasmas 16, 094701 (2009)
Homann, A., Melzer, A., Peters, S., Piel, A.: Phys. Rev. E 56, 7138

(1997)
Hossain, M.M., Mamun, A.A., Ashrafi, K.S.: Phys. Plasmas 18,

103704 (2011)
Hussain, S.: Chin. Phys. Lett. 29, 065202 (2012)

http://dx.doi.org/10.1088/1674-1056/22/11/000001


Astrophys Space Sci (2014) 349:245–253 253

Kundu, S.K., Ghosh, D.K., Chatterjee, P., Das, B.: Bulg. J. Phys. 38,
409 (2011)

Kundu, N.R., Masud, M.M., Ashrafi, K.S., Mamun, A.A.: Astrophys.
Space Sci. 343, 279 (2012)

Leubner, M.P.: J. Geophys. Res. 87, 6335 (1982)
Mace, R.L., Hellberg, M.A.: Phys. Plasmas 2, 2098 (1995)
Mamun, A.A.: Phys. Lett. A 372, 1490 (2008)
Mamun, A.A., Jahan, N., Shukla, P.K.: J. Plasma Phys. 75, 413 (2009)
Masood, W., Hussain, S., Mahmood, S., Mirza, A.M.: Chin. Phys. Lett.

26, 122301 (2009)
Masud, M.M., Mamun, A.A.: JETP Lett. 96(12), 855 (2012)
Masud, M.M., Mamun, A.A.: Pramāna 81(1), 169 (2013)
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