
Astrophys Space Sci (2014) 349:529–537
DOI 10.1007/s10509-013-1623-y

O R I G I NA L A RT I C L E

Reconstruction and stability of f (R,T ) gravity with Ricci
and modified Ricci dark energy

M. Sharif · M. Zubair

Received: 30 July 2013 / Accepted: 30 August 2013 / Published online: 18 September 2013
© Springer Science+Business Media Dordrecht 2013

Abstract We take the Ricci and modified Ricci dark en-
ergy models to establish a connection with f (R,T ) grav-
ity, where R is the scalar curvature and T is the trace of the
energy-momentum tensor. The function f (R,T ) is recon-
structed by considering this theory as an effective descrip-
tion of these models. We consider a specific model which
permits the standard continuity equation in this modified
theory. It is found that f (R,T ) functions can reproduce ex-
pansion history of the considered models which is in ac-
cordance with the present observational data. We also ex-
plore the Dolgov-Kawasaki stability condition for the recon-
structed f (R,T ) functions.

Keywords Modified gravity · Dark energy

1 Introduction

Contemporary observational data on the cosmic expansion
history (Fedeli et al. 2009; Perlmutter et al. 1999; Riess
et al. 2007; Spergel et al. 2003; Tegmark et al. 2004) af-
firm the expanding paradigm of the universe. These devel-
opments may be considered as indication either for the ex-
istence of strange energy component dubbed as dark energy
(DE) or for the modification of Einstein-Hilbert action. In
the first stance, various representations (Bamba et al. 2012;
Sharif and Zubair 2010a, 2010b, 2012a) have been sug-
gested in general relativity to understand the characteristics
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of DE. In particular, the holographic DE (HDE) appeared
as one of the most prominent candidates which has exten-
sively been studied in literature (Huang and Gong 2004;
Zhang and Wu 2005). This model has been constructed by
incorporating the holographic principle in quantum gravity
and its energy density is given by Cohen et al. (1999), Li
(2004)

ρϑ = 3c2M2
pL−2,

where L is the infrared (IR) cutoff, c is a constant and
M−2

p = 8πG is the reduced Planck mass. The future event
horizon is suggested as the most appropriate choice for
the IR cutoff to make it consistent with the observational
data (Li 2004). Cai (2007) found this proposal as a challeng-
ing issue of causality which motivated the modification of
IR cutoff. In Gao et al. (2009), the Ricci scalar is intimated
as another proposal resulting in new form of HDE termed
as Ricci DE (RDE). Granda and Oliveros (2008, 2009) also
suggested a new IR cutoff for HDE in terms of H and Ḣ

which generalizes the RDE known as new HDE (NHDE).
In the second path, the issue of cosmic acceleration can

be counted on the basis of modified theories of gravity.
In this respect, there are various candidates such as f (R)

(Sotiriou and Faraoni 2010), f (T ) (Ferraro and Fiorini
2007), where T is the torsion and f (R,T ) (Harko et al.
2011) etc. The f (R,T ) gravity is a more general modi-
fied theory involving coupling between matter and geometry
which is described by the action (Harko et al. 2011)

I = 1

2κ2

∫
f (R,T )

√−gdx4 +
∫

Lm

√−gdx4, (1)

where κ2 = 8πG, and Lm denotes matter Lagrangian. If we
vary the action (1) with respect to the metric tensor then the
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following field equations can be obtained

κ2Tαβ − fT (R,T )Tαβ − fT (R,T )Θαβ − RαβfR(R,T )

+ 1

2
gαβf (R,T ) − (gαβ� − ∇α∇β)fR(R,T )

= 0, (2)

where fR and fT denote derivatives of f (R,T ) with respect

to R and T respectively, � = gμν∇μ∇μ and Θαβ = gμνδTμν

δgαβ .
This theory has drawn significant attention and some valu-
able results have been explored in literature. We have dis-
cussed the validity of thermodynamics laws, existence of
power law solutions and energy conditions for FRW uni-
verse (Sharif and Zubair 2012b, 2013a, 2013b). The cosmo-
logical reconstruction is an important aspect in alternative
theories of gravity and is still under consideration. Recently,
some explicit models of f (R,T ) gravity are presented for
anisotropic universe which can produce the phantom era of
DE (Sharif and Zubair 2012c). Houndjo (2012) discussed
the reconstruction scheme by introducing an auxiliary scalar
field and HDE model.

In a recent paper (Sharif and Zubair 2013c), the cos-
mology of holographic and new agegraphic f (R,T ) mod-
els is investigated for flat FRW universe. We have found
that the reconstructed f (R,T ) models can reproduce the
quintessence/phantom regimes of the universe satisfying
current observations. In this paper, we consider RDE and
NHDE models to develop an equivalence between these pro-
posals and f (R,T ) gravity without introducing any addi-
tional DE component. We reconstruct the f (R,T ) models
and discuss their future evolution for different values of es-
sential parameters. The paper has the following format. In
next section, we reconstruct the function f (R,T ) accord-
ing to RDE and NHDE models and explore future evolution.
Section 3 explores Dolgov-Kawasaki stability conditions for
this function. Finally, we discuss the results in Sect. 4.

2 Reconstructing f (R,T ) gravity

In this study, we consider the Lagrangian as sum of two in-
dependent functions of R and T given by

f (R,T ) = f1(R) + f2(T ), (3)

Consequently, the corresponding field equations are found
as

κ2Tαβ − f2T Tαβ − f2T Θαβ + 1

2
gαβ(f1 + f2)

− Rαβf1R − (gαβ� − ∇α∇β)f1R

= 0. (4)

If the matter content is given by perfect fluid then the effec-
tive Einstein field equations can be constituted as

κ̃−2
(

Rαβ − 1

2
Rgαβ

)
= Tαβ + T

(de)
αβ , (5)

where κ̃2 = (κ2 + f2T )/f1R , Tαβ is the matter energy-
momentum tensor and

T
(de)
αβ = κ̃−2

f1R

[
1

2
(f1 + f2 + 2pf2T − Rf1R)gαβ

+ (∇α∇β − gαβ�)f1R

]

provides the contribution from DE components. In flat FRW
background, the 00 component of the field equations can be
written as

3H 2 = κ2ρ + ρde, (6)

where ρ is the matter energy density

ρde = 1

f1R

[(
(1 − f1R)κ2 + f2T

)
ρ

+ 1

2
(f1 + f2 − Rf1R) − 3HṘf1RR

]
, (7)

H = ȧ/a, R = −6(Ḣ + 2H 2) and dot represents the time
derivative. Likewise, the 11 component implies the pressure
of DE contribution as

pde = 1

f1R

[
1

2
(Rf1R − f1 − f2) + (R̈ + 2HṘ)f1RR

+ Ṙ2f1RRR

]
. (8)

Combining Eqs. (7) and (8), we get the evolution equation
in terms of f1 as

Ṙ2f1RRR + (R̈ − HṘ)f1RR + [
κ2T

+ (1 + ωde)ρde

]
f1R + (

κ2 + f2T

)
T

= 0, (9)

which is the third order differential equation in f1 involving
contribution both from scalar curvature and matter density.

In this modified theory, the divergence of matter energy-
momentum tensor is defined as Harko et al. (2011)

∇αTαβ = fT

κ2 − fT

[
(Tαβ + Θαβ)∇α lnfT

+ ∇αΘαβ − 1

2
gαβ∇αT

]
. (10)
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For the choice of Lagrangian (3) having perfect fluid as a
matter source with EoS ω = p/ρ, we get

ρ̇ + 3H(ρ + p) = −1

κ2 + f2T

[
(ρ + p)Ṫ f2T T

+ ṗf2T + 1

2
Ṫ f2T

]
. (11)

It is evident that energy-momentum tensor is not covariantly
conserved due to the coupling between matter and geometry
in this theory. Though it is a general statement where the
right side represents the energy transfer but still there is a
possibility of conserved energy-momentum tensor. To make
the Lagrangian (3) consistent with the standard continuity
equation, we need to set an additional constraint so that the
right side of the above equation vanishes. In such scenario,
we have (Alvarenga et al. 2013)

(1 + ω)Tf2T T + 1

2
(1 − ω)f2T = 0,

which results in functional form of f2(T ) as

f2(T ) = α1T
1+3ω

2(1+ω) + α2, (12)

where αi ’s are integration constants.
Another interesting case is to consider f2 in linear form

i.e., f2(T ) = λT even then matter is nonconserved and from
Eq. (11), we obtain the relation

ρ̇ + 3Hζ(1 + ω)ρ = 0,

where ζ = 2(1+λ)
2+(3−ω)λ

. The solution of this equation implies

ρ = ρ0a
−3(1+w)ζ = ρ0a

−3(1+w)+ λ(2+ω)−3
2+(3−ω)λ , (13)

where ρ0 is an integration constant. The above result is anal-
ogous to Eq. (18) discussed in Bisabr (2012), where the non-
conserved matter equation is due to the non-minimal cou-
pling in f (R) gravity. The significant difference in these re-
sults is the contribution of source term. In our case, matter
contents play its role in nonconserved continuity equation
while in Bisabr (2012), it involves the curvature correction.
In this reconstruction scheme, we shall consider both func-
tional forms of f2(T ) given by (12) as well as f2(T ) = λT

and find the curvature contribution term f1. In the following,
we reconstruct the f (R,T ) models corresponding to Ricci
and modified Ricci DE candidates.

2.1 Model I

First we consider the RDE model whose energy density is
defined as Gao et al. (2009)

ρϑ = 3σ
(
Ḣ + 2H 2), (14)

where ‘σ ’ is a constant to be determined by the observa-
tional data. In Gao et al. (2009), it is shown that σ = 0.46
is the most probable choice for which RDE behaves like
dark matter at high redshifts whereas universe evolves into
phantom dominated epoch in future evolution. Feng (2009)
reconstructed f (R) theory corresponding to RDE and ex-
plored the effect of parameter ‘σ ’ on f (R) model. The EoS
parameter ωϑ for RDE is given by

ωϑ = −1 − 1

3

d ln(ΩϑH 2)

d lna
,

Ωϑ = σ
[
2 − d/dt

(
H−1)].

(15)

Modified theories can be reconstructed for a known expan-
sion history in terms of scale factor. We intend to reconstruct
the f (R,T ) model corresponding to RDE.

Let us consider the scale factor of the form

a(t) = a0(tp − t)−n, a0 > 0 (16)

which represents the phantom phase of the universe result-
ing in big rip singularity within finite-time. Here n is a posi-
tive constant and t < tp, tp is the probable time when finite-
time future singularity may appear. The derivatives of R and
H are determined as

Ṙ2 = −2R3

3n(2n + 1)
, R̈ − HṘ = (n − 3)R2

3n(2n + 1)
.

Using the above relation (16), matter energy density and
(1 + ωde)ρde can be expressed in terms of Ricci scalar as

ρm = [σ(2n + 1) − n]R
2(2n + 1)

, (1 + ωde)ρde = σR

3n
. (17)

Initially, we consider f2(T ) given by Eq. (12). Substituting
the above results in Eq. (9), we obtain a 3rd order differential
equation in terms of f1 whose solution is

f1(R) = ε+Rε+σ3 + ε−Rε−σ4 + χ1
√

R + χ2R + σ5, (18)

where

ε± = 1

4

[
3 + n ±

√
1 − 8σ − 2n(1 + 14σ) + n2(13 − 24σ)

]
,

χ1 =
3
√

2n(1 + 2n)σ1

√
σ+n(−1+2σ)

1+2n

2σ + n(1 + 7σ) + n2(−3 + 6σ)
,

χ2 = 3n[σ + n(−1 + 2σ)]
2σ + 7nσ + n2(−3 + 6σ)

.

Thus the f (R,T ) model

f (R,T ) = ε+Rε+σ3 + ε−Rε−σ4 + χ1
√

R + χ2R + σ5

+ σ1T
1+3ω

2(1+ω) + σ2, (19)
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Fig. 1 Evolution of f1(R) versus R and redshift for σ = 0.5

Fig. 2 Evolution of NEC and 1 + ωde for the model (19) with σ = 0.5

can reproduce the expansion history corresponding to RDE.
To keep the above function real valued, we set σ = 0.5

(otherwise χ1 would be imaginary) and n � 17. We plot the
function f1(R) against R and redshift z as shown in Fig. 1.
The behavior of NEC is shown in Fig. 2(a) for σ = 0.5 and
n � 17. The violation of NEC would imply ωde < −1 which
represents phantom DE and is a possible candidate of the
present accelerated expansion. The phantom regime favors
recent observational cosmology implying accelerated cos-
mic expansion. We also plot the EoS parameter in Fig. 2(b)
which shows that RDE favors the quintom model of DE
where the EoS parameter crosses the phantom divide line
(ωϑ = −1). This evolution of ωϑ is consistent with current
observational constraints on RDE (Gao et al. 2009).

Now we consider the case of f2(T ) = λT which does not
imply the standard continuity equation. Solving Eq. (9), we
obtain the functional form of f1 as

f1(R) = ε+Rε+σ3 + ε−Rε−σ4 + χ3R + σ5,

χ3 = (1 + λ)χ2. (20)

In f (R) gravity, the effective gravitational constant is
Geff = G/fR(R) and to make the theory consistent with

solar system experiments the present day value of fR is con-
sidered as unity (Capozziello et al. 2005). Here, we can find
the constants σi ’s by applying the initial conditions as in
f (R) gravity (Capozziello et al. 2005). For this modified
theory with f2(T ) = λT , we have Geff = (G + λ)/f1R and
if one assumes f1R = 1 then Geff would be an approximate
constant. In this perspective, we make the similar assump-
tion as in Houndjo (2012), Houndjo and Piattella (2012),
Sharif and Zubair (2013c) and set the following initial con-
ditions

(
df1

dt

)
t=t0

=
(

dR

dt

)
t=t0

,

(
d2f1

dt2

)
t=t0

=
(

d2R

dt2

)
t=t0

,

(f1)t=t0 = R0 + δ, δ = 6H 2
0

(
1 − ΩM0 − 3

2
λΩM0

)
.

(21)

Making use of the above conditions, the solution (20) can be
rewritten as

f1(R) = C+Rε+ + C−Rε− + χ3R + β, (22)
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Fig. 3 In plot (a) reconstructed f1(R) is shown for n = 17 and different values of σ and (b) the plot of f1 in terms of redshift for σ = 0.46

Fig. 4 The left plot shows the effect of coupling parameter λ versus R. The difference in evolution is evident for large values of λ. This evolutionary
paradigm is also shown for redshift in the right plot

where

C+ = (χ3 − 1)(ε− − 1)

ε+(ε+ − ε−)R
ε+−1
0

,

C− = (χ3 − 1)(ε+ − 1)

ε−(ε− − ε+)R
ε−−1
0

,

β = δ + (1 − χ3)R0 + 1

ε+ε−
(χ3 − 1)(ε+ + ε− − 1)R0.

The plot of function f1(R) for different values of σ =
0.46,0.48,0.5 and λ = 1 is shown in Fig. 3. The parame-
ter σ plays significant role in the evolution of function f1.
The variation in evolution of f1 corresponding to differ-
ent values of coupling parameter is shown in Fig. 4. The
EoS parameter is analyzed for σ = 0.46, n � 8 and λ = 1
as shown in Fig. 5(a). This model favors the phantom era
of DE which is also true for other values of λ as depicted
in Fig. 5(b).

2.2 Model II

Here we consider the HDE with Granda-Oliveros cutoff as
second model and reconstruct the corresponding f (R,T )

function. The energy density of NHDE is given by Granda
and Oliveros (2008, 2009)

ρϑ = 3M2
p

(
μH 2 + υḢ

)
, (23)

where μ and υ are positive constants. Granda and Oliv-
eros (2008, 2009) proposed that μ ≈ 0.93 and υ ≈ 0.5
are the best fit values of these parameters so that NHDE
is consistent with the theory of big-bang nucleosynthesis.
In Wang and Xu (2010), the best fit values of parameters
(μ,υ) have been developed from observationally consis-
tent region in both flat and non-flat NHDE models. It is
found that the most appropriate parameters for flat model are
μ = 0.8502+0.0984+0.1299

−0.0875−0.1064 and υ = 0.4817+0.0842+0.1176
−0.0773−0.0955.
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Fig. 5 Evolution of 1 + ωde for the model (22) with σ = 0.46. In left plot, we set λ = 1 and n � 8 whereas for the right plot n = 10 is fixed and λ

lies in the range {−5,5}

Fig. 6 Evolution of f1(R) versus R and redshift in NHDE for μ = 1, υ = 0.63

For the choice of scale factor (16), we determine ρm and
(1 + ωde)ρde of NHDE in the following form

ρm = [υ − n(1 − μ)]R
2(2n + 1)

,

(1 + ωde)ρde = (μn + υ)R

3n(2n + 1)
.

(24)

We first take the function (12) and solve Eq. (9) for NHDE,
we obtain f1 in the form of Eq. (18) with

ε± = 1

4

[
3 + n

±
√

1 − 8υ − 2n(1 + 4μ + 6υ) + n2(13 − 12μ)
]
,

χ1 =
3
√

2n(1 + 2n)σ1

√
υ+n(−1+μ)

1+2n

2υ + n(1 + 2μ + 3υ) + 3n2(−1 + μ)
,

χ2 = 3n[υ + n(−1 + μ)]
2υ + n(1 + 2μ + 3υ) + 3n2(−1 + μ)

.

(25)

It is found that the function f1(R) corresponding to NADE
is real valued for μ = 1, υ = 0.63 and n � 18 and its evolu-
tion is shown in Fig. 6. The plot of 1 + ωde for NHDE re-

Fig. 7 Evolution of EoS parameter corresponding to f (R,T ) of the
type (18) in NHDE

constructed f (R,T ) model is shown in Fig. 7. It can be seen
that EoS parameter intersects the phantom divide line repre-
senting phantom model of DE in future evolution. This be-
havior depicts the picture of ωde in NHDE where this choice
would result in ωde < −1.

If one follows the similar procedure as in the previous
case, the f (R,T ) model for the choice of f2(T ) = λT can
be reconstructed as given in Eq. (22). For this f (R,T )
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Fig. 8 Evolution of reconstructed model f (R,T ) = f1(R) + λT in
NHDE. Plot (a) shows the variation in f1 versus R for three indepen-
dent values of (μ,υ). Since the variation in evolution of f1 is quite

prominent depending on the values of (μ,υ), so for the redshift case
we only consider (μ,υ) = (0.85,0.48) as shown in plot (b). We have
set λ = 1 and n � 18

Fig. 9 Evolution of f1 versus R and redshift in NHDE for different values of λ. Here, we set (μ,υ) = (0.85,0.48) and n = 18

model, ε± and χ2 are given by Eq. (25) and χ3 = (1 +
λ)χ2. The function f1(R) corresponding to NHDE is plot-
ted against R and redshift in Fig. 8. We also introduce the
variation in coupling parameter λ and results are evident
from Fig. 9. It is found that large values of λ modify the
behavior of curves in a significant way. In this case, the
evolution of EoS parameter and its evolution is shown in
Fig. 10. It is quiet evident from this plot that reconstructed
f (R,T ) = f1(R)+λT model in NHDE favors the phantom
regime of the universe.

3 Dolgov-Kawasaki stability conditions

The study of stability criteria is a significant issue in mod-
ified theories for the viability of such modification to gen-
eral relativity. One of the important instabilities is Dolgov-
Kawasaki instability criterion which was developed to con-
strain the f (R) theory (Dolgov and Kawasaki 2003; De Fe-

lice and Tsujikawa 2010). The viable f (R) models require
to satisfy the following stability conditions

f
′
(R) > 0, f

′′
(R) > 0, R≥R0,

where R0 is the Ricci scalar today. This instability cri-
terion is also generalized to f (R) gravity involving cou-
pling between matter and geometry (Bertolami and Sequeira
2005; Wang et al. 2010). Recently, a new modification is
introduced to f (R,T ) gravity involving the contraction of
the Ricci tensor and energy-momentum tensor so that La-
grangian is of the form f (R,T ,RμνT

μν) (Haghani et al.
2013; Sharif and Zubair 2013d). The authors suggested that
Dolgov-Kawasaki instability needs to be modified in this
case whereas for f (R,T ) gravity, this criteria remains the
same as in f (R) gravity. Thus for f (R,T ) gravity, we have

fR(R,T ) > 0, fRR(R,T ) > 0, R≥R0,
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Fig. 10 Evolution of 1 + ωde for f (R,T ) = f1(R) + λT model in NHDE. In (a) and (b) we set {(μ,υ) = (0.85,0.48), λ = 1} and
{(μ,υ) = (0.85,0.48), n = 6} respectively

We are interested to explore the stability of f (R,T ) grav-
ity consistent with the Ricci and modified Ricci DE. The
results of these constraints are explained as follows.

• First consider the model (19) and its second derivative
with respect to scalar curvature as given by

fRR(R,T ) = ε2+(ε+ − 1)σ3R
ε+−2

+ ε2−(ε− − 1)σ4R
ε−−2 − χ1

4R3/2
, (26)

where ε±, χ1 depend on parameters m and σ . If fRR > 0,
then we need to have σi > 0, ε± > 1 and χ1 < 0. For the
viability of model (19), we set σ = 0.5, n � 17 which
clearly implies that the first two terms are positive. To
satisfy the condition χ1 < 0, we choose σ1 < 0 (the pa-
rameter involving the contribution from matter part.)

• The f (R,T ) model corresponding to RDE with function
f2(T ) = λT is given by

f (R,T ) = C+Rε+ + C−Rε− + χ3R + β + λT , (27)

Taking the double derivative of this equation with respect
to the scalar curvature, we obtain

fRR = ε+(ε+ − 1)C+Rε+−2 + ε−(ε− − 1)C−Rε−−2.

(28)

Now fRR > 0 if C± > 0, ε± > 1 and C± depend on χ3

and ε±. For this model, we can set different values of
σ and classify other constraints. For σ = 0.46, we need
to have n � 8 (to keep the function real valued) and this
choice makes ε± > 1, χ3 > 1 and C± > 0.

• Now we consider the f (R,T ) model corresponding to
NHDE whose curvature derivative is given by Eq. (26)
and the parameters (ε±, χ1) are represented by Eq. (25).
For the viability of this model, we choose (μ,υ) =

(1,0.63) and n � 18. This model would satisfy the sta-
bility condition if (σ3, σ4) > 0, ε± > 1 (which is true for
the chosen parameters) and χ1 < 0 (or σ1 < 0).

• Finally, we present the stability of f (R,T ) = f1(R)+λT

model consistent with NHDE. In this case, double deriva-
tive with respect to scalar curvature is given by Eq. (28),
where the parameters ε± and constants C± are given by

ε± = 1

4

[
3 + n

±
√

1 − 8υ − 2n(1 + 4μ + 6υ) + n2(13 − 12μ)
]
,

C+ = (χ3 − 1)(ε− − 1)

ε+(ε+ − ε−)R
ε+−1
0

,

C− = (χ3 − 1)(ε+ − 1)

ε−(ε− − ε+)R
ε−−1
0

.

Here we are free to choose the values of (μ,υ) and then
constrain n to make the function real valued. We set
(μ,υ) = (0.85,0.48) and n � 6 which imply ε± > 1 and
constants C± > 0 i,e., the function f (R,T ) satisfies the
Dolgov-Kawasaki stability condition.

4 Conclusions

The f (R,T ) theory can be regarded as a potential candidate
in explaining the role of DE to accelerate the cosmic expan-
sion. Such theory is of great importance as the source of DE
components can be seen from an integrated contribution of
both curvature and matter Lagrangian part. A suitable form
of Lagrangian which can explain the cosmic evolution in
a definite way is still under consideration. In recent papers
(Sharif and Zubair 2012c, 2013b, 2013c; Houndjo 2012;
Houndjo and Piattella 2012), the cosmological reconstruc-
tion in f (R,T ) gravity has been explored under different
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scenarios such as power law expansion history, anisotropic
universe model and class of HDE models, while the nu-
merical reconstruction scheme is used to develop the corre-
spondence in HDE and this modified theory (Houndjo 2012;
Houndjo and Piattella 2012). So far, the reconstruction is ex-
ecuted only for the function (3) with linear form of f2(T ) or
f1(R) that do not imply the standard matter conservation
equation in this theory.

Though the strong coupling of curvature and trace of mat-
ter tensor violate the usual continuity equation but there ex-
ists suitable model to settle this problem as shown in Al-
varenga et al. (2013). In this paper, we have applied the
reconstruction program (formulated in Sharif and Zubair
(2013c) to obtain the f (R,T ) functions corresponding to
RDE and NHDE models. We have discussed the functional
form of f2 given by Eq. (12) and also f2(T ) = λT . We
have presented the evolution of f (R,T ) models for both
RDE and NHDE depending on the values of parameters. It is
found that EoS parameter ωde of the reconstructed models is
in agreement with the observational results of WMAP5 (Ko-
matsu et al. 2009). Finally, we have used Dolgov-Kawasaki
instability criteria for f (R,T ) gravity in similar form as
in f (R) gravity and explored the viability of reconstructed
models. It is found that the selection of parameters in ex-
plaining the evolution of f (R,T ) models is consistent with
the viability conditions.
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