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Abstract We study the orbits and manifolds near the equi-
librium points of a rotating asteroid. The linearised equa-
tions of motion relative to the equilibrium points in the
gravitational field of a rotating asteroid, the characteristic
equation and the stable conditions of the equilibrium points
are derived and discussed. First, a new metric is presented
to link the orbit and the geodesic of the smooth manifold.
Then, using the eigenvalues of the characteristic equation,
the equilibrium points are classified into 8 cases. A theo-
rem is presented and proved to describe the structure of the
submanifold as well as the stable and unstable behaviours
of a massless test particle near the equilibrium points. The
linearly stable, the non-resonant unstable, and the resonant
equilibrium points are discussed. There are three families
of periodic orbits and four families of quasi-periodic or-
bits near the linearly stable equilibrium point. For the non-
resonant unstable equilibrium points, there are four relevant
cases; for the periodic orbit and the quasi-periodic orbit,
the structures of the submanifold and the subspace near the
equilibrium points are studied for each case. For the resonant
equilibrium points, the dimension of the resonant manifold
is greater than 4, and we find at least one family of peri-
odic orbits near the resonant equilibrium points. As an ap-
plication of the theory developed here, we study relevant or-
bits for the asteroids 216 Kleopatra, 1620 Geographos, 4769
Castalia and 6489 Golevka.
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1 Introduction

Recently, several sample return missions to Near-Earth As-
teroid (NEA) have been selected (Barucci 2012; Barucci
et al. 2012a, 2012b; Boynton et al. 2012; Brucato 2012; Duf-
fard et al. 2011), including MarcoPolo-R1 and OSIRIS-Rex.2

MarcoPolo-R is a sample-return mission to a NEA se-
lected for an assessment study in the framework of ESA’s
Cosmic Vision 2015-25 program (Barucci 2012; Barucci
et al. 2012a, 2012b; Brucato 2012). The primary target of
the MarcoPolo-R mission is the asteroid (341843) 2008
EV5, which offers an optimal mission profile both from
the operational and technical standpoints (Brucato 2012).
OSIRIS-Rex is a sample-return mission to asteroid (101955)
Bennu that was selected by NASA in May 2011 as the third
New Frontiers Mission (Boynton et al. 2012). The analysis
of data collected by MarcoPolo-R should help us to under-
stand the geomorphology, dynamics and evolution of a NEA
(Barucci et al. 2012a).

Missions like the ones described above demand a detailed
study of the dynamics of a spacecraft (which is customar-
ily modelled as a massless test particle) near asteroids. This
interesting topic will be the subject of our study. The ap-
plication of the classical method of the Legendre polyno-
mial series to the gravitational potential of asteroids pro-
duces divergencies at some points due to the irregular shape
of the asteroid (Balmino 1994; Elipe and Lara 2003). Sev-
eral strategies have been considered to solve this difficulty.

1https://www.oca.eu/MarcoPolo-R/.
2http://osiris-rex.lpl.arizona.edu/.

mailto:jiangyu_xian_china@163.com
mailto:baoyin@tsinghua.edu.cn
https://www.oca.eu/MarcoPolo-R/
http://osiris-rex.lpl.arizona.edu/


84 Astrophys Space Sci (2014) 349:83–106

Some simple-shaped bodies have been used to simulate the
motion of a particle moving near an asteroid as well as to
help understanding the equilibrium points and the periodic
orbits near asteroids. The dynamics around a straight seg-
ment (Riaguas et al. 1999; Elipe and Lara 2003), a solid
circular ring (Broucke and Elipe 2005), a homogeneous an-
nulus disk (Angelo and Claudio 2007; Fukushima 2010),
and a homogeneous cube (Liu et al. 2011) have been stud-
ied in detail. These studies are limited to simple and sym-
metric bodies, which rotate around their symmetry axes.
For these bodies, the characteristic equation at the equilib-
rium points is a quartic equation (Liu et al. 2011). Werner
and Scheeres (1996) modelled the shape and the gravita-
tional potential of the asteroids using homogeneous poly-
hedrons and applied this method to 4769 Castalia. The poly-
hedron model is more precise than the simple-shaped-body
models and the Legendre polynomial model. However, this
model presents many free parameters (Elipe and Lara 2003;
Werner and Scheeres 1996).

The dynamic equation of motion of a massless particle
near a rotating asteroid in the body-fixed frame was studied
and applied to the cases of 4769 Castalia and 4179 Toutatis
by Scheeres et al. (1996, 1998). The zero-velocity surface
is defined using the Jacobi integral and this surface sepa-
rates the forbidden regions from the allowable regions for
the particle (Scheeres et al. 1996; Yu and Baoyin 2012a).
Families of periodic orbits near asteroids can be calculated
using Poincaré maps and numerical iterations (Scheeres et
al. 1996, 1998; Yu and Baoyin 2012b). The positions of the
equilibrium points near the asteroids as well as the eigenval-
ues and the periodic orbits near the equilibrium points can
be calculated numerically (Yu and Baoyin 2012a).

The stability of the equilibrium points was discussed by
several authors using special models. The periodic orbits of
a particle around a massive straight segment were inves-
tigated in Riaguas et al. (1999). A finite straight segment
with constant linear mass density was considered to study
the chaotic motion and the equilibrium points around the as-
teroid (433) Eros (Elipe and Lara 2003). The dynamics of a
particle around a homogeneous annulus disk was analysed
in Alberti and Vidal (2007). Moreover, a precise numerical
method to calculate the acceleration vector that is caused by
a uniform ring or disk was described in Fukushima (2010).
The dynamics of a particle around a non-rotating 2nd-degree
and order-gravity field was examined, and the closed-form
solutions for the averaged orbital motion of the particle were
derived (Scheeres and Hu 2001).

This paper aims to derive the characteristic equation of
the equilibrium points near a rotating asteroid and to pro-
vide some corollaries about the stability, the instability and
the resonance of the equilibrium points. Then, we will dis-
cuss the orbits and the structure of the submanifold and the
subspace near the equilibrium points. This work focuses on

the dynamics near the equilibrium points of a rotating aster-
oid while providing the theoretical basis for orbital design
and control of spacecraft motion near an asteroid.

The linearised equations of motion relative to the equi-
librium points in the gravitational field of a rotating asteroid
are derived in Sect. 2; then, the characteristic equation of
the equilibrium points is presented. The stability conditions
of the equilibrium points in the potential field of a rotating
asteroid are obtained and proved in Sect. 3. Furthermore,
a new metric in a smooth manifold is provided in Sect. 4
to link the orbit and the geodesic of the smooth manifold.
The equilibrium points are classified into eight cases using
the eigenvalues of the characteristic equation in Sect. 5. It
is found that the structure of the submanifold near the equi-
librium point is related to the eigenvalues. A theorem that
describes the structure of the submanifold and the stable
and unstable behaviours of the particle near the equilibrium
points is proved. Using this theorem, the linearly stable, the
non-resonant unstable and the resonant equilibrium points
are studied. The equilibrium point is resonant if and only
if at least two pure imaginary eigenvalues are equal. Sub-
sequently, four families of quasi-periodic orbits are found
near the linearly stable equilibrium point. The periodic and
quasi-periodic orbits, the structure of the submanifolds and
subspaces near the non-resonant unstable equilibrium points
are studied. For the resonant equilibrium points, there are
three cases. For each case, the resonant orbits and the reso-
nant manifolds are analysed. There is at least one family of
periodic orbits near each resonant equilibrium point, and the
dimension of the resonant manifold is greater than 4.

In Sect. 6, the theory developed in Sects. 2, 3, 4 and 5 is
applied to asteroids 216 Kleopatra, 1620 Geographos, 4769
Castalia and 6489 Golevka. For asteroids 216 Kleopatra,
1620 Geographos and 4769 Castalia, the equilibrium points
are unstable, which are denoted as E1, E2, E3 and E4. There
are two families of periodic orbits and one family of quasi-
periodic orbits on the central manifold near each of the equi-
librium points E1 and E2, while there is only one family of
periodic orbits on the central manifold near each of the other
two equilibrium points E3 and E4.

For asteroid 6489 Golevka, two of the equilibrium points,
which are denoted as E1 and E2, are unstable while the other
two, labelled as E3 and E4, are linearly stable. There are two
families of periodic orbits as well as one family of quasi-
periodic orbits on the central manifold near each of the two
unstable equilibrium points E1 and E2. On the other hand,
there are three families of periodic orbits as well as four fam-
ilies of quasi-periodic orbits on the central manifold near
each of the two linearly stable equilibrium points E3 and E4.



Astrophys Space Sci (2014) 349:83–106 85

2 Equations of motion

The equation of motion relative to the rotating asteroid can
be given as (Scheeres et al. 1996)

r̈ + 2ω × ṙ + ω × (ω × r) + ω̇ × r + ∂U(r)
∂r

= 0 (1)

where r is the body-fixed vector from the centre of mass of
the asteroid to the particle, ω is the rotational angular ve-
locity vector of the asteroid relative to the inertial frame of
reference, and U(r) is the gravitational potential.

Let us define a function H as (Scheeres et al. 1996)

H = 1

2
ṙ · ṙ − 1

2
(ω × r)(ω × r) + U(r) (2)

If ω is time-invariant, then H is also time-invariant, and it is
called the Jacobian constant.

The effective potential can be defined as (Scheeres et al.
1996; Yu and Baoyin 2012a)

V (r) = −1

2
(ω × r)(ω × r) + U(r) (3)

Hence, the equation of motion can be written as

r̈ + 2ω × ṙ + ω̇ × r + ∂V (r)
∂r

= 0 (4)

For a uniformly rotating asteroid, Eq. (4) can be written as
(Yu and Baoyin 2012a)

r̈ + 2ω × ṙ + ∂V (r)
∂r

= 0 (5)

and the Jacobian constant can be given by

H = 1

2
ṙ · ṙ + V (r) (6)

The zero-velocity manifolds are determined by the follow-
ing equation (Scheeres et al. 1996; Yu and Baoyin 2012a)

V (r) = H (7)

The inequality V (r) > H denotes the forbidden region
for the particle, whereas the inequality V (r) ≤ H denotes
the allowable region for the particle. The equation V (r) = H

implies that the velocity of the particle relative to the rotating
body-fixed frame is zero.

Let ω be the modulus of the vector ω; then, the unit vector
ez is defined by ω = ωez. The body-fixed frame is defined
through a set of orthonormal right-hand unit vectors e

e ≡
⎧
⎨

⎩

ex

ey

ez

⎫
⎬

⎭
(8)

The frame of reference used across this paper is the body-
fixed frame. The equilibrium points are the critical points
of the effective potential V (r). Thus, the equilibrium points
satisfy the following condition

∂V (x, y, z)

∂x
= ∂V (x, y, z)

∂y
= ∂V (x, y, z)

∂z
= 0 (9)

where (x, y, z) are the components of r in the body-fixed
coordinate system. Let (xL, yL, zL)T denote the coordinates
of the critical point; the effective potential V (x, y, z) can
be written using a Taylor expansion at the equilibrium point
(xL, yL, zL)T. To study the stability of the equilibrium point,
the equations of motion relative to the equilibrium point
are linearised, and the characteristic equation of motion is
derived. In addition, it is necessary to check whether any
solutions of the characteristic equation have positive real
components. The Taylor expansion of the effective potential
V (x, y, z) at the point (xL, yL, zL)T can be written as

V (x, y, z) = V (xL, yL, zL) + 1

2

(
∂2V

∂x2

)

L
(x − xL)2

+ 1

2

(
∂2V

∂y2

)

L
(y − yL)2

+ 1

2

(
∂2V

∂z2

)

L
(z − zL)2

+
(

∂2V

∂x∂y

)

L
(x − xL)(y − yL)

+
(

∂2V

∂x∂z

)

L
(x − xL)(z − zL)

+
(

∂2V

∂y∂z

)

L
(y − yL)(z − zL) + · · · (10)

where the solving derivation sequence is changeable, which
implies that

∂2V

∂x∂y
= ∂2V

∂y∂x
,

∂2V

∂x∂z
= ∂2V

∂z∂x
,

∂2V

∂y∂z
= ∂2V

∂z∂y

Let’s define

ξ = x − xL

η = y − yL

ζ = z − zL

,

Vxx =
(

∂2V

∂x2

)

L

Vyy =
(

∂2V

∂y2

)

L

Vzz =
(

∂2V

∂z2

)

L

and

Vxy =
(

∂2V

∂x∂y

)

L

Vyz =
(

∂2V

∂y∂z

)

L

Vxz =
(

∂2V

∂x∂z

)

L

(11)

Combining these equations with Eq. (5), the linearised equa-
tions of motion relative to the equilibrium point can be ex-
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pressed as

ξ̈ − 2ωη̇ + Vxxξ + Vxyη + Vxzζ = 0

η̈ + 2ωξ̇ + Vxyξ + Vyyη + Vyzζ = 0

ζ̈ + Vxzξ + Vyzη + Vzzζ = 0

(12)

It is natural to write the characteristic equation in the fol-
lowing form
∣
∣
∣
∣
∣
∣

λ2 + Vxx −2ωλ + Vxy Vxz

2ωλ + Vxy λ2 + Vyy Vyz

Vxz Vyz λ2 + Vzz

∣
∣
∣
∣
∣
∣
= 0 (13)

Furthermore, it can be written as

λ6 + (
Vxx + Vyy + Vzz + 4ω2)λ4 + (

VxxVyy

+ VyyVzz + VzzVxx − V 2
xy − V 2

yz − V 2
xz + 4ω2Vzz

)
λ2

+ (
VxxVyyVzz + 2VxyVyzVxz − VxxV

2
yz − VyyV

2
xz

− VzzV
2
xy

) = 0 (14)

where λ denotes the eigenvalues of Eq. (12). Equation (14) is
a sextic equation for λ. The stability of the equilibrium point
is determined by six roots of Eq. (13). Let λi(i = 1,2, . . . ,6)

be the roots of Eq. (13). The equilibrium point is asymp-
totically stable if and only if Reλi < 0 for i = 1,2, . . . ,6,
i.e., the equilibrium point is a sink (minimum) of the non-
linear dynamics system (Eq. (5)). Furthermore, the equilib-
rium point is non-resonant unstable if and only if there is a
i equals to one of 1,2, . . . ,6, such that Reλi < 0, i.e., the
equilibrium point is a source or a saddle.

3 Stability of the equilibrium points in the potential
field of a rotating asteroid

In this section, the stability of the equilibrium points in the
potential field of a rotating asteroid is studied. First, the roots
of the characteristic equation at the equilibrium point are in-
vestigated; then, a theorem about the eigenvalues is given.
In addition, a sufficient condition for the stability of equilib-
rium points is presented, which only depends on the Hessian
matrix of the effective potential. Finally, a necessary and
sufficient condition for the stability of equilibrium points is
also presented.

Let’s denote

P(λ) = λ6 + (
Vxx + Vyy + Vzz + 4ω2)λ4 + (

VxxVyy

+ VyyVzz + VzzVxx − V 2
xy − V 2

yz − V 2
xz

+ 4ω2Vzz
)
λ2 + (

VxxVyyVzz + 2VxyVyzVxz

− VxxV
2
yz − VyyV

2
xz − VzzV

2
xy

)

and it follows that P(λ) = P(−λ). Hence:

Proposition 1 If λ is an eigenvalue of the equilibrium point
in the potential field of a uniformly rotating asteroid, then
−λ, λ̄, and −λ̄ are also eigenvalues of the equilibrium
point. Namely, all eigenvalues are likely to have the form
±α(α ∈ R, α > 0), ±iβ(β ∈ R, β > 0), and ±σ ± iτ (σ, τ ∈
R;σ, τ > 0).

Theorem 1 If the matrix

⎛

⎝
Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

⎞

⎠

is positive definite, the equilibrium point in the potential field
of a rotating asteroid is stable.

Proof Equation (12) can be expressed as

MẌ + GẊ + KX = 0, (15)

where

X = [
ξ η ζ

]T
, M =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ,

G =
⎛

⎝
0 −2ω 0

2ω 0 0
0 0 0

⎞

⎠ , K =
⎛

⎝
Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

⎞

⎠

The matrices M,G, and K satisfy MT = M with M > 0,
GT = −G, and KT = K, respectively. The system that can
be expressed by the equation MẌ + GẊ + KX = 0 is stable
if the matrix

K =
⎛

⎝
Vxx Vxy Vxz

Vxy Vyy Vyz

Vxz Vyz Vzz

⎞

⎠

is positive definite. �

Theorem 1 is a sufficient condition for the stability of the
equilibrium points in the potential field of a rotating aster-
oid. The following Theorem 2 will provide a necessary and
sufficient condition for the stability of the equilibrium points
in the potential field of a rotating asteroid.

Theorem 2 The equilibrium point in the potential field of a
rotating asteroid is stable if and only if

⎧
⎪⎪⎨

⎪⎪⎩

Vxx + Vyy + Vzz + 4ω2 > 0
VxxVyy + VyyVzz + VzzVxx + 4ω2Vzz > V 2

xy + V 2
yz + V 2

xz
VxxVyyVzz + 2VxyVyzVxz > VxxV

2
yz + VyyV

2
xz + VzzV

2
xy

A2 + 18ABC > 4A3C + 4B3 + 27C2

(16)
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where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = Vxx + Vyy + Vzz + 4ω2

B = VxxVyy + VyyVzz + VzzVxx − V 2
xy − V 2

yz − V 2
xz

+ 4ω2Vzz

C = VxxVyyVzz + 2VxyVyzVxz − VxxV
2
yz − VyyV

2
xz

− VzzV
2
xy

Proof Consider the linearised equation of motion relative to
the equilibrium point

MẌ + GẊ + KX = 0

Because the matrices M, G, K satisfy MT = M with M > 0,
GT = −G, KT = K. The linearised equation is a gyroscope
conservative system.

The characteristic equation of the gyroscope conservative
system is

P(λ) = λ6 + (
Vxx + Vyy + Vzz + 4ω2)λ4 + (

VxxVyy

+ VyyVzz + VzzVxx − V 2
xy − V 2

yz − V 2
xz

+ 4ω2Vzz
)
λ2 + (

VxxVyyVzz + 2VxyVyzVxz

− VxxV
2
yz − VyyV

2
xz − VzzV

2
xy

) = 0

Using the stability condition of the gyroscope conservative
system (Hughes 1986), the conclusion can easily be ob-
tained. �

From Theorem 2, it can be noted that the necessary and
sufficient condition for the stability of the equilibrium points
in the potential field of a rotating asteroid depends on the
effective potential and the rotational angular velocity of the
asteroid.

4 Orbits, differentiable manifold and geodesic

Previously, we denoted (x, y, z) as the position of the space-
craft in the asteroid body-fixed coordinate system. Assum-
ing that A3 is the topological space generated by (x, y, z),
the open sets of A3 are naturally defined. It is clear that A3 is
a smooth manifold. In this section, a metric dρ2 is provided
so that the geodesic of (A3, dρ2) is the orbit of the particle
relative to the asteroid.

Theorem 3 Denote dρ2 = 2m(h − U)[dr · dr − (ω × r) ·
(ω×r)]; then, the orbit of the particle relative to the asteroid
on the manifold H = h is the geodesic of (A3, dρ2) with the
metric dρ2. In addition, the geodesic of (A3, dρ2) with the
metric dρ2 is the orbit of the particle relative to the asteroid
on the manifold H = h.

Proof The equation of motion is Eq. (1), and the Jacobian
constant is expressed by Eq. (2).

Let

J =
∫ t2

t1

[
dr · dr − (ω × r) · (ω × r)

]
dt (17)

Then, on the manifold H = h, the variation is zero.

δJ = 0

On the manifold H = h, the following equation holds

dr
dt

· dr
dt

− (ω × r) · (ω × r) = 2(h − U) (18)

Substituting this result into Eq. (17) yields the following

J =
∫ r2

r1

dρ

from which it can be shown that the variation δJ along the
orbit is zero. This result implies that the orbit on the man-
ifold H = h is the geodesic of (A3, dρ2) with the metric
dρ2, and the geodesic of (A3, dρ2) with the metric dρ2 is
the orbit on the manifold H = h. �

Denote M = (A3, dρ2), where M is a smooth manifold,
and the metric dρ2 is not positive definite. For the equilib-
rium point L ∈ M , denote its tangent space as TLM . Then,
dimM = dimTLM = 3. Let

TM =
⋃

p∈M

TpM = {
(p, q)|p ∈ M,q ∈ TpM

}

then, TM is its tangent bundle. It follows that dim TM = 6.
Let Ξ be a sufficiently small open neighbourhood of the
equilibrium point on the smooth manifold M . Then, the
tangent bundle of Ξ is T Ξ = ⋃

p∈Ξ TpΞ = {(p, q)|p ∈
Ξ,q ∈ TpΞ}, and dimT Ξ = 6. Let (S,Ω) be a 6-dimen-
sional symplectic manifold near the equilibrium point
such that S and T Ξ are topological homeomorphism but
not diffeomorphism, where Ω is a non-degenerate skew-
symmetric bilinear quadratic form.

5 Manifold, periodic orbits and quasi-periodic orbits
near equilibrium points

To determine the motion, the manifold, the periodic orbits
and the quasi-periodic orbits near the equilibrium points, the
stability and the eigenvalues of the equilibrium points must
be known.
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5.1 Eigenvalues and submanifold

The equilibrium point in the potential field of a rotating as-
teroid has 6 eigenvalues, which are in the form of ±αj (α ∈
R, α > 0; j = 1,2,3), ±iβj (β ∈ R, β > 0; j = 1,2), and
±σ ± iτ (σ, τ ∈ R;σ, τ > 0). In fact, the forms of the eigen-
values determine the structure of the submanifold and the
subspace. There is a bijection between the form of the eigen-
values and the submanifold or the subspace.

Let us denote the Jacobian constant at the equilibrium
point by H(L), and the eigenvector of the eigenvalue λj

as uj . Let us define the asymptotically stable, the asymp-
totically unstable and the central manifold of the orbit on
the manifold H = h near the equilibrium point, where h =
H(L) + ε2, and ε2 is sufficiently small that there is no other
equilibrium point L̃ in the sufficiently small open neigh-
bourhood on the manifold (S,Ω) with the Jacobian constant
H(L̃) that satisfies H(L) ≤ H(L̃) ≤ h.

The asymptotically stable manifold Ws(S), the asymp-
totically unstable manifold Wu(S), and the central mani-
fold Wc(S) are tangent to the asymptotically stable sub-
space Es(L), the asymptotically unstable subspace Eu(L),
and the central subspace Ec(L) at the equilibrium point, re-
spectively, where

Es(L) = span
{
uj |Reλj < 0

}
,

Ec(L) = span
{
uj |Reλj = 0

}
,

Eu(L) = span
{
uj |Reλj > 0

}

Let’s define Wr(S) as the resonant manifold, which is
tangent to the resonant subspace Er(L) = span{uj |∃λk, s.t.

Reλj = Reλk = 0, Imλj = Imλk, j �= k}.
Thus, it can be seen that (S,Ω) � T Ξ ∼= Ws(S) ⊕

Wc(S)⊕Wu(S), where � denotes a topological homeomor-
phism, ∼= denotes a diffeomorphism, and ⊕ denotes a direct
sum. Then, Er(L) ⊆ Ec(L) and Wr(S) ⊆ Wc(S).

By defining TLS as the tangent space of the manifold
(S,Ω), the homeomorphism of the tangent space can be
written as TLS ∼= Es(L)⊕Ec(L)⊕Eu(L). Considering the
dimension of the manifolds, the following equations hold

dimWs(S) + dimWc(S) + dimWu(S) = dim(S,Ω)

= dimT Ξ = 6

dimEs(L) + dimEc(L) + dimEu(L) = dimTLS = 6

dimEr(L) = dimWr(S) ≤ dimEc(L) = dimWc(S)

Based on the conclusions above, the following theorem can
be obtained.

Theorem 4 There are eight cases for the non-degenerate
equilibrium points in the potential field of a rotating aster-
oid:

Case 1: The eigenvalues are different and in the form
of ±iβj (βj ∈ R, βj > 0; j = 1,2,3); then, the struc-
ture of the submanifold is (S,Ω) � T Ξ ∼= Wc(S), and
dimWr(S) = 0.

Case 2: The forms of the eigenvalues are ±αj (αj ∈ R, αj >

0, j = 1) and ±iβj (βj ∈ R, βj > 0; j = 1,2), and the
imaginary eigenvalues are different; then, the structure of
the submanifold is (S,Ω) � T Ξ ∼= Ws(S) ⊕ Wc(S) ⊕
Wu(S), dimWc(S) = 4, dimWs(S) = dimWu(S) = 1,
and dimWr(S) = 0.

Case 3: The forms of the eigenvalues are ±αj (αj ∈ R, αj >

0; j = 1,2) and ±iβj (βj ∈ R, βj > 0, j = 1); then, the
structure of the submanifold is (S,Ω) � T Ξ ∼= Ws(S) ⊕
Wc(S) ⊕ Wu(S), dimWr(S) = 0, and dimWs(S) =
dimWc(S) = dimWu(S) = 2.

Case 4: The forms of the eigenvalues are ±αj (αj ∈ R, αj >

0, j = 1) and ±σ ± iτ (σ, τ ∈ R;σ, τ > 0); or ±αj (αj ∈
R, αj > 0, j = 1,2,3); then, the structure of the submani-
fold is (S,Ω) � T Ξ ∼= Ws(S)⊕Wu(S), and dimWs(S) =
dimWu(S) = 3.

Case 5: The forms of the eigenvalues are ±iβj (βj ∈ R, βj >

0, j = 1) and ±σ ± iτ (σ, τ ∈ R;σ, τ > 0); then, the
structure of the submanifold is (S,Ω) � T Ξ ∼= Ws(S) ⊕
Wc(S) ⊕ Wu(S),dimWr(S) = 0, and dimWs(S) =
dimWc(S) = dimWu(S) = 2.

Case 6: The forms of the eigenvalues are ±iβj (βj ∈ R, β1 =
β2 = β3 > 0; j = 1,2,3); then, the structure of the sub-
manifold is (S,Ω) � T Ξ � Wc(S) � Wr(S), and
dimWr(S) = dimWc(S) = 6.

Case 7: The forms of the eigenvalues are ±iβj (βj ∈ R, βj >

0, β1 = β2 �= β3; j = 1,2,3); then, the structure of the sub-
manifold is (S,Ω) � T Ξ ∼= Wc(S), and dimWr(S) = 4.

Case 8: The forms of the eigenvalues are ±αj (αj ∈ R, αj >

0, j = 1),±iβj (βj ∈ R, β1 = β2 > 0; j = 1,2); then, the
structure of the submanifold is (S,Ω) � T Ξ ∼= Ws(S) ⊕
Wc(S) ⊕ Wu(S), dimWr(S) = dimWc(S) = 4, and
dimWs(S) = dimWu(S) = 1.

Theorem 4 describes the structure of the submanifold as
well as the stable and unstable behaviours of the particle
near the equilibrium points. For Cases 6–8, because the res-
onant manifold and the resonant subspace exist, the equi-
librium point is resonant. Considering that the structures of
the submanifold and the subspace are fixed by the charac-
teristic of the equilibrium points, it can be concluded that
the equilibrium points with resonant manifolds are resonant
equilibrium points. Only Case 1 leads to linearly stable equi-
librium points, and Cases 2–5 lead to unstable equilibrium
points. Thus, one can obtain

Corollary 1 The equilibrium point is linearly stable if and
only if it belongs to Case 1. The equilibrium point is unsta-
ble and non-resonant if and only if it belongs to one of the
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Cases 2–5. The equilibrium point is resonant if and only if it
belongs to one of the Cases 6–8.

The classes of orbit near the equilibrium points include:
periodic orbit, Lissajous orbit, quasi-periodic orbit, almost
periodic orbit, etc. Let T k be a k-dimensional torus. Then,
the periodic orbit is on a 1-dimensional torus T 1, the Lis-
sajous orbit is on a 2-dimensional torus T 2, and the quasi-
periodic orbit is on a k-dimensional torus T k(k ≥ 1).

5.2 Linearly stable equilibrium points

Theorem 4 and Corollary 1 show that the linearly stable
equilibrium points only correspond to Case 1. In this sec-
tion, more properties of Case 1 are discussed.

In Case 1, there are three pairs of imaginary eigenvalues
of the equilibrium point, which is linearly stable. The motion
of the spacecraft relative to the equilibrium point follows a
quasi-periodic orbit, which is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Cξ2 cosβ2t + Sξ2 sinβ2t

+ Cξ3 cosβ3t + Sξ3 sinβ3t

η = Cη1 cosβ1t + Sη1 sinβ1t + Cη2 cosβ2t + Sη2 sinβ2t

+ Cη3 cosβ3t + Sη3 sinβ3t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Cζ2 cosβ2t + Sζ2 sinβ2t

+ Cζ3 cosβ3t + Sζ3 sinβ3t

(19)

There are three families of periodic orbits, which have
periods

T1 = 2π

β1
, T2 = 2π

β2
, T3 = 2π

β3
(20)

With the condition
Cξ2 = Cη2 = Cζ2 = Sξ2 = Sη2 = Sζ2 = Cξ3 = Cη3 =

Cζ3 = Sξ3 = Sη3 = Sζ3 = 0, the first family of periodic or-
bits has the form

⎧
⎨

⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t

η = Cη1 cosβ1t + Sη1 sinβ1t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t

(21)

The period of the first family of periodic orbits is
T1 = 2π

β1
.

Denote t0 as the initial time. Then, the initial state can be
expressed as

⎧
⎨

⎩

ξ(t0) = ξ0, ξ̇ (t0) = ξ̇0

η(t0) = η0, η̇(t0) = η̇0

ζ(t0) = ζ0, ζ̇ (t0) = ζ̇0

(22)

and the coefficients yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cξ1 = ξ0 cosβ1t0 − ξ̇0
β1

sinβ1t

Sξ1 = ξ0 sinβ1t0 + ξ̇0
β1

cosβ1t

Cη1 = η0 cosβ1t0 − η̇0
β1

sinβ1t

Sη1 = η0 sinβ1t0 + η̇0
β1

cosβ1t

Cζ1 = ζ0 cosβ1t0 − ζ̇0
β1

sinβ1t

Sζ1 = ζ0 sinβ1t0 + ζ̇0
β1

cosβ1t

(23)

Using Eq. (23), we can calculate the coefficients of the
first families of periodic orbits if we know the initial state.
The other two families of periodic orbits satisfy the condi-
tion

Cξ1 = Cη1 = Cζ1 = Sξ1 = Sη1 = Sζ1 = Cξ3 = Cη3

= Cζ3 = Sξ3 = Sη3 = Sζ3 = 0

or

Cξ1 = Cη1 = Cζ1 = Sξ1 = Sη1 = Sζ1 = Cξ2 = Cη2 = Cζ2

= Sξ2 = Sη2 = Sζ2 = 0

In addition, they have similar forms of the position equation
and the coefficient equation.

Theorem 5 For an equilibrium point in the potential field of
a rotating asteroid, the following conditions are equivalent:

(a) It is linearly stable.
(b) The roots of the characteristic equation P(λ) are in the

form of ±iβj (βj ∈ R, βj > 0; j = 1,2,3), and if j �=
k(j = 1,2,3; k = 1,2,3), then βj �= βk .

(c) The motion of the spacecraft relative to the equilibrium
point follows a quasi-periodic orbit, which is expressed
as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Cξ2 cosβ2t + Sξ2 sinβ2t

+ Cξ3 cosβ3t + Sξ3 sinβ3t

η = Cη1 cosβ1t + Sη1 sinβ1t + Cη2 cosβ2t + Sη2 sinβ2t

+ Cη3 cosβ3t + Sη3 sinβ3t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Cζ2 cosβ2t + Sζ2 sinβ2t

+ Cζ3 cosβ3t + Sζ3 sinβ3t

(d) There are four families of quasi-periodic orbits in the
tangent space of the equilibrium point, which can be ex-
pressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Cξ2 cosβ2t

+ Sξ2 sinβ2t

η = Cη1 cosβ1t + Sη1 sinβ1t + Cη2 cosβ2t

+ Sη2 sinβ2t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Cζ2 cosβ2t

+ Sζ2 sinβ2t
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Cξ3 cosβ3t

+ Sξ3 sinβ3t

η = Cη1 cosβ1t + Sη1 sinβ1t + Cη3 cosβ3t

+ Sη3 sinβ3t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Cζ3 cosβ3t

+ Sζ3 sinβ3t

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ2 cosβ2t + Sξ2 sinβ2t + Cξ3 cosβ3t

+ Sξ3 sinβ3t

η = Cη2 cosβ2t + Sη2 sinβ2t + Cη3 cosβ3t

+ Sη3 sinβ3t

ζ = Cζ2 cosβ2t + Sζ2 sinβ2t + Cζ3 cosβ3t

+ Sζ3 sinβ3t

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Cξ2 cosβ2t

+ Sξ2 sinβ2t + Cξ3 cosβ3t + Sξ3 sinβ3t

η = Cη1 cosβ1t + Sη1 sinβ1t + Cη2 cosβ2t

+ Sη2 sinβ2t + Cη3 cosβ3t + Sη3 sinβ3t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Cζ2 cosβ2t

+ Sζ2 sinβ2t + Cζ3 cosβ3t + Sζ3 sinβ3t

(e) There are four families of quasi-periodic orbits near the
equilibrium point, and they are on the k-dimensional
tori T k(k = 2,3).

(f) There are three families of periodic orbits in the tangent
space of the equilibrium point, which have the periods
T1 = 2π

β1
, T2 = 2π

β2
, T3 = 2π

β3
.

(g) There are three families of periodic orbits near the equi-
librium point.

(h) There is no asymptotically stable manifold near the
equilibrium point, and the roots of the characteristic
equation P(λ) satisfy the following condition: If j �=
k(j = 1,2, . . . ,6; k = 1,2, . . . ,6), then λj �= λk .

(i) There is no unstable manifold near the equilibrium
point, and the roots of the characteristic equation
P(λ) satisfy the following condition: If j �= k(j =
1,2, . . . ,6; k = 1,2, . . . ,6), then λj �= λk .

(j) The dimensions of the central manifold Wc(S) and the
resonant manifold Wr(S) satisfy dimWc(S) = 6 and
dimWr(S) = 0, respectively.

(k) The dimensions of the central subspace Ec(L) and the
resonant subspace Er(L) satisfy dimEc(L) = 6 and
dimEr(L) = 0, respectively.

(l) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Wc(S), Wr(S) = ∅, where ∅ is an empty set.

(m) The structure of the subspace is TLS ∼= Ec(L), and
Er(L) = ∅.

Proof (a) ⇒ (b): Using Theorem 4, it is obvious.
(b) ⇒ (c): Using the solution theory of ordinary differen-

tial equations, one can obtain (c).
(c) ⇒ (d): It is obvious.
(d) ⇒ (e): Among the four families of quasi-periodic

orbits that are expressed in (d), the first three families of

quasi-periodic orbits near the equilibrium point are on 2-
dimensional tori T 2, and the last family of quasi-periodic
orbits near the equilibrium point is on a 3-dimensional
torus T 3.

(e) ⇒ (f): Assuming that there are four families of quasi-
periodic orbits near the equilibrium point, which are on
the k-dimensional tori T k (k = 2,3), we can eliminate
Cases 2–8. Thus, the equilibrium point is linearly stable, and
(a) is established.

Considering (a) and (c), we derive that there are three
families of periodic orbits in the tangent space of the equi-
librium point that have the periods T1 = 2π

β1
, T2 = 2π

β2
and

T3 = 2π
β3

.
(f) ⇒ (g): It is obvious.
(g) ⇒ (a): Because there are three families of periodic

orbits, we can eliminate Cases 2–8 and obtain (a).
(a) ⇒ (i): Because the equilibrium point is linearly stable,

there is no unstable manifold or resonant manifold near the
equilibrium point. We obtain (i).

(h) ⇔ (i) ⇔ (j) ⇔ (k) ⇔ (l) ⇔ (m): It is obvious.
(m) ⇒ (a): The structure of the subspace is TLS ∼=

Ec(L), and Er(L) = ∅. Thus, the dimensions of the un-
stable manifold and the resonant manifold near the equilib-
rium point are equal to 0. Then, the eigenvalues have the
form ±iβj (βj ∈ R, βj > 0; j = 1,2,3), and if j �= k(j =
1,2,3; k = 1,2,3), then βj �= βk . This result leads to (a). �

Strictly speaking, Eq. (19) is the projection of the motion
to the tangent space of the equilibrium point; Eq. (19) is the
approximate expression of the motion. Because Theorem 6
is about the necessary and sufficient conditions of the linear
stability of the equilibrium points in the potential field of a
rotating asteroid, there is a corollary for the linear instability
of the equilibrium points.

Corollary 2 For an equilibrium point in the potential field
of a rotating asteroid, the following conditions are equiva-
lent:

(a) It is linearly unstable.
(b) The roots of the characteristic equation P(λ) do not

have the form ±iβj (βj ∈ R, βj > 0;βj �= βk; j, k =
1,2,3, j �= k).

(c) There are fewer than four families of quasi-periodic or-
bits on the k-dimensional tori T k(k = 2,3) near the
equilibrium point.

(d) There are fewer than three families of periodic orbits in
the tangent space of the equilibrium point.

(e) There is an asymptotically stable manifold near the
equilibrium point or one of the Cases 6–8 is satisfied.

(f) There is an unstable manifold near the equilibrium point
or one of the Cases 6–8 is satisfied.
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(g)

dimWc(S) < 6 or

{
dimWc(S) = 6
dimWr(S) > 0

(h)

dimEc(L) < 6 or

{
dimEc(L) = 6
dimEr(L) > 0

5.3 Unstable equilibrium points

In this section, the unstable equilibrium points with no
resonant manifold are discussed. The unstable equilib-
rium points can be classified into four cases, which have
been presented in Theorem 4. From Theorem 4, it is
known that an equilibrium point is unstable if and only if
dimWu(S) ≥ 1,dimWr(S) = 0, with Case 2 corresponding
to dimWu(S) = 1 and dimWr(S) = 0; Case 3 and Case 5
corresponding to dimWu(S) = 2 and dimWr(S) = 0; Case
4 corresponding to dimWu(S) = 3 and dimWr(S) = 0.

5.3.1 Case 2

There are two pairs of imaginary eigenvalues and one pair
of real eigenvalues for the unstable equilibrium point. The
motion of the spacecraft near this equilibrium point, and rel-
ative to it, is expressed by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Cξ1 cosβ1t + Sξ1 sinβ1t

+ Cξ2 cosβ2t + Sξ2 sinβ2t

η = Aη1e
α1t + Bη1e

−α1t + Cη1 cosβ1t + Sη1 sinβ1t

+ Cη2 cosβ2t + Sη2 sinβ2t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Cζ1 cosβ1t + Sζ1 sinβ1t

+ Cζ2 cosβ2t + Sζ2 sinβ2t

(24)

The almost periodic orbit near the equilibrium point can be
expressed by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Bξ1e
−α1t + Cξ1 cosβ1t + Sξ1 sinβ1t

+ Cξ2 cosβ2t + Sξ2 sinβ2t

η = Bη1e
−α1t + Cη1 cosβ1t + Sη1 sinβ1t

+ Cη2 cosβ2t + Sη2 sinβ2t

ζ = Bζ1e
−α1t + Cζ1 cosβ1t + Sζ1 sinβ1t

+ Cζ2 cosβ2t + Sζ2 sinβ2t

(25)

The central manifold is a 4-dimensional smooth mani-
fold, which is given by Aξ1 = Bξ1 = Aη1 = Bη1 = Aζ1 =
Bζ1 = 0. The motion of the spacecraft relative to the equi-
librium point on the central manifold follows a Lissajous
orbit.

There are two families of periodic orbits on the central
manifold. The first family of periodic orbits is given by

{
Aξ1 = Bξ1 = Aη1 = Bη1 = Aζ1 = Bζ1 = 0
Cξ2 = Sξ2 = Cη2 = Sη2 = Cζ2 = Sζ2 = 0

and the period is T1 = 2π
β1

. The second family of periodic
orbits is given by

{
Aξ1 = Bξ1 = Aη1 = Bη1 = Aζ1 = Bζ1 = 0
Cξ1 = Sξ1 = Cη1 = Sη1 = Cζ1 = Sζ1 = 0

and the period is

T2 = 2π

β2

The asymptotically stable manifold is generated by

⎧
⎨

⎩

ξ = Bξ1e
−α1t

η = Bη1e
−α1t

ζ = Bζ1e
−α1t

(26)

It is a 1-dimensional smooth manifold.
The unstable manifold is generated by

⎧
⎨

⎩

ξ = Aξ1e
α1t

η = Aη1e
α1t

ζ = Aζ1e
α1t

(27)

It is a 1-dimensional smooth manifold. The general result of
Case 2 is stated as follows.

Theorem 6 For an equilibrium point in the potential field of
a rotating asteroid, the following conditions are equivalent:

(a) The roots of the characteristic equation P(λ) are in the
form of ±αj (αj ∈ R, αj > 0, j = 1) and ±iβj (βj ∈
R, βj > 0; j = 1,2), where β1 �= β2.

(b) The motion of the spacecraft near the equilibrium point,
and relative to it, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Cξ1 cosβ1t + Sξ1 sinβ1t

+ Cξ2 cosβ2t + Sξ2 sinβ2t

η = Aη1e
α1t + Bη1e

−α1t + Cη1 cosβ1t + Sη1 sinβ1t

+ Cη2 cosβ2t + Sη2 sinβ2t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Cζ1 cosβ1t + Sζ1 sinβ1t

+ Cζ2 cosβ2t + Sζ2 sinβ2t

(c) The characteristic roots are different, and there are two
families of quasi-periodic orbits in the tangent space of
the equilibrium point, which can be expressed as

⎧
⎨

⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Cξ2 cosβ2t + Sξ2 sinβ2t

η = Cη1 cosβ1t + Sη1 sinβ1t + Cη2 cosβ2t + Sη2 sinβ2t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Cζ2 cosβ2t + Sζ2 sinβ2t



92 Astrophys Space Sci (2014) 349:83–106

(d) The characteristic roots are different, and there are two
families of quasi-periodic orbits near the equilibrium
point on the 2-dimensional tori T 2.

(e) There are two families of periodic orbits in the tangent
space of the equilibrium point, which have the periods
T1 = 2π

β1
, T2 = 2π

β2
.

(f) There are two families of periodic orbits near the equi-
librium point.

(g) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Ws(S)⊕Wc(S)⊕Wu(S);dimWc(S) = 4, dimWs(S) =
dimWu(S) = 1, and dimWr(S) = 0.

(h) The structure of the subspace is TLS ∼= Es(L) ⊕
Ec(L) ⊕ Eu(L);dimEc(L) = 4, dimEs(L) =
dimEu(L) = 1, and dimWr(S) = 0.

Proof The proof for Theorem 6 is similar to that for Theo-
rem 5. �

5.3.2 Case 3

The eigenvalues of the equilibrium point are in the form
of ±αj (αj ∈ R, αj > 0; j = 1,2) and ±iβj (βj ∈ R, βj >

0, j = 1). The equilibrium point is unstable. The motion of
the spacecraft near the equilibrium point, and relative to it,
is expressed as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Aξ2e
α2t + Bξ2e

−α2t

+ Cξ1 cosβ1t + Sξ1 sinβ1t

η = Aη1e
α1t + Bη1e

−α1t + Aη2e
α2t + Bη2e

−α2t

+ Cη1 cosβ1t + Sη1 sinβ1t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Aζ2e
α2t + Bζ2e

−α2t

+ Cζ1 cosβ1t + Sζ1 sinβ1t

(28)

The almost periodic orbit near the equilibrium point can
be expressed as

⎧
⎨

⎩

ξ = Bξ1e
−α1t + Bξ2e

−α2t + Cξ1 cosβ1t + Sξ1 sinβ1t

η = Bη1e
−α1t + Bη2e

−α2t + Cη1 cosβ1t + Sη1 sinβ1t

ζ = Bζ1e
−α1t + Bζ2e

−α2t + Cζ1 cosβ1t + Sζ1 sinβ1t

(29)

The central manifold is given by
{

Aξ1 = Bξ1 = Aη1 = Bη1 = Aζ1 = Bζ1 = 0
Aξ2 = Bξ2 = Aη2 = Bη2 = Aζ2 = Bζ2 = 0

and it is a 2-dimensional smooth manifold.
There is one family of periodic orbits, which is given by

{
Aξ1 = Bξ1 = Aη1 = Bη1 = Aζ1 = Bζ1 = 0
Aξ2 = Bξ2 = Aη2 = Bη2 = Aζ2 = Bζ2 = 0

and the period is

T1 = 2π

β1

The asymptotically stable manifold is generated by
⎧
⎨

⎩

ξ = Bξ1e
−α1t + Bξ2e

−α2t

η = Bη1e
−α1t + Bη2e

−α2t

ζ = Bζ1e
−α1t + Bζ2e

−α2t

(30)

It is a 2-dimensional smooth manifold.
The unstable manifold is generated by

⎧
⎨

⎩

ξ = Aξ1e
α1t + Aξ2e

α2t

η = Aη1e
α1t + Aη2e

α2t

ζ = Aζ1e
α1t + Aζ2e

α2t

(31)

It is a 2-dimensional smooth manifold. Then, the general
result for Case 3 is stated as follows.

Theorem 7 For an equilibrium point in the potential field of
a rotating asteroid, the following conditions are equivalent:

(a) The roots of the characteristic equation P(λ) have the
form ±αj (αj ∈ R, αj > 0; j = 1,2) and ±iβj (βj ∈
R, βj > 0, j = 1).

(b) The motion of the spacecraft near the equilibrium point,
and relative to it, is expressed as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Aξ2e
α2t + Bξ2e

−α2t

+ Cξ1 cosβ1t + Sξ1 sinβ1t

η = Aη1e
α1t + Bη1e

−α1t + Aη2e
α2t + Bη2e

−α2t

+ Cη1 cosβ1t + Sη1 sinβ1t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Aζ2e
α2t + Bζ2e

−α2t

+ Cζ1 cosβ1t + Sζ1 sinβ1t

(c) There is one family of periodic orbits in the tangent
space of the equilibrium point, which has the period
T1 = 2π

β1
, and the dimension of the unstable manifold

satisfies dimWu(S) = 2; there is at least one character-
istic root in the real axis.

(d) There is one family of periodic orbits near the equilib-
rium point, and the dimension of the unstable manifold
satisfies dimWu(S) = 2; there is at least one character-
istic root in the real axis.

(e) The asymptotically stable manifold is generated by

⎧
⎨

⎩

ξ = Bξ1e
−α1t + Bξ2e

−α2t

η = Bη1e
−α1t + Bη2e

−α2t

ζ = Bζ1e
−α1t + Bζ2e

−α2t

(f) The unstable manifold is generated by

⎧
⎨

⎩

ξ = Aξ1e
α1t + Aξ2e

α2t

η = Aη1e
α1t + Aη2e

α2t

ζ = Aζ1e
α1t + Aζ2e

α2t

(g) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Ws(S) ⊕ Wc(S) ⊕ Wu(S), and dimWs(S) =
dimWc(S) = dimWu(S) = 2; there is at least one char-
acteristic root in the real axis.
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(h) The structure of the subspace is TLS ∼= Es(L) ⊕
Ec(L) ⊕ Eu(L), and dimEs(L) = dimEc(L) =
dimEu(L) = 2; there is at least one characteristic root
in the real axis.

5.3.3 Case 4

The forms of the eigenvalues are ±αj (αj ∈ R, αj > 0,

j = 1) and ±σ ± iτ (σ, τ ∈ R;σ, τ > 0), or ±αj (αj ∈
R, αj > 0, j = 1,2,3). The equilibrium point is unstable.
The motion of the spacecraft near the equilibrium point, and
relative to it, is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Eξe
σ t cos τ t + Fξe

σ t sin τ t

+ Gξe
−σ t cos τ t + Hξe

−σ t sin τ t

η = Aη1e
α1t + Bη1e

−α1t + Eηe
σ t cos τ t + Fηe

σ t sin τ t

+ Gηe
−σ t cos τ t + Hηe

−σ t sin τ t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Eζ e
σ t cos τ t + Fζ e

σ t sin τ t

+ Gζ e
−σ t cos τ t + Hζ e

−σ t sin τ t

or (32)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Aξ2e
α2t + Bξ2e

−α2t + Aξ3e
α3t

+ Bξ3e
−α3t

η = Aη1e
α1t + Bη1e

−α1t + Aη2e
α2t + Bη2e

−α2t + Aη3e
α3t

+ Bη3e
−α3t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Aζ2e
α2t + Bζ2e

−α2t + Aζ3e
α3t

+ Bζ3e
−α3t

The asymptotically stable manifold is generated by
⎧
⎨

⎩

ξ = Bξ1e
−α1t + Gξe

−σ t cos τ t + Hξe
−σ t sin τ t

η = Bη1e
−α1t + Gηe

−σ t cos τ t + Hηe
−σ t sin τ t

ζ = Bζ1e
−α1t + Gζ e

−σ t cos τ t + Hζ e
−σ t sin τ t

or (33)
⎧
⎨

⎩

ξ = Bξ1e
−α1t + Bξ2e

−α2t + Bξ3e
−α3t

η = Bη1e
−α1t + Bη2e

−α2t + Bη3e
−α3t

ζ = Bζ1e
−α1t + Bζ2e

−α2t + Bζ3e
−α3t

It is a 3-dimensional smooth manifold. The unstable
manifold is generated by
⎧
⎨

⎩

ξ = Aξ1e
α1t + Eξe

σ t cos τ t + Fξe
σ t sin τ t

η = Aη1e
α1t + Eηe

σ t cos τ t + Fηe
σ t sin τ t

ζ = Aζ1e
α1t + Eζ e

σ t cos τ t + Fζ e
σ t sin τ t

or (34)
⎧
⎨

⎩

ξ = Aξ1e
α1t + Aξ2e

α2t + Aξ3e
α3t

η = Aη1e
α1t + Aη2e

α2t + Aη3e
α3t

ζ = Aζ1e
α1t + Aζ2e

α2t + Aζ3e
α3t

It is a 3-dimensional smooth manifold. Then, the general
result of Case 4 is stated as follows.

Theorem 8 For an equilibrium point in the potential field of
a rotating asteroid, the following conditions are equivalent:

(a) The roots of the characteristic equation P(λ) are in
the form of ±αj (αj ∈ R, αj > 0, j = 1) and ±σ ±
iτ (σ, τ ∈ R;σ, τ > 0), or ±αj (αj ∈ R, αj > 0, j =
1,2,3).

(b) The motion of the spacecraft near the equilibrium point,
and relative to it, is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Eξe
σ t cos τ t

+ Fξe
σ t sin τ t + Gξe

−σ t cos τ t + Hξe
−σ t sin τ t

η = Aη1e
α1t + Bη1e

−α1t + Eηe
σ t cos τ t

+ Fηe
σ t sin τ t + Gηe

−σ t cos τ t + Hηe
−σ t sin τ t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Eζ e
σ t cos τ t

+ Fζ e
σ t sin τ t + Gζ e

−σ t cos τ t + Hζ e
−σ t sin τ t

or
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Aξ2e
α2t + Bξ2e

−α2t

+ Aξ3e
α3t + Bξ3e

−α3t

η = Aη1e
α1t + Bη1e

−α1t + Aη2e
α2t + Bη2e

−α2t

+ Aη3e
α3t + Bη3e

−α3t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Aζ2e
α2t + Bζ2e

−α2t

+ Aζ3e
α3t + Bζ3e

−α3t

(c) There is no periodic orbit in the tangent space of the
equilibrium point.

(d) There is no periodic orbit near the equilibrium point.
(e) The asymptotically stable manifold is generated by

⎧
⎨

⎩

ξ = Bξ1e
−α1t + Gξe

−σ t cos τ t + Hξe
−σ t sin τ t

η = Bη1e
−α1t + Gηe

−σ t cos τ t + Hηe
−σ t sin τ t

ζ = Bζ1e
−α1t + Gζ e

−σ t cos τ t + Hζ e
−σ t sin τ t

or
⎧
⎨

⎩

ξ = Bξ1e
−α1t + Bξ2e

−α2t + Bξ3e
−α3t

η = Bη1e
−α1t + Bη2e

−α2t + Bη3e
−α3t

ζ = Bζ1e
−α1t + Bζ2e

−α2t + Bζ3e
−α3t

(f) The unstable manifold is generated by

⎧
⎨

⎩

ξ = Aξ1e
α1t + Eξe

σ t cos τ t + Fξe
σ t sin τ t

η = Aη1e
α1t + Eηe

σ t cos τ t + Fηe
σ t sin τ t

ζ = Aζ1e
α1t + Eζ e

σ t cos τ t + Fζ e
σ t sin τ t

or
⎧
⎨

⎩

ξ = Aξ1e
α1t + Aξ2e

α2t + Aξ3e
α3t

η = Aη1e
α1t + Aη2e

α2t + Aη3e
α3t

ζ = Aζ1e
α1t + Aζ2e

α2t + Aζ3e
α3t

(g) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Ws(S) ⊕ Wu(S).

(h) The dimension of the unstable manifold satisfies
dimWu(S) = 3.

(i) The dimension of the asymptotically stable manifold sat-
isfies dimWs(S) = 3.

(j) The structure of the subspace is TLS ∼= Es(L)⊕Eu(L).
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(k) The dimension of the unstable subspace satisfies
dimEu(L) = 3.

(l) The dimension of the asymptotically stable subspace
satisfies dimEs(L) = 3.

5.3.4 Case 5

The forms of the eigenvalues are ±iβj (βj ∈ R, βj > 0,

j = 1) and ±σ ± iτ (σ, τ ∈ R;σ, τ > 0). The equilibrium
point is unstable. The motion of the spacecraft near the equi-
librium point, and relative to it, is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Eξe
σ t cos τ t

+ Fξe
σ t sin τ t + Gξe

−σ t cos τ t + Hξe
−σ t sin τ t

η = Cη1 cosβ1t + Sη1 sinβ1t + Eηe
σ t cos τ t

+ Fηe
σ t sin τ t + Gηe

−σ t cos τ t + Hηe
−σ t sin τ t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Eζ e
σ t cos τ t

+ Fζ e
σ t sin τ t + Gζ e

−σ t cos τ t + Hζ e
−σ t sin τ t

(35)

The almost periodic orbit near the equilibrium point can be
expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Gξe
−σ t cos τ t

+ Hξe
−σ t sin τ t

η = Cη1 cosβ1t + Sη1 sinβ1t + Gηe
−σ t cos τ t

+ Hηe
−σ t sin τ t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Gζ e
−σ t cos τ t

+ Hζ e
−σ t sin τ t

(36)

The central manifold is given by
⎧
⎨

⎩

Eξ = Fξ = Gξ = Hξ = 0
Eη = Fη = Gη = Hη = 0
Eζ = Fζ = Gζ = Hζ = 0

(37)

It is a 2-dimensional smooth manifold.
The asymptotically stable manifold is generated by

⎧
⎨

⎩

ξ = Gξe
−σ t cos τ t + Hξe

−σ t sin τ t

η = Gηe
−σ t cos τ t + Hηe

−σ t sin τ t

ζ = Gζ e
−σ t cos τ t + Hζ e

−σ t sin τ t

(38)

It is a 2-dimensional smooth manifold.
The unstable manifold is generated by

⎧
⎨

⎩

ξ = Eξe
σ t cos τ t + Fξe

σ t sin τ t

η = Eηe
σ t cos τ t + Fηe

σ t sin τ t

ζ = Eζ e
σ t cos τ t + Fζ e

σ t sin τ t

(39)

It is a 2-dimensional smooth manifold. Then, the general
result for Case 5 is stated as follows.

Theorem 9 For an equilibrium point in the potential field of
a rotating asteroid, the following conditions are equivalent:

(a) The roots of the characteristic equation P(λ) are in
the form of ±iβj (βj ∈ R, βj > 0, j = 1) and ±σ ±
iτ (σ, τ ∈ R;σ, τ > 0).

(b) The motion of the spacecraft near the equilibrium point,
and relative to it, is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Eξe
σ t cos τ t

+ Fξe
σ t sin τ t + Gξe

−σ t cos τ t + Hξe
−σ t sin τ t

η = Cη1 cosβ1t + Sη1 sinβ1t + Eηe
σ t cos τ t

+ Fηe
σ t sin τ t + Gηe

−σ t cos τ t + Hηe
−σ t sin τ t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Eζ e
σ t cos τ t

+ Fζ e
σ t sin τ t + Gζ e

−σ t cos τ t + Hζ e
−σ t sin τ t

(c) There is only one family of periodic orbits in the tan-
gent space of the equilibrium point, which has the pe-
riod T1 = 2π

β1
, and the dimension of the unstable mani-

fold satisfies dimWu(S) = 2. There is no characteristic
root in the real axis.

(d) There is only one family of periodic orbits near the equi-
librium point, and the dimension of the unstable mani-
fold satisfies dimWu(S) = 2. There is no characteristic
root in the real axis.

(e) The asymptotically stable manifold is generated by

⎧
⎨

⎩

ξ = Gξe
−σ t cos τ t + Hξe

−σ t sin τ t

η = Gηe
−σ t cos τ t + Hηe

−σ t sin τ t

ζ = Gζ e
−σ t cos τ t + Hζ e

−σ t sin τ t

(f) The unstable manifold is generated by

⎧
⎨

⎩

ξ = Eξe
σ t cos τ t + Fξe

σ t sin τ t

η = Eηe
σ t cos τ t + Fηe

σ t sin τ t

ζ = Eζ e
σ t cos τ t + Fζ e

σ t sin τ t

(g) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Ws(S) ⊕ Wc(S) ⊕ Wu(S), and dimWs(S) =
dimWc(S) = dimWu(S) = 2. There is no character-
istic root in the real axis.

(h) The structure of the subspace is TLS ∼= Es(L) ⊕
Ec(L) ⊕ Eu(L), and dimEs(L) = dimEc(L) =
dimEu(L) = 2. There is no characteristic root in the
real axis.

5.4 Resonant equilibrium points

The resonant manifold and the resonant orbits exist if
and only if one of the Cases 6–8 is satisfied. An equilib-
rium point is resonant if and only if dimWr(S) > 0, with
Case 6 corresponding to (S,Ω) � T Ξ � Wc(S) � Wr(S),
dimWr(S) = dimWc(S) = 6; Case 7 corresponding to
(S,Ω) � T Ξ � Wc(S), dimWc(S) = 6 and dimWr(S) =
4; as well as Case 8 corresponding to (S,Ω) � T Ξ �
Ws(S) ⊕ Wc(S) ⊕ Wu(S),dimWr(S) = dimWc(S) = 4,
and dimWs(S) = dimWu(S) = 1.
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5.4.1 Case 6

The motion of the spacecraft relative to the equilibrium point

is on a 1:1:1 resonant manifold, which can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Pξ1t cosβ1t

+ Qξ1t sinβ1t + Pξ2t
2 cosβ1t + Qξ2t

2 sinβ1t

η = Cη1 cosβ1t + Sη1 sinβ1t + Pη1t cosβ1t

+ Qη1t sinβ1t + Pη2t
2 cosβ1t + Qη2t

2 sinβ1t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Pζ1t cosβ1t

+ Qζ1t sinβ1t + Pζ2t
2 cosβ1t + Qζ2t

2 sinβ1t

(40)

The resonant manifold is a 6-dimensional smooth man-

ifold. There is only one family of periodic orbits, which is

given by

⎧
⎨

⎩

Pξ1 = Qξ1 = Pξ2 = Qξ2 = 0
Pη1 = Qη1 = Pη2 = Qη2 = 0
Pζ1 = Qζ1 = Pζ2 = Qζ2 = 0

and the period is T1 = 2π
β1

. Then, the general result of Case

6 is stated as follows.

Theorem 10 For an equilibrium point in the potential field

of a rotating asteroid, the following conditions are equiva-

lent:

(a) The roots of the characteristic equation P(λ) are in the

form of ±iβj (βj ∈ R, β1 = β2 = β3 > 0; j = 1,2,3).

(b) The motion of the spacecraft near the equilibrium point,

and relative to it, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Pξ1t cosβ1t

+ Qξ1t sinβ1t + Pξ2t
2 cosβ1t + Qξ2t

2 sinβ1t

η = Cη1 cosβ1t + Sη1 sinβ1t + Pη1t cosβ1t

+ Qη1t sinβ1t + Pη2t
2 cosβ1t + Qη2t

2 sinβ1t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Pζ1t cosβ1t

+ Qζ1t sinβ1t + Pζ2t
2 cosβ1t + Qζ2t

2 sinβ1t

(c) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Wc(S) ∼= Wr(S).

(d) The resonant manifold is a 6-dimensional manifold:

dimWr(S) = dimWc(S) = 6.

(e) The structure of the subspace is TLS ∼= Ec(L) ∼= Er(L).

(f) The resonant subspace is a 6-dimensional space:

dimEc(L) = dimEr(L) = 6.

5.4.2 Case 7

The motion of the spacecraft near the equilibrium point, and
relative to it, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Pξ1t cosβ1t

+ Qξ1t sinβ1t + Cξ3 cosβ3t + Sξ3 sinβ3t

η = Cη1 cosβ1t + Sη1 sinβ1t + Pη1t cosβ1t

+ Qη1t sinβ1t + Cη3 cosβ3t + Sη3 sinβ3t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Pζ1t cosβ1t

+ Qζ1t sinβ1t + Cζ3 cosβ3t + Sζ3 sinβ3t

(41)

There is a 1:1 resonant manifold, which is generated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Pξ1t cosβ1t

+ Qξ1t sinβ1t

η = Cη1 cosβ1t + Sη1 sinβ1t + Pη1t cosβ1t

+ Qη1t sinβ1t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Pζ1t cosβ1t

+ Qζ1t sinβ1t

(42)

The resonant manifold is a 4-dimensional smooth manifold.
There are two families of periodic orbits. The first family of
periodic orbits is given by

⎧
⎨

⎩

Pξ1 = Qξ1 = Cξ3 = Sξ3 = 0
Pη1 = Qη1 = Cη3 = Sη3 = 0
Pζ1 = Qζ1 = Cζ3 = Sζ3 = 0

and the period is T1 = 2π
β1

. The second family of periodic
orbits is given by

⎧
⎨

⎩

Pξ1 = Qξ1 = Cξ1 = Sξ1 = 0
Pη1 = Qη1 = Cη1 = Sη1 = 0
Pζ1 = Qζ1 = Cζ1 = Sζ1 = 0

and the period is T3 = 2π
β3

. Then, the general result of Case
7 is stated as follows.

Theorem 11 For an equilibrium point in the potential field
of a rotating asteroid, the following conditions are equiva-
lent:

(a) The roots of the characteristic equation P(λ) are in
the form of ±iβj (βj ∈ R, βj > 0, β1 = β2 �= β3; j =
1,2,3).

(b) The motion of the spacecraft near the equilibrium point,
and relative to it, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Pξ1t cosβ1t

+ Qξ1t sinβ1t + Cξ3 cosβ3t + Sξ3 sinβ3t

η = Cη1 cosβ1t + Sη1 sinβ1t + Pη1t cosβ1t

+ Qη1t sinβ1t + Cη3 cosβ3t + Sη3 sinβ3t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Pζ1t cosβ1t

+ Qζ1t sinβ1t + Cζ3 cosβ3t + Sζ3 sinβ3t
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(c) There are two families of periodic orbits in the tangent
space of the equilibrium point, and dimWr(S) = 4.

(d) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Wc(S), and dimWr(S) = 4.

(e) dimWc(S) = 6 and dimWr(S) = 4.
(f) The structure of the subspace is TLS ∼= Ec(L), and

dimEr(L) = 4.
(g) dimEc(L) = 6 and dimEr(L) = 4.

5.4.3 Case 8

The motion of the spacecraft near the equilibrium point, and
relative to it, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Cξ1 cosβ1t + Sξ1 sinβ1t

+ Pξ1t cosβ1t + Qξ1t sinβ1t

η = Aη1e
α1t + Bη1e

−α1t + Cη1 cosβ1t + Sη1 sinβ1t

+ Pη1t cosβ1t + Qη1t sinβ1t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Cζ1 cosβ1t + Sζ1 sinβ1t

+ Pζ1t cosβ1t + Qζ1t sinβ1t

(43)

There is a 1:1 resonant manifold, which is generated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Cξ1 cosβ1t + Sξ1 sinβ1t + Pξ1t cosβ1t

+ Qξ1t sinβ1t

η = Cη1 cosβ1t + Sη1 sinβ1t + Pη1t cosβ1t

+ Qη1t sinβ1t

ζ = Cζ1 cosβ1t + Sζ1 sinβ1t + Pζ1t cosβ1t

+ Qζ1t sinβ1t

(44)

The resonant manifold is a 4-dimensional smooth manifold.
There is only one family of periodic orbits, which is given
by
⎧
⎨

⎩

Aξ1 = Bξ1 = Pξ1 = Qξ1 = 0
Aη1 = Bη1 = Pη1 = Qη1 = 0
Aζ1 = Bζ1 = Pζ1 = Qζ1 = 0

and the period is T1 = 2π
β1

. The asymptotically stable mani-
fold is generated by
⎧
⎨

⎩

ξ = Bξ1e
−α1t

η = Bη1e
−α1t

ζ = Bζ1e
−α1t

(45)

It is a 1-dimensional smooth manifold. The unstable mani-
fold is generated by
⎧
⎨

⎩

ξ = Aξ1e
α1t

η = Aη1e
α1t

ζ = Aζ1e
α1t

(46)

It is a 1-dimensional smooth manifold. Then, the general
result of Case 8 is stated as follows.

Theorem 12 For an equilibrium point in the potential field
of a rotating asteroid, the following conditions are equiva-
lent:

(a) The roots of the characteristic equation P(λ) are in the
form of ±αj (αj ∈ R, αj > 0, j = 1) and ±iβj (βj ∈
R, β1 = β2 > 0; j = 1,2).

(b) The motion of the spacecraft near the equilibrium point,
and relative to it, can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ = Aξ1e
α1t + Bξ1e

−α1t + Cξ1 cosβ1t + Sξ1 sinβ1t

+ Pξ1t cosβ1t + Qξ1t sinβ1t

η = Aη1e
α1t + Bη1e

−α1t + Cη1 cosβ1t + Sη1 sinβ1t

+ Pη1t cosβ1t + Qη1t sinβ1t

ζ = Aζ1e
α1t + Bζ1e

−α1t + Cζ1 cosβ1t + Sζ1 sinβ1t

+ Pζ1t cosβ1t + Qζ1t sinβ1t

(c) There is one family of periodic orbits in the tangent
space of the equilibrium point, and dimWr(S) = 4.

(d) The structure of the submanifold is (S,Ω) � T Ξ ∼=
Ws(S) ⊕ Wc(S) ⊕ Wu(S), and dimWr(S) = 4.

(e) dimWc(S) = dimWr(S) = 4.
(f) dimWc(S) = dimWr(S) = 4 and dimWs(S) =

dimWu(S) = 1.
(g) The structure of the subspace is TLS ∼= Es(L) ⊕

Ec(L) ⊕ Eu(L), and dimEr(L) = 4.
(h) dimEc(L) = dimEr(L) = 4 and dimEs(L) =

dimEu(L) = 1.

6 Applications to asteroids

In this section, the theorems described in the previous sec-
tions are applied to asteroids 216 Kleopatra, 1620 Ge-
ographos, 4769 Castalia, and 6489 Golevka. The physical
model of these four asteroids was calculated using radar ob-
servations and the polyhedral model of Neese (2004).

6.1 Application to asteroid 216 Kleopatra

The estimated bulk density of asteroid 216 Kleopatra is
3.6 g cm−3 (Descamps et al. 2011), its rotational period is
5.385 h and with overall dimensions of 217 × 94 × 81 km

Table 1 Positions of the equilibrium points around asteroid 216
Kleopatra

Equilibrium points x (km) y (km) z (km)

E1 142.852 2.45436 1.18008

E2 −144.684 5.18855 −0.282998

E3 2.21701 −102.102 0.279703

E4 −1.16396 100.738 −0.541516
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Table 2 Eigenvalues of the equilibrium points around asteroid 216 Kleopatra

×10−3 s−1 λ1 λ2 λ3 λ4 λ5 λ6

E1 0.376 −0.376 0.413i −0.413i 0.425i −0.425i

E2 0.422 −0.422 0.414i −0.414i 0.466i −0.466i

E3 0.327i −0.327i 0.202 + 0.304i 0.202−0.304i −0.202 + 0.304i −0.202−0.304i

E4 0.323i −0.323i 0.202 + 0.306i 0.202−0.306i −0.202 + 0.306i −0.202−0.306i

Fig. 1a A quasi-periodic orbit near the equilibrium point E1

(Ostro et al. 2000). There are two moonlets near 216 Kleopa-
tra, which are Alexhelios (S/2008 (216) 1) and Cleoselene
(S/2008 (216) 2) (Descamps et al. 2011). Table 1 shows the
positions of the equilibrium points in the body-fixed frame,
which were calculated by the function of NEQNF in Fortran
to solve Eq. (9). Table 2 shows the eigenvalues of the equi-
librium points, which were calculated using Eq. (14). E1 and
E2 belong to Case 2, whereas E3 and E4 belong to Case 5.
Yu and Baoyin (2012a) calculated the positions of the equi-
librium points as well as the eigenvalues of the equilibrium
points for asteroid 216 Kleopatra using a numerical method.

Fig. 1b A single periodic orbit near the equilibrium point E1

Figure 1a shows a quasi-periodic orbit near the equilib-
rium point E1 of asteroid 216 Kleopatra, where the coeffi-
cients have the values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 10
Sζ2 = 2

other coefficients being equal to zero. The flight time of
the orbit for the massless test particle is 12 days. Figure 1b
shows a single oscillation of the periodic orbit near the equi-
librium point E1 of asteroid 216 Kleopatra, where the coef-
ficients have the values Cξ1 = Cζ1 = Sη1 = 10; other coef-
ficients being equal to zero. E1 belongs to Case 2. There is
one family of quasi-periodic orbits near E1, which is on the
2-dimensional tori T 2. The orbit in Figs. 1a, 1b belongs to
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Fig. 2 A quasi-periodic orbit near the equilibrium point E2

the quasi-periodic orbital family. For the equilibrium point
E2, Fig. 2 shows a quasi-periodic orbit near the equilibrium
point E2 of asteroid 216 Kleopatra, the coefficients have the
values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 10
Sζ2 = 2

and the remaining coefficients being equal to zero. The flight
time of the orbit for the massless test particle is 12 days.
E2 also belongs to Case 2. There is one family of quasi-
periodic orbits near E2, which is on the 2-dimensional
tori T 2. The orbit belongs to a quasi-periodic orbital fam-
ily that is notably similar to that of E1.

Figure 3 shows an almost periodic orbit near the equilib-
rium point E3 of asteroid 216 Kleopatra. The flight time of
the orbit for the massless test particle is 12 days. There is
only one family of periodic orbits near E3. Figure 4 shows
an almost periodic orbit near the equilibrium point E4 of as-
teroid 216 Kleopatra. The flight time of the orbit around the
equilibrium point E4 is 12 days. There is only one family of
periodic orbits near E4.

Fig. 3 An orbit near the equilibrium point E3

Table 3 Positions of the equilibrium points around asteroid 1620 Ge-
ographos

Equilibrium points x (km) y (km) z (km)

E1 2.69925 −0.041494 0.085296

E2 −2.84097 −0.057621 0.142056

E3 −0.141618 2.11961 −0.021510

E4 −0.125678 −2.08723 −0.025536

6.2 Application to asteroid 1620 Geographos

The estimated bulk density of asteroid 1620 Geographos is
2.0 g cm−3 (Hudson and Ostro 1999), its rotational period
is 5.222 h (Ryabova 2002) and with overall dimensions of
(5.0 × 2.0 × 2.1) ± 0.15 km (Hudson and Ostro 1999). Ta-
ble 3 shows the positions of the equilibrium points in the
body-fixed frame, which were calculated using Eq. (9). Ta-
ble 4 shows the eigenvalues of the equilibrium points. E1
and E2 belong to Case 2, whereas E3 and E4 belong to
Case 5.
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Table 4 Eigenvalues of the equilibrium points around asteroid 1620 Geographos

×10−3 s−1 λ1 λ2 λ3 λ4 λ5 λ6

E1 0.455 −0.455 0.427i −0.427i 0.487i −0.487i

E2 0.608 −0.608 0.511i −0.511i 0.566i −0.566i

E3 0.334i −0.334i 0.152 + 0.271i 0.152−0.271i −0.152 + 0.271i −0.152−0.271i

E4 0.334i −0.334i 0.174 + 0.284i 0.174−0.284i −0.174 + 0.284i −0.174−0.284i

Fig. 4 An orbit near the equilibrium point E4

Figure 5 shows a quasi-periodic orbit near the equilib-
rium point E1 of asteroid 1620 Geographos, where the coef-
ficients have the values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 0.01
Sζ2 = 0.02

other coefficients being equal to zero. The flight time of the
orbit for the massless test particle is 12 days. E1 belongs to
Case 2. There is one family of quasi-periodic orbits near E1,
which is on the 2-dimensional tori T 2. The orbit in Fig. 5
belongs to the quasi-periodic orbital family. For the equi-
librium point E2, Fig. 6 shows a quasi-periodic orbit near

Fig. 5 A quasi-periodic orbit near the equilibrium point E1

the equilibrium point E2 of asteroid 1620 Geographos, the
coefficients have the values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 0.1
Sζ2 = 0.2

with the remaining coefficients being equal to zero. The
flight time of the orbit for the massless test particle is 12
days. E2 also belongs to Case 2. There is one family of
quasi-periodic orbits near E2, which is on the 2-dimensional
tori T 2. The orbit belongs to a quasi-periodic orbital family
that is notably similar to that of E1.

Figure 7 shows an almost periodic orbit near the equilib-
rium point E3 of asteroid 1620 Geographos. The flight time
of the orbit for the massless test particle is 12 days. There is
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Fig. 6 A quasi-periodic orbit near the equilibrium point E2

Table 5 Positions of the equilibrium points around asteroid 4769
Castalia

Equilibrium points x (km) y (km) z (km)

E1 0.978767 0.023603 0.028032

E2 −1.01550 0.116078 0.0257862

E3 −0.043617 0.815747 0.002265

E4 −0.034338 −0.823895 −0.006950

only one family of periodic orbits near E3. Figure 8 shows
an almost periodic orbit near the equilibrium point E4 of as-
teroid 1620 Geographos. The flight time of the orbit for the
massless test particle around the equilibrium point E4 is 12
days. There is only one family of periodic orbits near E4.

6.3 Application to asteroid 4769 Castalia

The estimated bulk density of asteroid 4769 Castalia is
2.1 g cm−3 (Hudson and Ostro 1994; Scheeres et al. 1996)
and its rotational period is 4.095 h (Hudson et al. 1997). The
minimum radius is approximately 0.3 km at the poles of the
asteroid, the maximum radius is approximately 0.8 km at the

Fig. 7 An orbit near the equilibrium point E3

ends, and the mean radius is 0.543 km (Werner and Scheeres
1996). Table 5 shows the positions of the equilibrium points
in the body-fixed frame, which were calculated using Eq.
(9). Table 6 shows the eigenvalues of the equilibrium points.
E1 and E2 belong to Case 2, whereas E3 and E4 belong to
Case 5.

Figure 9 shows a quasi-periodic orbit near the equilib-
rium point E1 of asteroid 4769 Castalia, where the coeffi-
cients have the values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 0.04
Sζ2 = 0.08

other coefficients being equal to zero. The flight time of the
orbit for the massless test particle is 4 days. E1 belongs to
Case 2. There is one family of quasi-periodic orbits near E1,
which is on the 2-dimensional tori T 2. The orbit in Fig. 9
belongs to the quasi-periodic orbital family. For the equilib-
rium point E2, Fig. 10 shows a quasi-periodic orbit near the
equilibrium point E2 of asteroid 4769 Castalia, the coeffi-
cients have the values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 0.04
Sζ2 = 0.08
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Table 6 Eigenvalues of the equilibrium points around asteroid 4769 Castalia

×10−3 s−1 λ1 λ2 λ3 λ4 λ5 λ6

E1 0.341 −0.341 0.416i −0.416i 0.470i −0.470i

E2 0.423 −0.423 0.467i −0.467i 0.490i −0.490i

E3 0.380i −0.380i 0.195+0.324i 0.195−0.324i −0.195+0.324i −0.195−0.324i

E4 0.386i −0.386i 0.197+0.322i 0.197−0.322i −0.197+0.322i −0.197−0.322i

Fig. 8 An orbit near the equilibrium point E4

with the remaining coefficients being equal to zero. The
flight time of the orbit for the massless test particle is
4 days. E2 also belongs to Case 2. There is one family of
quasi-periodic orbits near E2, which is on the 2-dimensional
tori T 2. The orbit belongs to a quasi-periodic orbital family
that is notably similar to that of E1.

Figure 11 shows an almost periodic orbit near the equi-
librium point E3 of asteroid 4769 Castalia. The flight time
of the orbit for the massless test particle is 4 days. There is
only one family of periodic orbits near E3. Figure 12 shows
an almost periodic orbit near the equilibrium point E4 of
asteroid 4769 Castalia. The flight time of the orbit for the

Fig. 9 A quasi-periodic orbit near the equilibrium point E1

massless test particle around the equilibrium point E4 is 4
days. There is only one family of periodic orbits near E4.

6.4 Application to asteroid 6489 Golevka

The estimated bulk density of asteroid 6489 Golevka is
2.7 g cm−3 (Mottola et al. 1997), its rotational period is
6.026 h and with overall dimensions of 0.35 × 0.25 ×
0.25 km (Mottola et al. 1997). Table 7 shows the positions of
the equilibrium points in the body-fixed frame, which were
calculated using Eq. (9). Table 8 shows the eigenvalues of
the equilibrium points. E1 and E2 belong to Case 2, whereas
E3 and E4 belong to Case 1.

Figure 13 shows a quasi-periodic orbit near the equilib-
rium point E1 of asteroid 6489 Golevka, where the coeffi-
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Table 8 Eigenvalues of the equilibrium points around asteroid 6489 Golevka

×10−3 s−1 λ1 λ2 λ3 λ4 λ5 λ6

E1 0.125 −0.125 0.297i −0.297i 0.309i −0.309i

E2 0.181 −0.181 0.304i −0.304i 0.329i −0.329i

E3 0.207i −0.207i 0.216i −0.216i 0.280i −0.280i

E4 0.185i −0.185i 0.213i −0.213i 0.297i −0.297i

Fig. 10 A quasi-periodic orbit near the equilibrium point E2

Table 7 Positions of the equilibrium points around asteroid 6489
Golevka

Equilibrium points x (km) y (km) z (km)

E1 0.564128 −0.0234156 −0.002882

E2 −0.571527 0.035808 −0.006081

E3 −0.021647 0.537470 −0.001060

E4 −0.026365 −0.546646 −0.000182

cients have the values

{
Cξ1 = Cζ1 = Sη1 = Cη2 = 0.01
Sζ2 = 0.02

Fig. 11 An orbit near the equilibrium point E3

other coefficients being equal to zero. The flight time of the
orbit for the massless test particle is 4 days. E1 belongs to
Case 2. There is one family of quasi-periodic orbits near E1,
which is on the 2-dimensional tori T 2. The orbit in Fig. 13
belongs to the quasi-periodic orbital family. For the equilib-
rium point E2, Fig. 14 shows a quasi-periodic orbit near the
equilibrium point E2 of asteroid 6489 Golevka, the coeffi-
cients have the values
{

Cξ1 = Cζ1 = Sη1 = Cη2 = 0.01
Sζ2 = 0.02

with the remaining coefficients being equal to zero. The
flight time of the orbit for the massless test particle is 4
days. E2 also belongs to Case 2. There is one family of
quasi-periodic orbits near E2, which is on the 2-dimensional
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Fig. 12 An orbit near the equilibrium point E4

tori T 2. The orbit belongs to a quasi-periodic orbital family
that is notably similar to that of E1.

Figure 15 shows a quasi-periodic orbit near the equilib-
rium point E3 of asteroid 6489 Golevka, where the coeffi-
cients have the values
⎧
⎨

⎩

Cξ1 = 0.03
Sη1 = 0.04
Cζ1 = 0.01

,

{
Cη2 = 0.005
Sζ2 = 0.006

,

{
Cη3 = 0.003
Sζ3 = 0.002

other coefficients being equal to zero. The flight time of the
orbit for the massless test particle is 12 days. E3 belongs
to Case 1. There are four families of quasi-periodic orbits
near E3, which are on the 3-dimensional tori T 3. The orbit
in Fig. 15 belongs to a quasi-periodic orbital family. For the
equilibrium point E4, Fig. 16 shows a quasi-periodic orbit
near the equilibrium point E4 of asteroid 6489 Golevka, the
coefficients have the values
⎧
⎨

⎩

Cξ1 = 0.03
Sη1 = 0.04
Cζ1 = 0.01

,

{
Cη2 = 0.005
Sζ2 = 0.006

,

{
Cη3 = 0.003
Sζ3 = 0.002

with the remaining coefficients being equal to zero. The
flight time of the orbit for the massless test particle is

Fig. 13 A quasi-periodic orbit near the equilibrium point E1

12 days. E4 also belongs to Case 1. There are four fami-
lies of quasi-periodic orbits near E4, which are on the 3-
dimensional tori T 3. The orbit belongs to a quasi-periodic
orbital family that is notably similar to that of E3.

6.5 Discussion of applications

The theorems described in the previous sections have been
applied to asteroids 216 Kleopatra, 1620 Geographos, 4769
Castalia and 6489 Golevka in Sects. 6.1, 6.2, 6.3 and 6.4.
For asteroids 216 Kleopatra, 1620 Geographos and 4769
Castalia, the equilibrium points E1 and E2 belong to Case
2, whereas the equilibrium points E3 and E4 belong to Case
5. There are two families of periodic orbits and one family
of quasi-periodic orbits on the central manifold near each of
the equilibrium points E1 and E2. There is only one family
of periodic orbits on the central manifold near each of the
equilibrium points E3 and E4.

On the other hand, for asteroid 6489 Golevka, E1 and
E2 belong to Case 2, whereas E3 and E4 belong to Case 1.
There are two families of periodic orbits and one family of
quasi-periodic orbits on the central manifold near each of
the equilibrium points E1 and E2. The equilibrium points
E3 and E4 around asteroid 6489 Golevka are linearly stable.
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Fig. 14 A quasi-periodic orbit near the equilibrium point E2

There are three families of periodic orbits and four families
of quasi-periodic orbits on the central manifold near each of
the equilibrium points E3 and E4.

7 Conclusions

We have studied the motion of a massless test particle in the
potential field of a rotating asteroid by means of the analysis
of the linearised equation of motion relative to the equilib-
rium points and the characteristic equation of the equilib-
rium points. In addition, one sufficient condition and one
necessary and sufficient condition for the stability of the
equilibrium points in the potential field of a rotating asteroid
are derived.

Considering the orbit of the particle near the asteroid, we
link the orbit and the geodesic of a smooth manifold with
a new metric. The metric does not have a positive definite
quadratic form. Then, we classify the equilibrium points into
eight cases using the eigenvalues. The structure of the sub-
manifold near the equilibrium point is related to the eigen-
values. A theorem is presented to describe the structure

Fig. 15 A quasi-periodic orbit near the equilibrium point E3

of the submanifold as well as the stable and unstable be-
haviours of the particle near the equilibrium points.

Near the linearly stable equilibrium point, there are
four families of quasi-periodic orbits, which are on the k-
dimensional tori T k(k = 2,3). There are neither asymptoti-
cally stable nor asymptotically unstable manifolds near lin-
early stable equilibrium points; only central manifolds near
them. The structure of the submanifold and the subspace
of the linearly stable equilibrium points are different from
those of the linearly unstable equilibrium points.

Near the non-resonant unstable equilibrium points, the
dimension of the unstable manifold is greater than 0. The
various orbits have been studied near the non-resonant un-
stable equilibrium points. Near the resonant equilibrium
points, there is at least one family of periodic orbits. The
dimension of the resonant manifold is greater than four.

The theory is applied to asteroids 216 Kleopatra, 1620
Geographos, 4769 Castalia and 6489 Golevka. For aster-
oids 216 Kleopatra, 1620 Geographos and 4769 Castalia,
the equilibrium points are unstable, which are denoted as E1,
E2, E3 and E4; two of them belong to Case 2 while the other
two belong to Case 5. However, for asteroid 6489 Golevka,
two of the equilibrium points belong to Case 2; whereas the
other two belong to Case 1, i.e. they are linearly stable.
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Fig. 16 A quasi-periodic orbit near the equilibrium point E4

The different behaviour found for the various asteroids
studied to the actual shape of the asteroid is that clubbed-like
asteroids are more likely to have no linearly stable equilib-
rium points while spheroidal-like asteroids are more likely
to have linearly stable equilibrium points.
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