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Abstract The shadow of rotating Hořava-Lifshitz black
hole has been studied and it was shown that in addition to
the specific angular momentum a, parameters of Hořava-
Lifshitz spacetime essentially deform the shape of the black
hole shadow. For a given value of the black hole spin pa-
rameter a, the presence of a parameter ΛW and KS parame-
ter ω enlarges the shadow and reduces its deformation with
respect to the one in the Kerr spacetime. We have found a
dependence of radius of the shadow Rs and distortion pa-
rameter δs from parameter ΛW and KS parameter ω both.
Optical features of the rotating Hořava-Lifshitz black hole
solutions are treated as emphasizing the rotation of the po-
larization vector along null congruences. A comparison of
the obtained theoretical results on polarization angle with
the observational data on Faraday rotation measurements
provides the upper limit for the δ parameter as δ ≤ 2.1 ·10−3.
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1 Introduction

Few years ago Petr Hořava suggested new candidate of
quantum field theory of gravity with dynamical critical ex-
ponent being equal to z = 3 in the UV (Ultra-Violet). This
theory is a non-relativistic power-counting renormalizable
theory in four dimensions which admits the Lifshitz scale-
invariance in time and space that reduces to Einstein’s gen-
eral relativity at large scales (Hořava 2009a, 2009b). The
Hořava theory has received a great deal of attention and
since its formulation various properties and characteristics
have been extensively analyzed, ranging from formal de-
velopments (Visser 2009), cosmology (Takahashi and Soda
2009), dark energy (Saridakis 2010), dark matter (Muko-
hyama 2009), and spherically symmetric or axial symmetric
solutions (Cai et al. 2009).

In the paper of Lobo et al. (2010) the possibility of ob-
servationally testing Hořava gravity at the scale of the Solar
System, by considering the classical tests of general rela-
tivity (perihelion precession of the planet Mercury, deflec-
tion of light by the Sun and the radar echo delay) for the
Kehagias-Sfetsos (KS) asymptotically flat black hole solu-
tion of Hořava-Lifshitz gravity has been studied. The sta-
bility of the Einstein static universe by considering linear
homogeneous perturbations in the context of an Infra-Red
(IR) modification of Hořava gravity has been studied in Böh-
mer and Lobo (2010). Potentially observable properties of
black holes in the deformed Hořava-Lifshitz gravity with
Minkowski vacuum: the gravitational lensing and quasinor-
mal modes have been studied in Konoplya (2009). Lü et al.
(2009) derived the full set of equations of motion, and then
obtained spherically symmetric solutions for UV completed
theory of gravity proposed by Hořava. The particle motion
in the space-time of a Kehagias-Sfetsos black hole which is
a static spherically symmetric solution of a Hořava-Lifshitz
gravity model has been studied in Enolskii et al. (2011).
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Although a black hole is not visible, it may be ob-
servable nonetheless—since it may create a shadow if it
is in front of a bright background. The apparent shape of
an extremely rotating black hole has been first studied by
Bardeen (1973), later a Schwarzschild black hole with an
accretion disc has been visualized by Luminet (1979). Ac-
cretion discs around an extremely rotating black hole as
viewed from different angles of latitude has been consid-
ered in detail in Quien et al. (1995). Supplementing these
numerical approaches, the closed photon orbits in general
Kerr-Newman space-times have been analytically studied in
de Vries (2000), including the cases where the so-called
cosmic censorship is violated. It is strongly believed that
the observability of black hole shadows in the near future
is very realistic. Recently, great interest emerged especially
for the observability of the black hole in the center of our
Milky Way, Sgr A* (Falcke et al. 2000). The shadow of
Schwarzschild (Darwin 1959; Luminet 1979), Kerr-Taub-
NUT (Abdujabbarov et al. 2013), and Reissner-Nordström
(Eiroa et al. 2002), and other spherically symmetric black
holes (Bozza 2002) have been intensively studied. Non-
rotating braneworld black holes were studied as gravita-
tional lenses (Frolov et al. 2003) as well. The shadow cast by
a rotating braneworld black hole has been studied in Amar-
illa and Eiroa (2012) in the Randall-Sundrum scenario.

Kerr black hole gravitational lenses were considered by
many authors see, for example, Bozza (2003), Bozza and
Scarpetta (2007), Vázquez and Esteban (2004), Kranio-
tis (2011). Rotating black holes present apparent shapes
or shadows with an optical deformation due to the spin
(Bardeen 1973; Chandrasekhar 1992), instead of being cir-
cles as in the case of non-rotating ones. This topic has been
reexamined by several authors in the last few years (Bozza
and Scarpetta 2007; Hioki and Maeda 2009; Hioki and
Miyamoto 2008; Zakharov et al. 2005), with the expectation
that the direct observation of black holes will be possible in
the near future (Zakharov et al. 2005). Therefore the study
of the shadows could be useful for measuring the properties
of astrophysical black holes. Optical properties of rotating
braneworld black holes were studied by Schee and Stuch-
lik (2009). For more details about black hole gravitational
lensing and a discussion of its observational prospects, see
the recent review article (Bozza 2010) and the references
therein.

Exploring the spacetimes discussed here, we have stud-
ied optical features of the black hole in Hořava-Lifshitz
gravity. Following work of Pineault and Roeder (1977), we
have used the Newman-Penrose formalism (Newman and
Penrose 1962) adapted to the locally non-rotating frames
(Bardeen et al. 1972) to obtain the rotation of the polar-
ization vector of the light in the geometrical optics regime
which is appropriate for high frequency electromagnetic
waves. In this approach, the light propagates along null

geodesics and its polarization vector is parallelly trans-
ported.

The paper is organized as follows: in Sect. 2, we review
the basic aspects of the geometry and the geodesics of the
Hořava-Lifshitz black hole. In Sect. 3, we obtain the shad-
ows of black holes with different values of the black hole’s
spin parameter a and parameters of Hořava-Lifshitz space-
time. In Sect. 4 the presented spacetimes were explored with
application involving geometric optics, in particular, rota-
tion of polarization vector of electromagnetic wave. Finally
in Sect. 5 we discuss the results obtained.

Throughout the paper, we use a space-like signature
(−,+,+,+) and a system of units in which G = 1 = c

(However, for those expressions with an astrophysical appli-
cation we have written the speed of light explicitly.). Greek
indices are taken to run from 0 to 3 and Latin indices from
1 to 3; covariant derivatives are denoted with a semi-colon
and partial derivatives with a comma.

2 Photon motion around rotating Hořava-Lifshitz
black holes

2.1 Extreme rotating black hole

The four-dimensional metric of the spherical-symmetric
spacetime written in the ADM formalism (Lobo et al. 2010)
has the following form:

ds2 = −N2c2dt2 + gij

(
dxi + Nidt

)(
dxj + Njdt

)
, (1)

where N is the lapse function and Ni is the shift vector to
be defined.

The Hořava-Lifshitz action describes a nonrelativistic
renormalizable theory of gravitation and is given by (see for
more details Hořava (2009a), Lobo et al. (2010), Harko et al.
(2011), Böhmer and Lobo (2010), Konoplya (2009), Abdu-
jabbarov et al. (2011))

S =
∫

dtdx3√−gN

[
2

κ2

(
KijK

ij − λgK
2)

+ κ2μ

2ν2
g

εijkRil∇jR
l
k − κ2μ2

8
RijR

ij + κ2μ2

8(3λg − 1)

×
(

4λg − 1

4
R2 − ΛWR + 3Λ2

W

)
− κ2

2ν4
g

CijC
ij

]
, (2)

where κ,λg, νg,μ, and ΛW are constant parameters, the
Cotton tensor is defined as

Cij = εikl∇k

(
R

j
l − 1

4
Rδ

j
l

)
, (3)

Rijkl is the three-dimensional curvature tensor, and the ex-
trinsic curvature Kij is defined as

Kij = 1

2N
(ġij − ∇iNj − ∇jNi), (4)
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where dot denotes a derivative with respect to coordinate t .
Up to second derivative terms in the action (2), one

can find the known topological rotating solutions given by
Klemm et al. (1998) for equations of motion in the Hořava-
Lifshitz gravity. Since we are considering matter coupled
with the metric in a relativistic way, we can consider the
metric in Boyer-Lindquist coordinates instead of its ADM
form which is the solutions of Hořava-Lifshitz gravity. In
the Einstein’s gravity this spacetime metric reads in Boyer-
Lindquist type coordinates in the following form (see, e.g.
Ghodsi and Hatefi 2010; Abdujabbarov et al. 2011):

ds2 = − 	r

Σ2ρ2

[
dt − a sin2 θdϕ

]2 + ρ2

	r
dr2

+ ρ2

	θ

dθ2 + 	θ sin2 θ

Σ2ρ2

[
adt − (

r2 + a2)dϕ
]2

, (5)

where the following notations

	r = (
r2 + a2)

(
1 + r2

l2

)
− 2Mr,

	θ = 1 − a2

l2
cos2 θ,

ρ2 = r2 + a2 cos2 θ,

Σ = 1 − a2

l2
, l2 = −2/ΛW

are introduced, M is the total mass of the central BH, a is
the specific angular momentum of the BH.

Note that metric (5) in ADM form can be written as
(Klemm et al. 1998; Abdujabbarov et al. 2011):

ds2 = −ρ2	r	θ

Σ2Ξ2
dt2 + ρ2

	r
dr2 + ρ2

	θ

dθ2

+ Ξ2 sin2 θ

Σ2ρ2
[dϕ − �dt]2, (6)

where

Ξ2 = (
r2 + a2)2

	θ − a2	r sin2 θ,

� = − a

Ξ2

[−(
r2 + a2)	θ + 	r

]
.

Consider a black hole placed between a source of light
and an observer. Then the light reaches the observer after
being deflected by the black hole’s gravitational field. But
some part of the deflected light with small impact parame-
ters can be emitted by the source falling into the black hole.
This phenomena result a dark figure in the map of the space
called the shadow. The boundary of this shadow defines the
shape of a black hole (see e.g. Amarilla and Eiroa 2012). The
study of the geodesic structure around black hole is very im-
portant to obtain the apparent shape. The Hamilton-Jacobi
equation determines the geodesics for a given space-time
geometry:

∂S

∂λ
= −1

2
gμν ∂S

∂xμ

∂S

∂xν
, (7)

Fig. 1 The radial dependence of the effective potential of radial mo-
tion of the massless particles for the different values of the δ parameter:
solid line for δ = 0.001, dashed line for δ = 0.01, and dot-dashed line
for δ = 0.1

where λ is an affine parameter along the geodesics, gμν are
the components of the metric tensor and S is the Jacobi ac-
tion. If the problem is separable, the Jacobi action S can be
written in the form

S = 1

2
m2λ − E t +Lφ + Sr(r) + Sθ (θ), (8)

where m is the mass of a test particle. The second term on
the right hand side is related to the conservation of energy E ,
while the third term is related to the conservation of the an-
gular momentum L in the direction of the axis of symme-
try. In the case of null geodesics, we have that m = 0, and
from the Hamilton-Jacobi equation, the following equations
of motion are obtained:

ρ2 dt

dλ
= Σ2(r2 + a2)

	r

[(
r2 + a2)E − aL

]

+ Σ2a

	θ

[ L
sin2 θ

− aE
]
, (9)

ρ2 dφ

dλ
= Σ2a

	r

[(
r2 + a2)E − aL

]

+Σ2

	θ

[ L
sin2 θ

− aE
]
, (10)

ρ2 dr

dλ
= √

R, (11)

ρ2 dθ

dλ
= √

Θ, (12)

where the functions R(r) and Θ(θ) are defined as

R= Σ2[(r2 + a2)E − aL
]2 − 	rK, (13)

Θ = 	θK − Σ2

sin2 θ

[
aE sin2 θ −L

]2
, (14)

with K as constant of separation.
In Fig. 1 the radial dependence of effective potential of

the massless particle’s radial motion is shown, where we in-
troduce new dimensionless parameter δ = a2/l2 � 1. From
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this dependence one can easily see that with the increase of
δ parameter photon orbits come closer to the central object.
Then the stability of photon orbits will increase with the in-
creasing the parameter δ.

Equations (9)–(12) determine the propagation of light in
the Hořava-Lifshitz spacetime. The light rays are in general,
characterized by two impact parameters which can be ex-
pressed in terms of the constants of motion E , L and the
Carter constant K. Combining these quantities we define
as usual ξ = L/E and η = K/E2 which are the impact pa-
rameters for general orbits around the black hole. We use
Eq. (11) to derive the orbits with constant r in order to ob-
tain the boundary of the shadow of the black hole. These
orbits satisfy the conditions R(r) = 0 = dR(r)/dr which
are fulfilled by the values of the impact parameters that de-
termine the contour of the shadow, namely

ξ(r) = (1 − δ)(a2 + r2)ra − a(3r2 − a2)

a2(1 − r) − rδ(a2 + 2r2)
, (15)

η(r) = 4Σ2r2[a2(a2 + r2 − 2r) + r2δ(a2 + r2)]
[a2(1 − r) − rδ(a2 + 2r2)]2

. (16)

In above expressions we put M = 1 for simplicity.

2.2 Rotating Kehagias-Sfetsos black hole

Now we will study massless particles motion in the vicinity
of a black hole of mass M described by the Kehagias-Sfetsos
asymptotically flat solution in Hořava-Lifshitz gravity. The
metric describing the above mentioned black hole has the
following form (Hyung et al. 2010):

ds2 = f (r)dt2 − dr2

f (r)
− r2dθ2 − r2 sin2 θ(dφ − aNdt)2,

(17)

where metric functions f (r) and N are defined as

N = 2M

r3
, (18)

f (r) = 1 − 2M

r
+ 2M2

ωr4
, (19)

here a and M were introduced and ω is so-called KS param-
eter.

Once more using the Hamilton-Jacobi equation (7) and
the action in the form of (8) the following equations of mo-
tion can be obtained:

dt

dλ
= 1

f
[E − aNL], (20)

r2 dφ

dλ
= aNr2

f
[E − aNL] + 1

sin2 θ
L, (21)

r2 dr

dλ
= √

R′, (22)

r2 dθ

dλ
= √

Θ ′, (23)

Fig. 2 The radial dependence of the effective potential of radial mo-
tion of the massless particles for the different values of the KS param-
eter: solid line for ωM2 = 2, dashed line for ωM2 = 1.5, and dot–
dashed line for ωM2 = 1.1

where the functions R′(r) and Θ ′(θ) are defined by

R′ = r2

f 2
[E − aNL]2 − 1

f

[
K +L2], (24)

Θ ′ = K − cos2 θ
L2

sin2 θ
, (25)

with K as constant of separation.
In the Fig. 2 the radial dependence of the effective po-

tential of radial photon motion is shown. From the figure it
is seen that with decreasing the KS parameter the shape of
effective potential is going to be shifted to the central ob-
ject. This corresponds to increasing the event horizon of the
KS black hole. Note that the case ωM2 → ∞ corresponds
to general relativity. Moreover, one may conclude from the
Fig. 2 that with decreasing the KS parameter the circular
photon orbits become unstable.

Equations (20)–(23) determine the propagation of light in
the Hořava-Lifshitz spacetime. The impact parameters that
determine the contour of the shadow, for the KS spacetime
are given by

ξ ′(r) = 3ωr3 − ωr4 − 6

2aω(2r − 3)
, (26)

η′(r) = 4a−2(2r − 3)−2ω−2{36a2ω
[
ωr4 − 2ωr3 + 2

]

− [
3ωr3 − ωr4 − 6

]2}
. (27)

In above expressions we put M = 1 for simplicity.

3 Shadow of Rotating Hořava-Lifshitz black hole

Using the celestial coordinates one can easily describe the
shadow (see for example Vázquez and Esteban 2004):

α = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

)
, (28)
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Fig. 3 The schematic geometry of the gravitational lens. An observer
far away from the black hole can set up a reference coordinate system
(x, y, z) with the black hole at the origin. The Boyer-Lidquist coordi-
nates coincide with this system only at infinity. The tangent vector to
an incoming light ray defines a straight line which intersects the α–β

plane at the point (αi , βi)

and

β = lim
r0→∞ r2

0
dθ

dr
, (29)

since here an observer far away from the black hole is con-
sidered at r0 → ∞, θ0 is the angular coordinate of the ob-
server, i.e. the inclination angle between the rotation axis of
the black hole and the line of sight of the observer. The ge-
ometry of the new introduced coordinates is shown in Fig. 3.
The coordinates α and β are the apparent perpendicular dis-
tances of the image as seen from the axis of symmetry and
from its projection on the equatorial plane, respectively.

Calculating dφ/dr and dθ/dr from the metric given by
expressions (5), (17) and taking the coordinate’s limit of a
far away observer we obtain celestial coordinate’s functions
of the constants of motion in the form

α = −ξΣ2 csc θ0, (30)

β = ±
√

	θη − Σ2

sin2 θ0

[
a − ξ − a cos2 θ0

]2
, (31)

and

α′ = −ξ ′ csc θ0, (32)

β ′ = ±
√

η′ − ξ ′2 cot2 θ0, (33)

where Eqs. (10), (11), (12) and (21), (22), (23) were used to
calculate dθ/dr and dφ/dr . These equations have implic-
itly the same form as one for the Kerr spacetime metric with
the new ξ , ξ ′ and η, η′ given by Eqs. (15), (16) and (26),
(27) [a detailed calculation of the values of ξ and η and the
expressions of the celestial coordinates α and β as a func-
tion of the constants of motion for Kerr geometry are given
in Vázquez and Esteban (2004)].

In the case of rotating black hole one may introduce two
observables which approximately characterize the apparent
shape. First one should approximate the apparent shape by a
circle passing through three points which are located at the
top position, bottom and the most right end of the shadow as
shown in Fig. 5, the radius Rs of the shadow is defined by
the radius of this circle. One can also define the distortion
parameter δs of the black hole shadow as δs = Dcs/Rs . Two
variables (Rs and δs ) can be interpreted as observables in
astronomical observation (Hioki and Maeda 2009).

When the observer is situated in the equatorial plane of
the black hole, the inclination angle is θ0 = π/2 and the
gravitational effects on the shadow, which grow with θ0, are
larger. The inclination angle corresponding to the Galactic
supermassive black hole is also expected to lie close to π/2.
In this interesting case, we have simply

α = −ξΣ2, (34)

β = ±
√

η − Σ2(a − ξ)2 (35)

and

α′ = −ξ ′, (36)

β ′ = ±√
η′. (37)

For the visualization of the shape of the black hole
shadow one needs to plot β vs α and β ′ vs α′. In Fig. 4, we
show the contour of the shadows of black holes with rotation
parameters a = 0.7 (upper row, left), a = 0.8 (upper row,
right), a = 0.9 (lower row, left), and a = 0.99 (lower row,
right), for several values of the δ parameter. From the Fig. 4,
one can see that with increasing δ parameter, the shadow of
the black hole decreases.

The observable Rs can be calculated from the equation

Rs = (αt − αr)
2 + β2

t

2|αt − αr | ,

and the observable δs is given by

δs = α̃p − αp

Rs

,

where (α̃p,0) and (αp,0) are the points where the reference
circle and the contour of the shadow cut the horizontal axis
at the opposite side of (αr ,0), respectively. In Fig. 6, the
observables Rs and δs as functions of the δ parameter are
shown for the value of the rotation parameter of the black
hole a = 0.99.

In Fig. 7, we show the contour of the shadows of black
holes with rotation parameters a = 0.4 (upper row, left),
a = 0.6 (upper row, right), a = 0.8 (lower row, left), and
a = 0.99 (lower row, right), for several values of the KS pa-
rameter ω. From the Fig. 7, one can see that with increas-
ing KS parameter(ω), the shadow of the black hole also in-
creases.

In Fig. 8, the observables Rs and δs as functions of the KS
parameter ω are shown for the value of the spin parameter
of the black hole a = 0.99 .
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Fig. 4 Silhouette of the shadow
cast by a Hořava-Lifshitz black
hole situated at the origin of
coordinates with inclination
angle θ = π/2, having a rotation
parameter a and a δ parameter
(we put M = 1). (Upper row,
left) a = 0.7, δ = 0 (solid line),
δ = 0.001 (dashed line), and
δ = 0.01 (dashed-dotted line).
(Upper row, right) a = 0.8,
δ = 0 (solid line), δ = 0.001
(dashed line), and δ = 0.01
(dashed-dotted line). (Lower
row, left) a = 0.9, δ = 0 (solid
line), δ = 0.001 (dashed line),
and δ = 0.01 (dashed-dotted
line). (Lower row, right)
a = 0.99, δ = 0 (solid line),
δ = 0.001 (dashed line), and
δ = 0.01 (dashed-dotted line).
The shadow corresponds to each
curve and the region inside it

Fig. 5 The observables for the apparent shape of a rotating black hole
are the radius Rs and the distortion parameter δs = Dcs/Rs . Here Dcs

is the difference between the left endpoints of the circle and of the
shadow

4 Rotation of polarization vector around
Hořava-Lifshitz black hole

In order to analyze possible effects of the parameters of
Hořava-Lifshitz gravity in terms of measurable quanti-
ties we focus on geometrical optics of the light propagat-
ing around rotating Hořava-Lifshitz black hole. The ap-
proach employed here was presented by Pineault and Roeder
(1977), Neves and Molina (2012) where the Newman-
Penrose formalism was used to calculate optical quantities
in the weak-field approximation with a � M .

The equations which govern the tangent vector kμ (the
wave vector) to the null congruence and the polarization
vector f μ are

kμkμ = 0, kμ;νkν = 0 (38)

and

kμfμ = 0, f μ;νkν = 0 (39)

with the ; denoting covariant derivative in the kμ direction.
In the Newman-Penrose (1962) formalism a null tetrad is

adopted, {eaμ} = (mμ, m̄μ, lμ, kμ) with the vector mμ given
by

mμ =
√

2

2

(
aμ + ibμ

)
. (40)

The vector mμ is particularly relevant to the approach de-
veloped here, as will be seen. An important feature of the
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Fig. 6 Observables Rs and δs

as functions of the δ parameter,
corresponding to the shadow of
a black hole situated at the
origin of coordinates with
inclination angle θ = π/2 and
spin parameter a = 0.99 (we put
M = 1)

Fig. 7 Silhouette of the shadow
cast by a Hořava-Lifshitz black
hole situated at the origin of
coordinates with inclination
angle θ = π/2, having a rotation
parameter a and a KS parameter
ω (we put M = 1). (Upper row,
left) a = 0.4, ω = 1.1 (solid
line), ω = 1.14 (dashed line),
and ω = 1.18 (dashed-dotted
line). (Upper row, right)
a = 0.6, ω = 0.1 (solid line),
ω = 1.14 (dashed line), and
ω = 1.18 (dashed-dotted line).
(Lower row, left) a = 0.8,
ω = 1.1 (solid line), ω = 1.14
(dashed line), and ω = 1.18
(dashed-dotted line). (Lower
row, right) a = 0.99, ω = 1.1
(solid line), ω = 1.14 (dashed
line), and ω = 1.18
(dashed-dotted line). The
shadow corresponds to each
curve and the region inside it

Fig. 8 Observables Rs and δs

as functions of the KS
parameter corresponding to the
shadow of a black hole situated
at the origin of coordinates with
inclination angle θ = π/2 and
spin parameter a = 0.99 (we put
M = 1)

formalism is that the kμ direction is preserved under null
rotations as

k′μ = Akμ, (41)

m′μ = e−iχ
(
mμ + Bkμ

)
, (42)

l′μ = A−1(lμ + Bm̄μ + B̄mμ + BB̄kμ
)
, (43)

with A > 0, B is complex and χ is real. The Newman-
Penrose formalism provides 12 constants, the spin coeffi-
cients to the characterization of the spacetime. Some coef-
ficients will be used to estimate the variation of the polar-
ization vector in rotating Hořava-Lifshitz black hole back-
ground.
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As shown in Newman and Penrose (1962) when kμ is
tangent to the null congruence the spin coefficient τ ≡
−kμ;νkνmμ is zero. Moreover considering that the null
tetrad must parallelly propagate along the null congruence
this assumption implies that other two spins coefficients
vanish: ε = π = 0. Then the plane spanned by kμ and aμ

can be identified with the polarization plane which is paral-
lelly propagated in the kμ direction. That is the polarization
vector can be identified with the aμ vector of the Newman-
Penrose formalism. From this one can built an orthonormal
frame
{
e(μ)
a

} = {
r(μ), r̄(μ), q(μ),p(μ)

}
, (44)

such that this tetrad corresponds to the one-forms σ (0) =
eνdt , σ (1) = eλdr , σ (2) = eμdθ , and σ (3) = (dφ − Ωdt)eψ

of the locally non-rotating frame (LNRF). (The LNRF in-
dices are indicated between parenthesis; Bardeen et al.
1972.) For the metric given by Eq. (6) the expressions for
eν , eλ, eμ and eψ are presented in the Appendix Eq. (55).
Therefore, if the source and the observer are at rest with re-
spect to the LNRF they are dragged by rotation of the black
hole. In Pineault and Roeder (1977) this construction was
made, with the expression for the m

(μ)
+ vector (i.e., aμ)—

the projection of mμ on the LNRF—given by

a
(μ)
+ = 1√

2

(
0,−k(2)

k(0)
,1 − K

(
k(2)

)2
,Kk(2)k(3)

)
, (45)

b
(μ)
+ = 1√

2

(
0,−k(3)

k(0)
,−Kk(2)k(3),1 − K

(
k(3)

)2
)

, (46)

where K = 1/[k(0)(k(0) + k(1))] and k(μ) is the projection of
kμ on the LNRF according to Eq. (54). A null rotation was
performed

m
(μ)
+ → m(μ) = e−iχm

(μ)
+ , (47)

such that ε = 0. With this choice and considering the ε co-
efficient as ε ≡ Dmμm̄μ/2 it is shown that

Dχ = −2iε+. (48)

Expression (48) indicates how the χ angle varies in the
kμ direction i.e. the congruence direction. This variation will
be important to calculate the variation of polarization vector
in that direction. For the spacetime metric (6) presented in
the previous section we obtain

Dχ = −2iε+
= (

Γ
(t)
(θ)(t)

k(t) + Γ
(r)
(θ)(r)

k(r) + Γ
(r)
(θ)(θ)

k(θ) + Γ
(t)
(θ)(φ)

k(φ)
)

× k(φ)
/(

k(t) + k(r)
) − (

Γ
(r)
(φ)(t)k

(t)

+ Γ
(t)
(φ)(r)k

(r) + Γ
(t)
(φ)(θ)k

(θ) + Γ
(r)
(φ)(φ)k

(φ)
)

× k(θ)
/(

k(t) + k(r)
) + Γ

(θ)
(φ)(φ)k

(φ) + Γ
(θ)
(φ)(t)k

(t), (49)

Fig. 9 The radial dependence of the polarization vector for the dif-
ferent values of the δ parameter: solid line for δ = 0, dashed line for
δ = 0.05, and dot-dashed line for δ = 0.1

where the values of Γ
(μ)

(ν)(γ ) and k(μ) were projected on the
LNRF presented in the Appendix. Using the results pre-
sented in Eqs. (54) and (56), Dχ is given in first order in
a by

Dχ = −Dχ(cos θ) + 3M
r2a sin θ

Ξ2

dθ

dμ
+O

(
a2). (50)

The expression in Eq. (50) is associated with the vari-
ation between a(μ) and a

(μ)
+ according to the null rotation

indicated in Eq. (47).
The total variation of polarization vector taking into ac-

count Eq. (50) and the spacetime dragging is given by

	σ = 	χ + 	φ. (51)

The second term in right side of Eq. (51) is due to the space-
time dragging. The first term is obtained with the integra-
tion of Dχ in Eq. (50) with respect to the ψ coordinate (see
Pineault and Roeder 1977), which plays the role of the az-
imuthal angle in the orbital plane of the null congruence.
Moreover a new angle was defined: α is the angle of the
orbital plane with respect to the equatorial plane. That is
sinα = cos θ sinψ and Eq. (50) is reduced to

Dχ = −Dχ(cos θ) + Dχ ′ +O
(
a2), (52)

where

Dχ ′ = −3M
r2a sinα

Ξ2

d(sinψ)

dμ
. (53)

Here, we have found the dependence of polarization vector
from δ parameter in equatorial plane (θ = π/2). In the Fig. 9
the radial dependence of the polarization vector is shown for
the different values of δ parameter. From the dependence
one can easily see that presence of the δ parameter due to
Hořava-Lifshitz modification increases the polarization an-
gle. This dependence may help to get constraints on δ pa-
rameter from observational data related to the geometrical
optics features of compact objects.
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5 Conclusion

We have studied the radial dependence of effective poten-
tial of the massless particles radial motion around Hořava-
Lifshitz black hole and obtained that with increase of δ pa-
rameter photon orbits come closer to the central object. The
stability of photon orbits will increase with the increasing
the parameter δ.

We have shown that with decreasing the KS parameter
the shape of the effective potential is going to shift to the
central object. This corresponds to the decrease of the event
horizon of the KS black hole. Other important conclusion is
that with decreasing the KS parameter the circular photon
orbits become unstable. We have analyzed how the shadow
of the black hole is distorted by the presence of the δ and
ω parameters. The shape of the shadow of the black hole
was affected by the δ parameter that is with increasing δ

parameter the radius of the shadow and distortion parameter
decrease. The influence of black hole spin parameter a is
opposite that is with the increase of black hole spin a the
distortion parameter is increasing. Therefore the effect of
parameter δ compensates the influence of the parameter a.
The shape of the shadow of the black hole is also affected by
the KS parameter that is with increasing KS parameter the
radius of the shadow and distortion parameter also increase.

Since black hole’s shadows give the region where one can
never observe any light from the gravitational source, one
should look for a part of the shape of realistic light source
(Hioki and Maeda 2009). In the near future if the instrumen-
tal astronomy would give more accurate measurements, at
least, on part of the black hole’s shape one can find con-
straints on δ and KS parameter in Hořava-Lifshitz space-
time. The recent measurements of the Gravitational Lens
Systems (Narasimha 2007) may give alternate constraints on
the numerical values of the δ parameter in Hořava-Lifshitz
model. Astrophysical quantities related to the observable
properties of the polarization vector can be obtained from
the spacetime metric and observations have provided impor-
tant information about the δ parameter. In order to get the
estimation for the value of δ parameter one should compare
the observational results with obtained theoretical results on
polarization angle. For the nuclei of spiral galactic systems
B0218+357 and PKS1830-211 the polarization angle has
been found as 913 ± 31 rad m−2 and 1480 ± 83 rad m−2,
respectively (Subrahmanyan et al. 1990 and Patnaik et al.
1993), from the observed correlation of the Faraday rota-
tion measurements. Since the effect of the additional δ pa-
rameter is within the error of the observation we may put
Dχ(δ 
= 0)/Dχ(δ = 0) = 1 + ε, where ε is the relative error
of the observation. Putting the value of ε from the obser-
vations (Subrahmanyan et al. 1990 and Patnaik et al. 1993)
into the above condition one can easily make an estimation
on upper limit for the δ parameter as δ ≤ 2.1 · 10−3.
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Appendix: Quantities in the locally non-rotating frame

All physical quantities are indicated by parenthesis around
the Greek indices in the locally non-rotating frame (LNRF).
The components of kμ = dxμ/dμ = ẋμ which is tangent to
the null congruence and its projections k(μ) on the LNRF
are

k(0) = k(t) = eνk0 = eν ṫ ,

k(1) = k(r) = eλk1 = eλṙ,

k(2) = k(θ) = eμk2 = eμθ̇,

k(3) = k(φ) = eψ
(
k3 − Ωk0) = eψ(φ̇ − Ωṫ).

(54)

The functions ν,λ,μ and ψ are listed as following

e2ν = ρ2	r	θ

Σ2Ξ2
,

eλ = ρ2

	r
,

eμ = ρ2

	θ

,

eψ = Ξ2 sin2 θ

Σ2ρ2
.

(55)

The nonzero components of the connection projected on
the LNRF (Bardeen et al. 1972) are

Γ
(t)
(r)(t) = Γ

(r)
(t)(t) = ∂rνe−λ,

Γ
(t)
(θ)(t)

= Γ
(θ)
(t)(t)

= ∂θνe−μ,

Γ
(r)
(θ)(r) = −Γ

(θ)
(r)(r) = ∂θλe−μ,

Γ
(r)
(θ)(θ) = −Γ

(θ)
(r)(θ) = −∂rμe−λ,

Γ
(r)
(φ)(φ) = −Γ

(φ)

(r)(φ) = −∂rψe−λ,

Γ
(θ)
(φ)(φ) = −Γ

(φ)

(θ)(φ) = −∂θψe−μ,

Γ
(t)
(r)(φ) = Γ

(r)
(t)(φ) = Γ

(t)
(φ)(r) = Γ

(r)
(φ)(t)

= −Γ
(φ)

(t)(r) = −Γ
(φ)

(r)(t) = 1

2
∂rΩeψ−ν−λ,

Γ
(t)
(θ)(φ) = Γ

(θ)
(t)(φ) = Γ

(t)
(φ)(θ) = Γ

(θ)
(φ)(t)

= −Γ
(φ)

(t)(θ)
= −Γ

(φ)

(θ)(t)
= 1

2
∂θΩeψ−ν−μ.

(56)
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