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Abstract The motion of a point mass in the J2 problem has
been generalized to that of a rigid body in a J2 gravity field
for new high-precision applications in the celestial mechan-
ics and astrodynamics. Unlike the original J2 problem, the
gravitational orbit-rotation coupling of the rigid body is con-
sidered in the generalized problem. The existence and prop-
erties of both the classical and non-classical relative equilib-
ria of the rigid body are investigated in more details in the
present paper based on our previous results. We nondimen-
sionalize the system by the characteristic time and length to
make the study more general. Through the study, it is found
that the classical relative equilibria can always exist in the
real physical situation. Numerical results suggest that the
non-classical relative equilibria only can exist in the case
of a negative J2, i.e., the central body is elongated; they can-
not exist in the case of a positive J2 when the central body
is oblate. In the case of a negative J2, the effect of the orbit-
rotation coupling of the rigid body on the existence of the
non-classical relative equilibria can be positive or negative,
which depends on the values of J2 and the angular veloc-
ity Ωe. The bifurcation from the classical relative equilib-
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ria, at which the non-classical relative equilibria appear, has
been shown with different parameters of the system. Our re-
sults here have given more details of the relative equilibria
than our previous paper, in which the existence conditions
of the relative equilibria are derived and primarily studied.
Our results have also extended the previous results on the
relative equilibria of a rigid body in a central gravity field
by taking into account the oblateness of the central body.

Keywords J2 problem · Rigid body · Gravitational
orbit-rotation coupling · Classical relative equilibria ·
Non-classical relative equilibria

1 Introduction

The J2 problem, also known as the main problem of artifi-
cial satellite theory, is one of the most important problems
in both celestial mechanics and astrodynamics, as the most
significant non-spherical mass distribution of the central ce-
lestial body, i.e., the zonal harmonic J2, is taken into ac-
count (Broucke 1994; Wang 2013a). In the J2 problem, the
motion of a point mass in a gravity field truncated on the
zonal harmonic J2 is studied. The J2 problem has broad
applications in the orbital dynamics and orbital design of
spacecraft, such as the design of the sun synchronization or-
bits and the J2 invariant relative orbits in the spacecraft for-
mations (Xu et al. 2012). This classical problem has been
studied in many works, such as Broucke (1994) and the lit-
eratures cited therein.

However, neither natural nor artificial celestial bodies are
point masses or have spherical mass distributions. A prac-
tical generalization of the point mass model is the assump-
tion that the body considered is perfectly rigid that is precise
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enough for most applications in celestial mechanics and as-
trodynamics. The orbital and rotational motions of the rigid
body are coupled through the gravity field due to its non-
spherical mass distribution. The orbit-rotation coupling may
cause qualitative effects in the motion, which are more sig-
nificant when the ratio of the dimension of the rigid body to
the orbit radius is larger, as shown by Wang and Xu (2013b).

The point mass model of the J2 problem has a high preci-
sion for an artificial Earth satellite, since the dimension of an
artificial Earth satellite is small in comparison with the or-
bital radius and the orbit-rotation coupling is insignificant.
However, when a spacecraft orbiting around an asteroid or
an irregular natural satellite around a planet, such as Pho-
bos, is considered, the mass distribution of the considered
body is far from a sphere and the dimension of the body
is not small anymore in comparison with the orbital radius.
In these cases, the orbit-rotation coupling causes significant
effects and should be taken into account in the precise mo-
tion theories, as shown by Scheeres (2006a), Wang and Xu
(2013b). For these new high-precision applications in celes-
tial mechanics and astrodynamics, we have generalized the
J2 problem to the motion of a rigid body in a J2 gravity field
in Wang and Xu (2013a, 2013c) with the orbit-rotation cou-
pling considered. This generalized problem is a good model
for coupled orbital and rotational motions of a spacecraft
orbiting a spheroid asteroid, or an irregular natural satellite
around a dwarf planet or planet.

The relative equilibria and their properties in the celes-
tial mechanics and astrodynamics are of great interest, since
most natural celestial bodies evolved tidally to the state of
relative equilibria, and the relative equilibria can be used as
the nominal motion in the mission design in the astrodynam-
ics.

We have studied the relative equilibria of the rigid body
in the J2 gravity field in Wang and Xu (2013a) under the
second-order gravitational potential. We found two types of
relative equilibria: one is the classical type, also called La-
grangian relative equilibria, in which the circular orbit of
the rigid body is in the equatorial plane of central body; the
other is the non-classical type, also called non-Lagrangian
relative equilibria, in which the circular orbit of the rigid
body is displaced, that is, parallel to, but not in the equato-
rial plane of central body.

The relative equilibria of the coupled orbital and rota-
tional motions of a general rigid body without symmetry in
the central gravity field have been studied by Wang et al.
(1991, 1992) and Teixidó Román (2010). Wang et al. (1991)
pointed out that under the second-order gravitational poten-
tial only the classical relative equilibria can exist in the real
physical system; whereas the non-classical relative equilib-
ria can only exist in the case of a very large ratio of the di-
mension of the rigid body to the orbit radius, which means a
very significant orbit-rotation coupling and does not exist in

the real physical system. Teixidó Román (2010) has found
the classical relative equilibria, called orthogonal equilib-
ria there, and two non-classical types of relative equilibria,
called oblique equilibria and parallel equilibria, under the
second-order gravitational potential. The parallel equilibria,
in which the mass center of the rigid body is fixed above the
pole of central body, is the extreme of the oblique equilib-
ria, in which the circular orbit of the rigid body is displaced.
Similarly to Wang et al. (1991), neither the two non-classical
relative equilibria can exist in the real physical system, since
both of them are dependent on a very large ratio of the di-
mension of the rigid body to the orbit radius.

However, several results have shown that either the
higher-order gravitational potential or the symmetry of the
rigid body can lead to the existence of the non- classical
relative equilibria in the real physical system. Wang et al.
(1992) and Teixidó Román (2010) have shown that the non-
classical relative equilibria, or called oblique equilibria, can
always exist under the exact gravitational potential for an
arbitrary ratio of the dimension of the rigid body to the
orbit radius. Wang et al. (1992) has also shown that there
can be significant changes in orientation of the rigid body
away from the classical relative equilibria, although the or-
bital offset of the non-classical relative equilibria from the
attractive central is small. O’Reilly and Tan (2004) and Teix-
idó Román (2010) pointed out that for an axisymmetric rigid
body, the non-classical relative equilibria can exist in the
case of a small ratio of the dimension of the rigid body to
the orbit radius even under the second-order gravitational
potential. This phenomenon is due to the fact that the ro-
tational motion of the rigid body can be balanced at more
orientations by the angular momentum about the symmetric
axis, and these orientations can provide more options to bal-
ance the orbital motion through the orbit-rotation coupling.

We have obtained the non-classical relative equilibria un-
der the second-order gravitational potential for a general
rigid body without symmetry in a J2 gravity field in Wang
and Xu (2013a), which can exist in the real physical sys-
tem. Notice that our physically realistic non-classical rela-
tive equilibria are different from those in Wang et al. (1992),
O’Reilly and Tan (2004) and Teixidó Román (2010) men-
tioned above, since our results are not dependent on either
the higher-order gravitational potential or the symmetry of
the rigid body. Our physically realistic non-classical rela-
tive equilibria are due to the combined effects of the second
zonal harmonic of the central body and the orbit-rotation
coupling of the rigid body (Wang and Xu 2013a).

The relative equilibria of the coupled orbital and rota-
tional motions of rigid bodies have also been studied in
many works on the Full Two Body Problem (F2BP), which
is the problem of the rotational and orbital motions of
two rigid bodies interacting through their mutual gravita-
tional potential. As stated by Maciejewski (1995), the non-
classical relative equilibria generically exist in the motions
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of two generic rigid bodies, whereas the classical relative
equilibria can exist only in exceptional cases when the bod-
ies possess some kind of symmetry and the mass distri-
butions satisfy contain conditions. Several works on the
sphere-restricted F2BP, in which one body is assumed to
be a homogeneous sphere, have obtained the classical rel-
ative equilibria, such as the stationary motion in Kinoshita
(1972); the long-axis equilibria and short-axis equilibria in
Scheeres (2004), Bellerose and Scheeres (2008a, 2008b);
and the locally central point in Scheeres (2006b). Aboelnaga
and Barkin (1979) and Scheeres (2006b) studied the non-
classical relative equilibria of the sphere-restricted F2BP,
also called the non-locally central point, by using the exact
gravitational potential.

Kinoshita (1970) investigated the classical relative equi-
libria of an axisymmetric rigid body in the sphere-restricted
F2BP by using the exact gravitational potential. Three types
of classical relative equilibria, “Arrow” type, “Float” type
and “Spoke” type, are obtained under different assump-
tions of the symmetry of the rigid body. Vereshchagin et al.
(2010) has obtained both the classical and non-classical rel-
ative equilibria of an axisymmetric rigid body in the sphere-
restricted F2BP by using the exact gravitational potential.
Two types of classical relative equilibria were given: the
cylindrical precession, corresponding to the “Float” type in
Kinoshita (1970) and the inclined co-planar precession, in-
cluding the “Arrow” type and the “Spoke” type in Kinoshita
(1970).

We will investigate the existence and properties of both
the classical and non- classical relative equilibria obtained in
Wang and Xu (2013a) in more details in the present paper.
Special attention will be paid on the individual effect of the
second zonal harmonic J2 and the orbit-rotation coupling of
the rigid body on the existence of the non-classical relative
equilibria.

2 Statement of the problem

As described in Fig. 1, we consider a small rigid body B in
the gravity field of a massive axisymmetrical body P . As-
sume that the body P is rotating uniformly around its axis
of symmetry, and the mass center of the body P is stationary
in the inertial space, i.e., the body P is in free motion with-
out being affected by the body B . The gravity field of the
body P is approximated through truncation on the second
zonal harmonic J2. The inertial reference frame is defined
as S = {e1, e2, e3} whose origin O is attached to the mass
center of the body P . e3 is along the axis of symmetry of
the body P . The body-fixed reference frame of the body B

is defined as Sb = {i, j,k} whose origin C is attached to the
mass center. The frame Sb coincides with the principal axes
reference frame of the body B . The attitude matrix of the

Fig. 1 A small rigid body B in the J2 gravity field of a massive ax-
is-symmetrical body P

rigid body B with respect to the inertial frame S is denoted
by A,

A = [α,β,γ ]T ∈ SO(3), (1)

where the vectors α, β and γ are coordinates of the unit
vectors e1, e2 and e3 expressed in the frame Sb , and SO(3)

is the 3-dimensional special orthogonal group.
We define r as the position vector of the point C with

respect to the point O expressed in the frame S. The config-
uration space of the problem is the Lie group

Q = SE(3), (2)

known as the special Euclidean group of three space that
is the semidirect product of SO(3) and R

3 with elements
(A, r). The elements � of the phase space, the cotangent
bundle T ∗Q, can be written in the following coordinates

� = (A, r;A�̂,p), (3)

where � is the angular momentum of the rigid body B ex-
pressed in the body-fixed frame Sb and p is the linear mo-
mentum of the rigid body B expressed in the inertial frame
S (Wang and Xu 2012). The hat map ˆ : R

3 → so(3) is the
usual Lie algebra isomorphism, where so(3) is the Lie Al-
gebras of Lie group SO(3).

The J2 gravity field is axis-symmetrical with axis of sym-
metry e3. Using this symmetry, we have carried out a reduc-
tion, induced a Hamiltonian on the quotient T ∗Q/S1, where
S1 is the one-sphere, and expressed the dynamics in terms
of appropriate reduced variables in Wang and Xu (2013a).
The reduced variables in T ∗Q/S1 can be chosen as

z = [
�T ,γ T ,RT ,PT

]T ∈ R
12, (4)

where R = AT r and P = AT p are the position vector and the
linear momentum of the rigid body B expressed in the frame



428 Astrophys Space Sci (2014) 353:425–440

Sb respectively. The variable γ , the coordinates of the unit
vector e3 expressed in the frame Sb, describes the attitude of
the rigid body B with respect to the inertial frame S.

This system has a non-canonical Hamiltonian structure
with the Poisson bracket {·,·}R12(z), which can be written in
terms of the Poisson tensor as follows:

{f,g}R12(z) = (∇zf )T B(z)(∇zg). (5)

The Poisson tensor B(z) is given by:

B(z) =

⎡

⎢⎢⎢
⎣

�̂ γ̂ R̂ P̂
γ̂ 0 0 0
R̂ 0 0 E
P̂ 0 −E 0

⎤

⎥⎥⎥
⎦

, (6)

where E is the identity matrix. This Poisson tensor has two
independent Casimir functions. One is a geometric integral
C1(z) = γ T γ ≡ 1, and the other one is C2(z) = γ T (� +
R̂P), the third component of the angular momentum with
respect to the origin O expressed in the inertial frame S.
C2(z) is the conservative quantity produced by the symme-
try of the system, as stated by Noether’s theorem.

The Hamiltonian of the problem in the variables z is
given as follows:

H = |P|2
2m

+ 1

2
�T I−1� + V ◦ τT ∗Q, (7)

where m and the diagonal matrix I = diag{Ixx, Iyy, Izz} are
the mass and the inertia tensor of the rigid body respectively;
τT ∗Q : T ∗Q → Q is the canonical projection. The gravita-
tional potential V : Q → R up to the second order is given
in terms of moments of inertia of the rigid body as follows
(Wang and Xu 2013a):

V = V (0) + V (2)

= −GM1m

R

− GM1

2R3

[
tr(I) − 3R̄T IR̄ + εm − 3εm(γ · R̄)2], (8)

where G is the Gravitational Constant; M1 is the mass of
the body P ; ε is defined as ε = J2a

2
E and aE is the mean

equatorial radius of the body P . Note that R = |R| and R̄ =
R/R.

The equations of motion of the system can be written in
the Hamiltonian form:

ż = {
z,H(z)

}
R12(z) = B(z)∇zH(z). (9)

The explicit equations of motion can be given with the
Hamiltonian in Eq. (7) as follows:

�̇ = � × I−1� + R × ∂V (γ,R)

∂R
+ γ × ∂V (γ,R)

∂γ
,

γ̇ = γ × I−1�,

Ṙ = R × I−1� + P
m

,

Ṗ = P × I−1� − ∂V (γ ,R)

∂R
.

(10)

In the present paper, we will nondimensionalize the sys-

tem by the characteristic time
√

a3
E/GM1 and the character-

istic length aE to make studies in general cases instead of in
specific cases. After nondimensionalization, the equatorial
radius aE and the gravitational constant GM1 of the body
P are both equal to 1, and the unit of the angular velocity is√

GM1/a
3
E .

3 Classical relative equilibria

We have found a classical type of relative equilibria based
on the equations of motion Eq. (10) under the second-order
gravitational potential in Wang and Xu (2013a). At this type
of relative equilibria, the orbit of the mass center of the rigid
body is a circle in the equatorial plane of body P with its
center coinciding with origin O . The rigid body rotates uni-
formly around one of its principal axes that is parallel to e3

in the inertial frame S in angular velocity that is equal to the
orbital angular velocity �e . The position vector Re and the
linear momentum Pe are parallel to another two principal
axes of the rigid body. When the radius vector Re is parallel
to the principal axes of the rigid body i, j, k, the norm of the
orbital angular velocity �e is given by the following three
equations respectively:

Ωe =
(

1

R3
e

+ 3

2R5
e

[
−2

Ixx

m
+ Iyy

m
+ Izz

m
+ J2

])1/2

, (11)

Ωe =
(

1

R3
e

+ 3

2R5
e

[
Ixx

m
− 2

Iyy

m
+ Izz

m
+ J2

])1/2

, (12)

Ωe =
(

1

R3
e

+ 3

2R5
e

[
Ixx

m
+ Iyy

m
− 2

Izz

m
+ J2

])1/2

. (13)

The condition of existence of this classical type of relative
equilibria is given by the following inequations:

1

R3
e

+ 3

2R5
e

[
−2

Ixx

m
+ Iyy

m
+ Izz

m
+ J2

]
> 0, (14)

1

R3
e

+ 3

2R5
e

[
Ixx

m
− 2

Iyy

m
+ Izz

m
+ J2

]
> 0, (15)
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Fig. 2 One of the classical type of relative equilibria

1

R3
e

+ 3

2R5
e

[
Ixx

m
+ Iyy

m
− 2

Izz

m
+ J2

]
> 0. (16)

The norm of the linear momentum Pe is given by:

Pe = mReΩe. (17)

With a given value of Re , there are 24 relative equilibria be-
longing to this classical type of relative equilibria in total.
Without of loss of generality, we will choose one of the rel-
ative equilibria as shown by Fig. 2 for detailed studies:

�e = [0, 0, ΩeIzz]T , γ e = [0, 0, 1]T ,

Re = [Re 0 0]T ,

Pe = [0 mReΩe 0]T , �e = [0 0 Ωe]T .

(18)

Other relative equilibria can be converted into this equi-
librium by changing the arrangement of the axes of the ref-
erence frame Sb . At this relative equilibrium, the norm of
the orbital angular velocity �e is given by Eq. (11), and the
condition of existence is given by Eq. (14).

The norm of the orbital angular velocity Eq. (11) can
written as

Ωe =
(

1

R3
e

+ 3

2R3
e

[(
1

Re

)2(
−2

Ixx

m
+ Iyy

m
+ Izz

m

)

+ J2

(
1

Re

)2])1/2

=
(

1

R3
e

+ 3

2R3
e

[(
1

Re

)2

(�I + J2)

])1/2

, (19)

where �I = −2Ixx/m+Iyy/m+Izz/m. The parameter �I

is a comprehensive scale of the effect of the orbit-rotation
coupling of the rigid body, since it describes both the non-
spherical mass distribution and the characteristic dimension
of the rigid body, which are two basic elements of the grav-
itational orbit-rotation coupling. The effect of �I can be
considered equivalently as a change of the oblateness of the
central body in the sense of the point mass model.

The characteristic dimension of the rigid body dC can be
defined by the following equation:

Ixx = 1

2
md2

C, or
1

2
d2
C = Ixx

m
. (20)

Notice that the characteristic dimension dC is only an esti-
mation of the dimension of the rigid body, but not the real

dimension of the rigid body. Since the characteristic dimen-
sion dC has a very simple relation with Ixx/m, we will also
refer Ixx/m as the characteristic dimension in the following.

The mass distribution parameters of the rigid body σx and
σy can be defined as follows:

σx =
(

Izz − Iyy

Ixx

)
, σy =

(
Izz − Ixx

Iyy

)
. (21)

The parameters σy and σx have the following range:

−1 ≤ σy ≤ 1, −1 ≤ σx ≤ 1. (22)

The bounds of the parameters σy and σx are determined
by the physical properties of the moments of inertia: Ixx +
Iyy > Izz, Ixx + Izz > Iyy and Iyy + Izz > Ixx .

As shown above, the ratio Ixx/m describes the charac-
teristic dimension of the rigid body; the ratios σx and σy

describe the shape of the rigid body. Solving the definition
in Eq. (21), we can have:

Iyy

Ixx

= 1 − σx

1 − σy

, (23)

Izz

Ixx

= 1 − σxσy

1 − σy

. (24)

Then by using Eqs. (23) and (24), the parameter �I can
be written in terms of the three ratios Ixx/m, σx , and σy as
follows:

�I = Ixx

m

(
−2 + Iyy

Ixx

+ Izz

Ixx

)
= Ixx

m
fσ , (25)

where fσ is defined as:

fσ = 2σy − σx − σxσy

1 − σy

. (26)

We can estimate the range of the parameter �I through
the upper limit of Ixx/m and the calculation of fσ on the
σy–σx plane. We assume that the upper limit of Ixx/m is
equal to 0.125, which means the characteristic dimension
of the rigid body dC is 0.5aE that is the upper limit of the
characteristic dimension in our study.

The value of the parameter fσ is shown on the σy–σx

plane in Fig. 3. We can find that the lower limit of fσ is
−1, which can be reached in the case of σy = −1. Theoret-
ically, the upper limit of fσ is the positive infinity, which
can be reached when σy approaches 1 that means the mass
distribution of the rigid body is a rod along the i-axis. How-
ever, in our study we will not consider this extreme case that
would not exist in the real physical system. We choose the
upper limit of fσ as 16.

Noticing that the upper limit of Ixx/m is equal to 0.125,
we can obtain the range of the parameter �I as follows:

−0.125 < �I < 2. (27)
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Fig. 3 The value of fσ on the σy–σx plane

The range of the second zonal harmonic is chosen as
−0.5 < J2 < 0.5 in our study, same as in Broucke (1994),
which can cover all the spheroid celestial bodies in our So-
lar system. Although the body with a negative J2 has not
been discovered yet in our Solar System, our studies on the
case of a negative J2 are of interest and value for the the-
oretical studies on the related problems in the celestial me-
chanics and astrophysics. For a very large rigid body with
Ixx/m = 0.125, when σy approaches 1, the parameter �I

can be larger than J2 that means that the orbit-rotation cou-
pling of the rigid body is dominative and the effect of J2 is
insignificant.

According to Eq. (14), the existence condition of the clas-
sical relative equilibria can be written as:

�I + J2 > −2

3
R2

e . (28)

The boundary surface of the existence condition are plot-
ted in the three dimensional space �I–J2–Re in Fig. 4. The
forbidden region, in which the classical relative equilibria do
not exist, is below the boundary surface. It is easy to see that
the forbidden region is always located in the interval Re < 1.

Notice that Re < 1 means the mass center of the rigid
body is within the surface of the central body P , which is
excluded from the real physical system. Therefore, we can
conclude that the classical relative equilibria can always ex-
ist in the real physical situation.

According to Eq. (19), the equivalent zonal harmonic
J2−Eq can be defined as:

J2−Eq = �I + J2. (29)

The range of J2−Eq considered here can be given by

−0.625 < J2−Eq < 2.5. (30)

Fig. 4 The boundary surface of the existence condition of the classical
relative equilibria

According to the results by Howard (1990), through some
calculation it is found that Eq. (19) has only one positive root
for the orbital radius Re when

J2−Eq > 0. (31)

Equation (19) has two positive roots for Re in the following
case:

−2

5

(
2

5

)2/3( 1

Ω2
e

)2/3

< J2−Eq < 0, (32)

and have no positive root for Re when

J2−Eq < −2

5

(
2

5

)2/3( 1

Ω2
e

)2/3

. (33)

According to Eqs. (32) and (33), in the case of a negative
J2−Eq , the bifurcation value of Ωe, where the number of
roots of Eq. (19) increase from zero to one, then to two, i.e.,
the peak of the Ωe–Re curve, is given by:

Ωe =
(

2

5

)5/4(
− 1

J2−Eq

)3/4

. (34)

The curves of the angular velocity Ωe with respect to the
orbital radius Re in the cases of different values of J2−Eq

are given in Fig. 5. The eight curves, from bottom to up, are
corresponding to eight different values of J2−Eq : −0.625,
−0.4, −0.2, 0, 0.5, 1, 1.5, 2.5 respectively.

As shown by Fig. 5, the Ωe–Re curve is monotone de-
creasing in the case of a positive J2−Eq , which means that
Eq. (19) has only one positive root for Re . This is consistent
with the conclusion obtained above. It is easy to find that
when the value of the equivalent zonal harmonic J2−Eq is
−0.625, the Ωe–Re curve is not monotone decreasing. This
means for some values of Ωe Eq. (19) has two positive roots
for Re, and for other values of Ωe Eq. (19) has no positive
root. The bifurcation value of Ωe at the peak of the curve
is consistent with the result given by Eq. (34). The Ωe–Re

curves in the cases of J2−Eq = −0.4 and J2−Eq = −0.2 are



Astrophys Space Sci (2014) 353:425–440 431

Fig. 5 The curves of the angular velocity Ωe with respect to the orbital
radius Re

not monotone decreasing either. However the peak of these
two curves are not shown in Fig. 5, since they are located in
the interval Re < 1.

From Fig. 5, we can find that as the orbital radius Re in-
creasing, the differences between the eight curves are getting
smaller very rapidly. This is due to the fact that as the orbital
radius Re increasing, the effect of the equivalent zonal har-
monic, which is the sum of the zonal harmonic J2 and the
orbit-rotation coupling �I , is being reduced at the rate of
R−2

e , as shown by Eq. (19).

4 Non-classical relative equilibria

4.1 Existence condition of non-classical relative equilibria

We have also found a non-classical type of relative equilib-
ria based on the equations of motion under the second-order
gravitational potential in Wang and Xu (2013a). At this non-
classical type of relative equilibria, the orbit of the mass cen-
ter of the rigid body is a circle with its center located on e3

but not coinciding with the origin O , and the orbital plane
is parallel to, but not in, the equatorial plane of the body P .
The rigid body rotates uniformly around e3 in the inertial
frame S in an angular velocity that is equal to the orbital
angular velocity �e . The linear momentum Pe is parallel to
a principal axis of the rigid body, whereas neither γ e nor
the position vector Re is parallel to a principal axis of the
rigid body. The plane spanned by γ e and Re is parallel to a
principal plane of the rigid body, which is perpendicular to
Pe.

Without of loss of generality, we assume that Pe is paral-
lel to the principal axis j

Re = [
Rx

e 0 Rz
e

]T
, γ e = [

γ x
e 0 γ z

e

]T
,

�e = Ωe

[
γ x
e 0 γ z

e

]T
,

Pe = mΩe

[
0 Rx

e γ z
e − Rz

eγ
x
e 0

]T
.

Fig. 6 The geometry of the non-classical type of relative equilibria

We assume that γ x
e > 0, γ z

e > 0, Rx
e > 0 and Rz

e > 0 fur-
ther. Then, the geometry of this non-classical type of relative
equilibria can be described by Fig. 6, where θ is the angle
between re(t) and the equatorial plane of body P , θ1 is the
angle between re(t) and i, and θ2 is the angle between e3

and k (Wang and Xu 2013a). The angles θ , θ1 and θ2 are
given by:

tan θ1 = Rz
e

Rx
e

, tan θ2 = γ x
e

γ z
e

, θ = θ1 + θ2. (35)

According to Wang and Xu (2013a), with the orbital an-
gular velocity Ωe given, the non-classical relative equilibria,
i.e., Rx

e , Rz
e , γ x

e and γ z
e , can be given by solving the follow-

ing algebraic equations:

γ x
e =

(
1

2
∓

√
1

4
−

(
3

Ω2
e R5

e

Rx
e Rz

e

)2) 1
2

,

γ z
e =

(
1

2
±

√
1

4
−

(
3

Ω2
e R5

e

Rx
e Rz

e

)2) 1
2

,

(36)

Ω2
e
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γ z
e
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R5
eΩ

2
e

(
Rz

e

)2
)

Rx
e − 1

R3
e

Rx
e

− 3

2R7
e

[
R2

e tr

(
I
m

)
− 5

(
Rx

e

)2 Ixx

m
− 5

(
Rz

e

)2 Izz

m

+ J2
(
R2

e − 5
(
γ x
e Rx

e + γ z
e Rz

e

)2)
]
Rx

e − 3

R5
e

Ixx

m
Rx

e

− 3J2(γ
x
e Rx

e + γ z
e Rz

e)

R5
e

γ x
e

= 0, (37)

Ω2
e

((
γ x
e

)2 − 3

R5
eΩ

2
e

(
Rx

e

)2
)

Rz
e

− 1

R3
e

Rz
e − 3

2R7
e

[
R2

e tr

(
I
m

)
− 5

(
Rx

e

)2 Ixx

m

− 5
(
Rz

e

)2 Izz

m
+ J2

(
R2

e − 5
(
γ x
e Rx

e + γ z
e Rz

e

)2)
]
Rz

e
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− 3

R5
e

Izz

m
Rz

e − 3J2(γ
x
e Rx

e + γ z
e Rz

e)

R5
e

γ z
e

= 0. (38)

The equation (36) contains two cases

γ z
e > γ x

e and γ x
e > γ z

e , (39)

only one of which can by solved with Eqs. (37) and (38).
The existence condition of this non-classical type of rela-
tive equilibria is equivalence to the solvable condition of the
algebraic equations Eqs. (36)–(38).

4.2 Existence regions of non-classical relative equilibria

However, it is difficult to analyze the existence of the non-
classical relative equilibria through theoretical studies of
this system described by nonlinear algebraic equations Eqs.
(36)–(38). Therefore, we will try to solve Eqs. (36)–(38) us-
ing numerical method with different values of the param-
eters of the system. Notice that all the five parameters of
the system, i.e., J2, Ωe, Ixx/m, σx and σy , need to be dis-
cussed. It is impossible to carry out the numerical studies for
every combination of the values of the five system parame-
ters, since it will lead to large consumption of computation
time and the results will be difficult to display in the form of
charts.

Actually, to investigate the existence of the non-classical
relative equilibria and the effects of the system parameters
on the existence, we only need to carry out the numerical
studies for some chosen values of the system parameters.
We will choose some different values for the zonal harmonic
J2, the characteristic dimension of the rigid body dC and the
orbital angular velocity Ωe. Then for each combination of
the values of J2, dC (or Ixx/m) and Ωe, we try to solve the
algebraic equations Eqs. (36)–(38) for each point (σy,σx )
on the σy–σx plane. If the point (σy,σx ) can guarantee the
solvable condition of the algebraic equations Eqs. (36)–(38),
that is to say, guarantee the existence of the non-classical
relative equilibria, we plot the point (σy,σx ) on the σy–σx

plane.
With this method, we can obtain the existence regions of

the non-classical relative equilibria on the σy–σx plane with
different values of the zonal harmonic J2, the characteristic
dimension of the rigid body dC and the orbital angular ve-
locity Ωe. Through comparisons between existence regions
with different values of J2, dC (or Ixx/m) and Ωe, we can
find out the individual effect of the system parameters on the
existence of the non-classical relative equilibria.

The unit of the angular velocity is
√

GM1/a
3
E that is the

angular velocity of a point mass orbiting the body P on it’s
the surface along the equator with the effect of J2 neglected.
If the Ωe is larger than 1, it means that the point mass will

move within the surface of the central body P , which is ex-
cluded from the real physical system. Considering that the
angular velocity will be modified by the effect of J2 and the
orbit-rotation coupling of the rigid body, we relax the upper
limit of Ωe from 1 to 1.5. The upper limit Ωe = 1.5 could
cover all the real physical situations. The upper limit of the
characteristic dimension of the rigid body Ixx/m is chosen
to be 0.125, equal to that in the studies of the classical rela-
tive equilibria.

The different values of J2, Ixx/m and Ωe in the numeri-
cal studies are chosen as follows:

J2 = −0.5,−0.2,−0.1,−0.05,0,0.05,0.1,0.2,0.5; (40)

Ixx

m
= 0.125,0.5e−2,0.5e−6; (41)

Ωe = 1.5,1,0.5,0.1. (42)

We find that in the cases of J2 = 0,0.05,0.1,0.2,0.5,
there is no existence region on the σy–σx plane for all the
values of Ixx/m and Ωe given by Eqs. (41) and (42). Then,
the numerical studies are carried out with J2 = 0.01, 0.3
and 0.4 further, and there is no existence region on the σy–
σx plane either. Then the numerical results suggest that the
non-classical relative equilibria cannot exist in the case of a
positive J2 in the real physical situation.

Whereas the numerical results show that there exist ex-
istence regions of the non-classical relative equilibria on
the σy–σx plane in the cases of J2 = −0.5,−0.2,−0.1 and
−0.05, which are given in Tables 1, 2, 3 and 4 respectively.
In these figures, the interval −0.01 < σy < 0.01 is not con-
sidered, since σy = 0 means Izz = Ixx that is the singular
point of the existence condition of the non-classical relative
equilibria, as shown by Wang and Xu (2013a).

In Wang and Xu (2013a), we have known that the exis-
tence of our physically realistic non-classical relative equi-
libria is due to the combined effects of the second zonal har-
monic of the central body P and the orbit-rotation coupling
of the rigid body B . We will investigate the effects of all
the five parameters of the system, i.e., J2, Ωe, Ixx/m, σx

and σy , on the existence of the non-classical relative equi-
libria in the following analysis. Especially, we will focus on
the individual effect of the second zonal harmonic and the
orbit-rotation coupling in details.

Through comparisons between existence regions on the
σy–σx plane in Tables 1, 2, 3 and 4 with different values
of J2, Ixx/m and Ωe, we can find out the individual ef-
fect of the system parameters on the existence of the non-
classical relative equilibria. Several important conclusions
can be achieved as follows in Sects. 4.2.1–4.2.4.

4.2.1 The effect of the second zonal harmonic J2

The numerical results suggest that the non-classical relative
equilibria cannot exist in the case of a positive J2, i.e., the
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central body P is oblate, in the real physical situation. The
non-classical relative equilibria can only exist in the case of
a negative J2 in the real physical situation when the cen-
tral body P is elongated. If we fix the values of Ixx/m and
Ωe, through comparisons between existence regions on the
σy–σx plane with different values of J2, we can easily find
that the elongatedness of the central body P has a positive
effect on the existence of the non-classical relative equilib-
ria. That is to say, with a larger absolute value of the negative
J2, the existence region of the non-classical relative equilib-
ria, if exists, is larger.

4.2.2 The effect of the angular velocity Ωe

For each value of the negative J2, with the value of the char-
acteristic dimension of the rigid body Ixx/m given, as the
orbital angular velocity Ωe decreasing, the existence region
of the non-classical relative equilibria is getting smaller and
smaller, and disappears eventually. This phenomenon is due
to the fact that as the orbital angular velocity Ωe decreasing,
the orbital radius is getting larger, then both effects of the
second zonal harmonic of the central body P and the orbit-
rotation coupling of the rigid body B are getting weaker. The
individual effect of the second zonal harmonic and the orbit-
rotation coupling cannot be distinguished from this point.

4.2.3 The effect of the orbit-rotation coupling of the rigid
body

Notice that the orbit-rotation coupling is more significant
when the ratio of the characteristic dimension of the rigid
body to the orbit radius is larger. The effect of the orbit-
rotation coupling of the rigid body can be discussed through
comparisons between existence regions with different values
of Ixx/m.

As shown by Tables 1, 2, 3 and 4, the effect of the orbit-
rotation coupling of the rigid body on the existence of the
non-classical relative equilibria is complex, since it can be
positive or negative, which depends on the values of J2

and Ωe.
When the values of J2 and Ωe favor the existence of

the non-classical relative equilibria, that is to say, a nega-
tive J2 with a large absolute value and a large Ωe, including
J2 = −0.5, Ωe = 1.5, 1 or 0.5; J2 = −0.2, Ωe = 1.5, or
1; J2 = −0.1, Ωe = 1.5, the orbit-rotation coupling of the
rigid body has a negative effect on the existence of the non-
classical relative equilibria. If we fix the value of the orbital
angular velocity Ωe at 1.5, 1 or 0.5 when J2 = −0.5 (or at
1.5 or 1 when J2 = −0.2; at 1.5 when J2 = −0.1), as the
characteristic dimension of the rigid body Ixx/m decreas-
ing, the existence region of the non-classical relative equi-
libria is getting larger and larger, and is equal to the whole

σy–σx plane eventually. That is to say, the orbit-rotation cou-
pling of the rigid body B has a negative effect on the exis-
tence of the non-classical relative equilibria in these cases.

However, when the values of J2 and Ωe do not favor the
existence of the non-classical relative equilibria, that is to
say, a negative J2 with a small absolute value and a small
Ωe, including J2 = −0.1, Ωe = 1; J2 = −0.05, Ωe = 1.5,
the orbit-rotation coupling of the rigid body has a positive
effect on the existence of the non-classical relative equilib-
ria. If we fix the value of the orbital angular velocity Ωe

at 1 when J2 = −0.1 (or at 1.5 when J2 = −0.05), as the
characteristic dimension of the rigid body Ixx/m decreas-
ing, the existence region of the non- classical relative equi-
libria disappears. That is to say, the orbit-rotation coupling
of the rigid body B has a positive effect on the existence of
the non-classical relative equilibria in these cases.

When the characteristic dimension of the rigid body
Ixx/m is very small, such as Ixx/m = 0.5e–6, the effect of
the orbit-rotation coupling of the rigid body is very weak and
the mass distribution of the rigid body σx and σy has no in-
fluence on the existence of the non-classical relative equilib-
ria. The existence of the non-classical relative equilibria will
be determined by the values of J2 and Ωe. In this case, the
non-classical relative equilibria can exist on the whole σy–
σx plane when the values of J2 and Ωe favor the existence
of the non-classical relative equilibria, such as J2 = −0.5,
Ωe = 1.5; the non-classical relative equilibria cannot exist
on the whole σy–σx plane when the values of J2 and Ωe do
not favor the existence of the non-classical relative equilib-
ria, such as J2 = −0.1, Ωe = 1.

When the characteristic dimension of the rigid body is
large, such as Ixx/m = 0.125, the effect of the orbit-rotation
coupling is significant. The orbit- rotation coupling can de-
stroy the existence of the non-classical relative equilibria in
some regions on the σy–σx plane when the values of J2 and
Ωe favor the existence of the non-classical relative equilib-
ria, such as J2 = −0.5, Ωe = 1.5; the orbit-rotation coupling
can lead to the existence of the non-classical relative equi-
libria on the σy–σx plane when the values of J2 and Ωe do
not favor the existence of the non-classical relative equilib-
ria, such as J2 = −0.1, Ωe = 1.

When the characteristic dimension of the rigid body is
very small, the orbit- rotation coupling is insignificant and
the rigid body can be considered as point mass. According
to our conclusions stated above, the displaced orbit can exist
for a point mass in a J2 gravity field with a negative J2 when
the orbital angular velocity Ωe is large. This is consistent
with the conclusion in Howard (1990) that the nonequatorial
stationary orbits can exist with a negative J2 when the or-
bital angular velocity is large enough, and the lower limit of
the orbital angular velocity for the existence of the nonequa-
torial stationary orbits is smaller with a larger absolute value
of the negative J2.
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Table 1 The existence regions of the non-classical relative equilibria with J2 = −0.5

Ixx

m
= 0.125 Ixx

m
= 0.5e−2 Ixx

m
= 0.5e−6

Ωe = 1.5

Ωe = 1

Ωe = 0.5

Ωe = 0.1

4.2.4 The effect of the mass distribution parameters σx

and σy

From the existence regions on the σy–σx plane in Tables 1,
2, 3 and 4, we can easily find that the mass distribution in the
left upper side of the σy–σx plane, which means the mass

distribution of the rigid body is near to a rod along the j-axis
or k-axis, favor the existence of the non-classical relative
equilibria. Whereas the mass distribution in the right lower
side of the σy–σx plane, which means the mass distribution
of the rigid body is near to a rod along the i-axis, do not
favor the existence of the non-classical relative equilibria.
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Table 2 The existence regions of the non-classical relative equilibria with J2 = −0.2

Ixx

m
= 0.125 Ixx

m
= 0.5e−2 Ixx

m
= 0.5e−6

Ωe = 1.5

Ωe = 1

Ωe = 0.5

Ωe = 0.1

Here we have given an throughout analysis on the exis-
tence of the non-classical relative equilibria with respect to
all the five parameters of the system, i.e., J2, Ωe, Ixx/m, σx

and σy . The individual effect of the parameters of the system
has been discussed. Our analysis here is more systematical
than that in Wang and Xu (2013a).

4.3 Details of non-classical relative equilibria

We will investigate the details of the non-classical relative
equilibria in the following four different cases for a rigid
body with σx = 0.5 and σy = −0.5:
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Table 3 The existence regions of the non-classical relative equilibria with J2 = −0.1

Ixx

m
= 0.125 Ixx

m
= 0.5e−2 Ixx

m
= 0.5e−6

Ωe = 1.5

Ωe = 1

Ωe = 0.5

Ωe = 0.1

J2 = −0.5:
(1). Ixx/m = 0.125; (2). Ixx/m = 0.5e−6;
J2 = −0.2:
(3). Ixx/m = 0.125; (4). Ixx/m = 0.5e−6.

The curves of the parameters of the non-classical relative
equilibria including Rx

e , Rz
e , θ , θ1, θ2, rx

e and rz
e with re-

spect to the orbital angular velocity Ωe are given in Figs. 7,
8, 9, 10, 11, 12, where rx

e and rz
e are the components of the

position vector of the mass center of the rigid body in and
perpendicular to the equatorial plane of the body P respec-
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Table 4 The existence regions of the non-classical relative equilibria with J2 = −0.05

Ixx

m
= 0.125 Ixx

m
= 0.5e−2 Ixx

m
= 0.5e−6

Ωe = 1.5

Ωe = 1

Ωe = 0.5

Ωe = 0.1

tively. rx
e and rz

e are given by:

rx
e = cos θ

√(
Rx

e

)2 + (
Rz

e

)2
,

rz
e = sin θ

√(
Rx

e

)2 + (
Rz

e

)2
.

(43)

From the results in Figs. 7, 8, 9, 10, 11, 12, we can eas-

ily find that as the orbital angular velocity Ωe increasing,

there is a bifurcation from the classical relative equilibria,

at which the non-classical relative equilibria appear. The bi-
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Fig. 7 The curves of Rx
e and Rz

e with respect to the angular velocity
Ωe with J2 = −0.5

Fig. 8 The curves of Rx
e and Rz

e with respect to the angular velocity
Ωe with J2 = −0.2

Fig. 9 The curves of θ , θ1 and θ2 with respect to the angular velocity
Ωe with J2 = −0.5

furcation takes place at a smaller value of the orbital angu-
lar velocity Ωe in the case of a larger absolute value of the
negative J2. This is consistence with our conclusions in the
Sect. 4.2 that the elongatedness of the central body P has a
positive effect on the existence of the non-classical relative
equilibria.

Fig. 10 The curves of θ , θ1 and θ2 with respect to the angular velocity
Ωe with J2 = −0.2

Fig. 11 The curves of rx
e and rz

e with respect to the angular velocity
Ωe with J2 = −0.5

Fig. 12 The curves of rx
e and rz

e with respect to the angular velocity
Ωe with J2 = −0.2

It is also easily found that at the same value of J2,
the characteristic dimension of the rigid body Ixx/m has
a significant effect on the bifurcation and properties of the
non-classical relative equilibria. The effect of the charac-
teristic dimension Ixx/m is more significant in the case of
J2 = −0.2 than in the case of J2 = −0.5 that is due to the
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fact that the effect of the second zonal harmonic J2 is more
dominative in the case of J2 = −0.5.

In our studies, the range of the zonal harmonic is cho-
sen as −0.5 < J2 < 0.5, same as in Broucke (1994). The
body P with a negative second zonal harmonic J2 has been
considered. However, the bodies with a negative J2 have
not been discovered in our Solar System yet, since a neg-
ative J2 means that the body is rotating uniformly around
its minimum-moment principal axis. This rotation state is
unstable and will evolve to rotating around the maximum-
moment principal axis eventually in the presence of energy
dissipation. Although the existence of the body with a neg-
ative J2 is doubtful at present, our results are of interest and
value for the theoretical studies on the related problems in
the celestial mechanics and astrophysics. Perhaps, the body
with a negative J2 could appear in an artificial system or in
other places of the universe in the future astrophysics.

The linear and nonlinear stability of the classical type
of relative equilibria of the rigid body have been investi-
gated in the framework of geometric mechanics in Wang
and Xu (2013c). The linear and nonlinear stability of the
non-classical type of relative equilibria will be studied in
the future. The dynamical behaviors near the non-classical
type of relative equilibria, such as the displaced orbit with a
little inclination and its precession, are also of great interest
and worthy of detailed studies in the future.

5 Conclusions

The existence and properties of both the classical and non-
classical relative equilibria of a rigid body in a J2 gravity
field have been investigated in details in the present paper.

The existence condition of the classical relative equilib-
ria and the range of the parameters of the system have been
discussed comprehensively. We have found that the classical
relative equilibria can always exist in the real physical situ-
ation. The curves of the angular velocity with respect to the
orbital radius with different values of the system parameters
have also been given.

The existence and properties of the non-classical relative
equilibria have also been studied in details. The numerical
results suggested that the non-classical relative equilibria
can only exist in the case of a negative J2, i.e., the central
body is elongated; they cannot exist in the case of a positive
J2 when the central body is oblate. In the case of a negative
J2, the effect of the orbit-rotation coupling of the rigid body
on the existence of the non-classical relative equilibria can
be positive or negative, which depends on the values of J2

and Ωe. When the values of J2 and Ωe favor the existence
of the non-classical relative equilibria, i.e., a negative J2

with a large absolute value and a large Ωe, the orbit-rotation
coupling has a negative effect on the existence of the non-
classical relative equilibria. Whereas when the values of J2

and Ωe do not favor the existence of the non-classical rela-
tive equilibria, i.e., a negative J2 with a small absolute value
and a small Ωe, the orbit-rotation coupling has a positive ef-
fect on the existence of the non-classical relative equilibria.

We have also found that the mass distribution of the rigid
body near to a rod along the j-axis or k-axis favor the ex-
istence of the non-classical relative equilibria, whereas the
mass distribution of the rigid body near to a rod along the i-
axis, do not favor the existence of the non-classical relative
equilibria.

The details of the non-classical relative equilibria have
also been given, including the curves of Rx

e , Rz
e , θ , θ1, θ2, rx

e

and rz
e with respect to the orbital angular velocity Ωe. The

bifurcation from the classical relative equilibria, at which
the non-classical relative equilibria appear, has been shown
clearly in these curves. It has been found that the bifurcation
takes place at a smaller value of the orbital angular velocity
Ωe in the case of a larger absolute value of the negative J2,
and the characteristic dimension of the rigid body Ixx/m

has a significant effect on the bifurcation and properties of
the non-classical relative equilibria.

Our results in the present paper are consistent with the
previous results on the equilibrium point of a point mass in
a non-central gravity field. We have also extended the pre-
vious results on the relative equilibria of a rigid body in a
central gravity field by taking into account the oblateness of
the central body.

The stability of the non-classical relative equilibria, as
well as the dynamical behaviors near the non-classical rela-
tive equilibria, such as the displaced orbit with a little incli-
nation and its precession, are of great interest and worthy of
detailed studies in the future.
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