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Abstract Several simple dark energy models on the brane
are investigated. They are compared with corresponding
models in the frame of 4d Friedmann-Robertson-Walker
cosmology. For constraining the parameters of the models
considered, recent observational data, including SNIa ap-
parent magnitude measurements, baryon acoustic oscillation
results, Hubble parameter evolution data and matter den-
sity perturbations are used. Also, explicit formulas of the
so-called state-finder parameters in teleparallel theories are
found that could be useful to test these models and com-
pare Loop Quantum Cosmology and Brane Cosmology. The
conclusion is reached that a joint analysis as the one devel-
oped here allows to estimate, in a very clear way, possible
deviation of our cosmology from the standard Friedmann-
Robertson-Walker one.

A.V. Astashenok (�) · A.V. Yurov
Institute of Physics and Technology, Baltic Federal University
of I. Kant, 236041, 14 Nevsky St., Kaliningrad, Russia
e-mail: artyom.art@gmail.com

E. Elizalde · S.D. Odintsov
ICE/CSIC and IEEC, Campus UAB, Facultat de Ciències,
Consejo Superior de Investigaciones Científicas, Torre C5-Par-2a
pl, 08193 Bellaterra (Barcelona), Spain

J. de Haro
Departament de Matemática Aplicada I, Universitat Politécnica
de Catalunya, Diagonal 647, 08028 Barcelona, Spain

S.D. Odintsov
Institució Catalana de Recerca i Estudis Avançats (ICREA),
Barcelona, Spain

S.D. Odintsov
Eurasian National Univ., Astana, Kazakhstan

S.D. Odintsov
Tomsk State Pedagogical Univ., Tomsk, Russia

Keywords Dark energy · Equation-of-state formalism ·
Brane

1 Introduction

A number of difficult problems in cosmology have been put
forward by the discovery of the accelerated expansion of the
universe (Riess et al. 1998; Perlmutter et al. 1999). This cos-
mic acceleration can be explained via the introduction of a
so-called dark energy (for a recent review, see Bamba et al.
2012a, 2012b; Li et al. 2011). It follows from recent obser-
vational results that dark energy currently accounts for about
73 % of the total mass/energy of the universe (Kowalski
2008). It may have rather strange properties, as a negative
pressure and/or a negative entropy, the fact that it is unde-
tectable in the early universe, etc. It is not excluded, how-
ever, that General Relativity (GR) and the ensuing vacuum
fluctuations (as those leading, e.g., to the Casimir effect)
could lead to an explanation of the issue, see e.g. Elizalde
(2006, 2012), Cognola et al. (2005), Elizalde et al. (1994).
One should also stress the following important connection:
with the help of an ideal fluid GR can actually be rewritten,
in an equivalent way, as some modified gravity (for a recent
review, see Nojiri and Odintsov 2011).

For dark energy with density ρD and pressure pD , the
equation of state (EoS) parameter wD ,

wD = pD/ρD < 0 (1)

is known to be negative and also, that astrophysical obser-
vations favor the standard ΛCDM cosmology. Dark energy
as just a cosmological constant (wD = −1) is the simplest
and maybe most preferred model from the theoretical point
of view, too. In this model over 70 % of the current energy
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budget is dark energy (Einstein’s cosmological constant Λ),
in perfect accordance with the data coming from observa-
tions, as reported above.

At present, several independent observational procedures
provide strong evidence in favor of the ΛCDM model,
in particular SNIa apparent magnitude measurements as
a function of the redshift, cosmic microwave background
(CMB) anisotropies, baryon acoustic oscillation (BAO)
peak length scale measurements, Hubble parameter deter-
minations etc., but the error bars associated with all these
types of data are still too large to allow for a significant ob-
servational discrimination between the ΛCDM model and
other existing, theoretically very well founded alternatives
to it.

When w < −1 (phantom dark energy) (Caldwell 2002;
Caldwell et al. 2003) we are dealing with the most inter-
esting and less understood theoretical case. A simultaneous
violation of all four energy conditions occurs in this case
and the involved field is unstable, although it could per-
haps be made stable in classical cosmology (Carroll et al.
2003). For a universe filled with phantom energy there are
many possible new scenarios for the end of such universe,
among which the most typical cases are those of a Big Rip
singularity (Caldwell 2002; Caldwell et al. 2003; Framp-
ton and Takahashi 2003; Starobinsky 2000; McInnes 2002;
Nojiri and Odintsov 2003, 2011; Faraoni 2002; Gonzalez-
Diaz 2004; Elizalde et al. 2004; Singh et al. 2003; Nesseris
and Perivolaropoulos 2004; Stefancic 2004, 2011) and of
a sudden future singularity (Shtanov and Sahni 2002; Bar-
row 2004; Nojiri and Odintsov 2004a, 2004b; Cotsakis and
Klaoudatou 2005; Fernandez-Jambrina and Lazkoz 2004;
Barrow and Tsagas 2005; Stefancic 2005; Tretyakov et al.
2006; Sami et al. 2006; Yurov et al. 2008; Barrow and Lip
2009). However, a final evolution without singularities is
also possible: if the parameter w asymptotically tends to −1,
and the energy density increases with time or remains con-
stant, no finite-time future singularity will be ever formed
(Sahni and Shtanov 2003; Frampton et al. 2011, 2012a,
2012b; Astashenok et al. 2012a, 2012b, 2012c; Brevik et al.
2011; Frampton and Ludwick 2011; Nojiri et al. 2011; Ito
et al. 2011; Makarenko et al. 2012; Saitou and Nojiri 2012)
or if the universe starts to decelerate in far future. In any
case, if the energy density grows up to some value, the dis-
integration of any bound structure will eventually occur, in a
way quite similar to that in the case of the Big Rip singular-
ity, but this may only happen very far in the future evolution.

For the dark energy pressure one can choose the general
expression

p = g(ρ), (2)

with g a function of the energy density.
In this paper a number of dark energy models on the

brane will be considered (for general introduction to brane-
world cosmology, see Maartens and Koyama 2010). The

theoretical predictions of these models will be compared
with the various types of existing independent data obser-
vations, including the luminosity distance modulus vs red-
shift for SNe Ia, the data accumulated on the evolution of
the Hubble parameter H(z), the latest baryon acoustic os-
cillation (BAO) results, and matter density perturbation data.
In Sect. 2 a brief overview of the EoS fluid formalism will
be presented. A comparison of dark energy in Friedmann-
Robertson-Walker (FRW) cosmology and on the brane is
carried out. The main constraints coming from the observa-
tional survey data will be analyzed in Sect. 3. In the follow-
ing two sections, Sects. 4 and 5, we will study the simplest
ΛCDM model on the brane and will show that a careful joint
analysis of the various observational data allows to estimate,
in a clear fashion, any possible deviation of our cosmologi-
cal model from the standard FRW cosmology. Due to the in-
creasing interest in teleparallel theories (F(T ) models), we
deal with them in Sect. 6 where we find explicit formulas of
the so-called state-finder parameters in teleparallel theories,
which could be useful to test the models proposed in those
theories, in particular to test Loop Quantum Cosmology and
Brane Cosmology. Finally, Sect. 7 is devoted to conclusions.

2 Comparison of dark energy in FRW cosmology and
on the brane

We start with a brief description of dark energy models in the
frame of the FRW cosmology. The cosmological equations
corresponding to a spatially flat universe, endowed with a
metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2), (3)

are the following

(
ȧ

a

)2

= ρ

3
, ρ̇ = −3

(
ȧ

a

)
(ρ + p) (4)

with ρ and p, respectively, the total energy-density and pres-
sure, while a is the scale factor, the dot means time deriva-
tive, and were natural system units are being used, with
8πG = c = 1.

For dark energy, the EoS can be rewritten, for conve-
nience, in the form

pD = −ρD − f (ρD), (5)

being f (ρD) a function of the energy-density. We observe
that f (ρD) > 0 corresponds to w < −1, and f (ρ) < 0 to
w > −1. The future evolution of the universe depends on
the EoS for dark energy chosen. Let us here describe two
main possible cases.
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(i) Evolution without future singularities. This case includes
a so-called “Little Rip” (these models are described in
detail in Frampton et al. 2011, 2012a, 2012b). The dark
energy density grows with time so slowly that a Big Rip
cannot occur in finite time. For the realization of this
scenario, one needs that the asymptotic behavior of the
function g(ρD) ∼ ρ

β
D , as β ≤ 1/2. But, eventually, a

dissolution of all bound structures will also happen in
the future.

One should note that, for some specific equations of
state with branch points, a de(phantomization) process
can occur Wei et al. (2012). Therefore, after the accel-
eration phase, a slowdown of the future universe might
be possible. In other words, the universe maybe decel-
erating in the future.

Interesting alternatives to the ΛCDM model are
models in which the dark energy density asymptotically
tends to a constant value (an “effective cosmological
constant” Astashenok et al. 2012a, 2012b). One should
remark that if the value of this “effective cosmological
constant” is sufficiently large (for example, if Λeff ∼ 1
in Planck units) a possibility of disappearance of the
bound structures due to the enormous acceleration of
the universe still remains.

(ii) Evolution with finite-time singularities. If g(ρD) ∼ ρ
β
D ,

with β > 1/2, the dark energy density grows so rapidly
that the universe ends its existence in a singularity of
the Big Rip type or in a type III singularity, according
to the classification in Nojiri et al. (2005). The key dif-
ference between these singularities is that the energy
density in the second case grows so rapidly with time
that the scale factor does never reach the infinite value.
These scenarios can be realized only in the case of hav-
ing a phantom energy. Another interesting case occurs if
f (ρD) → ±∞ at ρD = ρDf , i.e., the dark energy pres-
sure becomes infinite at finite energy density. The sec-
ond derivative of the scale factor diverges, while the first
derivative remains finite.

As an alternative to the FRW cosmology let us consider
the simplest brane model in which spacetime is homoge-
neous and isotropic along three spatial dimensions, being
our 4-dimensional universe an infinitesimally thin wall, with
constant spatial curvature, embedded in a 5-dimensional
spacetime (Sahni and Shtanov 2008; Langlois 2003). In the
Gaussian normal coordinate system, for the brane which is
located at y = 0, one gets

ds2 = −n2dt2 + a2(t, y)γij dxidxj + dy2, (6)

where γij is the maximally 3-dimensional metric. Let t be
the proper time on the brane (y = 0), then n(t,0) = 1.
Therefore, one gets the FRW metric on the brane

ds2|y=0 = −dt2 + a2(t,0)γij dxidxj . (7)

The 5-dimensional Einstein equations have the form

RAB − 1

2
gABR = χ2TAB + ΛgAB, (8)

where Λ is the bulk cosmological constant, χ2 = 8πG(5)/c4,
G(5) is the gravitational constant in 5-dimensional space-
time. The next step is to write the total energy momentum
tensor TAB on the brane as

T A
B = SA

B δ(y), (9)

with SA
B = diag(−ρb,pb,pb,pb,0), where ρb and pb are

the total brane energy density and pressure, respectively.
One can now calculate the components of the 5-dimens-

ional Einstein tensor which solve Einstein’s equations. One
of the crucial issues here is to use appropriate junction con-
ditions near y = 0. These reduce to the following two rela-
tions:

dn

ndy |y=0+
= χ2

3
ρb + χ2

2
pb,

da

ady |y=0+
= −χ2

6
ρb.

(10)

After some calculations, one obtains the following result

H 2 = χ4 ρ2
b

36
+ Λ

6
− k

a2
+ C

a4
. (11)

This expression is valid on the brane only. Here H =
ȧ(t,0)/a(t,0) and C is an arbitrary integration constant.
The energy conservation equation is correct, too,

ρ̇b + 3
ȧ

a
(ρb + pb) = 0. (12)

Now, let ρb = ρ + λ, where λ is the brane tension. For a
fine-tuned brane with Λ = λ2χ4/6, we have the following
equation (for k = 0)

ȧ2

a2
= λχ4

6

ρ

3

(
1 + ρ

2λ

)
+ C

a4
. (13)

In what follows we will consider a single brane model which
mimics GR at present but differs from it at late times. We
set 8πG = σχ4/6. For simplicity, we set C = 0 (the term
with C is usually called “dark radiation”). In fact, setting
C �= 0 does not lead to additional solutions on a radically
new basis, in the framework of our approach. Equation (13)
can be simplified to

ȧ2

a2
= ρ

3

(
1 + ρ

2λ

)
. (14)

One can see that Eq. (14), for ρ � |λ|, differs insignifi-
cantly from the FRW equation. The brane model with a pos-
itive tension has been discussed in Copeland et al. (2001),
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Sahni et al. (2002), Sami and Sahni (2004) in the con-
text of the unification of early- and late-time acceleration
eras. The braneworld model with a negative tension and a
time-like extra dimension can be regarded as being dual
to the Randall-Sundrum model (Shtanov and Sahni 2003;
Randall and Sundrum 1999; Copeland et al. 2005). Note
that, for this model, the Big Bang singularity is absent. And
this fact does not depend upon whether or not matter violates
the energy conditions (Ashtekar et al. 2006). This same sce-
nario has also been used to construct cyclic models for the
universe Kanekar et al. (2001).

One can assume that in our epoch the ρ/2λ � 1 and so
there is no significant difference between the brane model
and FRW cosmology. But the universe evolution in the fu-
ture, for brane cosmology, can in fact differ from such con-
venient cosmology, due to the non-linear dependence of the
expansion rate on the energy density.

The equation-of-state formalism for dark energy models
on the brane was considered in Astashenok et al. (2012c).
Here we briefly describe this approach. One gets the follow-
ing link between time and dark energy density, assuming
that ρD � ρm:

t (ρD) − t0 = 1√
3

∫ ρD

ρD0

dρ

ρ1/2(1 + ρ
2λ

)1/2f (ρ)
. (15)

For the present time, t0, we can set t0 = 0. For the scale
factor as a function of the dark energy density, we have the
same relation as in the FRW cosmology, namely

a = a0 exp

(
1

3

∫ ρD

ρD0

dρ

g(ρ)

)
. (16)

In the case of a positive tension, the following possibili-
ties can be realized:

1. If the integral (15) converges while (16) diverges, we
have a Big Rip. It is interesting to note that the Big Rip
on a brane considered in Yurov et al. (2006) occurs faster
than in the FRW cosmology.

For the simplest EoS with constant state parameter
w0 = −1 − α2, the function g(ρD) = α2ρD . If ρD � λ,
then the dark energy density grows with time substan-
tially faster than in ordinary cosmology (λ → ∞).

2. If the integrals (15) and (16) diverge when ρD → ∞,
then a Little Rip occurs. The acceleration of the universe
increases with time definitely faster than in the FRW uni-
verse, owing to the brane tension (see the corresponding
time equation for the case (1)).

3. Asymptotic de Sitter expansion is realized if g → 0 for
ρD → ρDf , and the integral (15) diverges.

4. There is a type III singularity if both integrals converge
when ρD → ∞.

5. If g(ρD) → ∞ for ρD → ρDf , the universe ends its ex-
istence in a sudden future singularity.

The case of negative tension allows for the following inter-
esting possibilities:

1. Asymptotic de Sitter expansion, if g(ρD) → 0 for
ρD → ρDf .

2. An asymptotic breakdown (i.e. the rate of expansion
of universe tends to 0) will occur if g(ρD) → 0 for
ρD → 2λ.

3. A sudden future singularity, if f (ρD) → ∞ when
ρD → ρDf .

One should note that dark energy with an EoS such that
f (ρ) ∼ ργ , with γ ≤ 2, leads to a Big Rip on the brane
while, in the case of the conventional FRW universe, such
dark energy leads to a Little Rip only.

3 Observational data

The parameters of the cosmological models can be deter-
mined from a strict comparison of their predictions with ac-
curate observational data. We here consider the data coming
from SNe observations, the evolution of the Hubble param-
eter, baryon acoustic oscillation, and the evolution of matter
perturbations.

3.1 SNe observations

The modulus μ vs redshift z = a0/a − 1 relation to type Ia
supernovae from the Supernova Cosmology Project (Aman-
ullah et al. 2010) is, as well known,

μ(z) = μ0 + 5 lgDL(z). (17)

The relation for the luminosity distance DL(z) as a function
of the redshift, in the FRW cosmology (FC), is

DFC
L = c

H0
(1 + z)

∫ z

0
h−1(z)dz,

h(z) = [
Ωm0(1 + z)3 + ΩD0F(z)

]1/2
.

(18)

Here, Ωm0 is the total fraction of matter density, ΩD0 the
fraction of dark energy energy density, and H0 is the current
Hubble parameter. The constant value μ0 depends on the
chosen Hubble parameter:

μ0 = 42.384 − 5 logh, h = H0/100 km/s/Mpc

The function F(z) = ρD(z)/ρD0 can be determined from
the continuity equation

ρ̇D − 3
ȧ

a
g(ρD) = 0, (19)

which can be rewritten as
∫ ρD(z)

ρD0

dy

g(y)
= −3 ln(1 + z). (20)
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For simplicity, we neglect the contribution of radiation.
For cosmology on the brane (BC), Eq. (18) can be rewrit-

ten as

DBC
L = c(1 + z)

H0

∫ z

0
h−1(z)

(
1 + δh2(z)

)−1/2
(1 + δ)1/2dz,

(21)

where the convenient parameter δ = ρ0/2λ has been intro-
duced. For the analysis of the SNe data one needs to calcu-
late the parameter χ2, which is defined by

χ2
SN =

∑

i

(μobs(zi) − μth(zi))
2

σ 2
i

, (22)

where σi is the corresponding 1σ error. The parameter μ0

is independent of the data points and, therefore, one needs
to perform a uniform marginalization over μ0. But the mini-
mization with respect to μ0 can be made simply by expand-
ing the χ2

SN with respect to μ0, as

χ2
SN = A − 2μ0B + μ2

0C, (23)

where

A =
∑

i

(μobs(zi) − μth(zi;μ0 = 0))2

σ 2
i

,

B =
∑

i

(μobs(zi) − μth(zi))

σ 2
i

, C =
∑

i

1

σ 2
i

.

The expression (23) has a minimum for μ0 = B/C at

χ̄2
SN = A − B2/C.

One can minimize χ̄2
SN instead of χ2

SN . Following Nesseris
and Perivolaropoulos (2005), one determines the 68.3 %
confidence level (C.L.) by χ2 = χ2 − χ2

min < 1.0 for
the one-parametric or 2.3 for two-parametric model. Sim-
ilarly, the 95.4 % confidence level is determined by χ2 =
χ2 − χ2

min < 4.0 or 6.17 for the one- and two-parametric
models, correspondingly.

3.2 Hubble parameter

The evolution of the Hubble parameter with time in the past
is now well observed. The Hubble parameter depends on the
differential age of the universe as a function of the redshift,
in the form

dt = − 1

H

dz

1 + z
.

Therefore, a determination of dz/dt directly measures
H(z). These measurements are possible due to data we have

Table 1 Hubble parameter versus redshift data from Stern et al. (2010)

z Hobs(z) km s−1 Mpc−1 σH km s−1 Mpc−1

0.090 69 12

0.170 83 8

0.270 77 14

0.400 95 17

0.480 97 62

0.880 90 40

0.900 117 23

1.300 168 17

1.430 177 18

1.530 140 14

1.750 202 40

on the absolute age for passively evolving galaxies, deter-
mined from fitting stellar population models. We use the 11
datapoints for H(z) from Stern et al. (2010) for constraining
the model parameters. These data are listed in Table 1. The
theoretical dependence of the Hubble parameter in the brane
model is

H(z) = H0h(z)
(
1 + δh2(z)

)1/2
(1 + δ)−1/2. (24)

The parameter χ2
H is

χ2
H =

∑

i

(Hobs(zi) − Hth(zi))
2

σ 2
i

. (25)

One needs to perform a uniform marginalization over the
parameter H0. Again, one can expand

χ2
H = A1 − 2B1H0 + H 2

0 C1,

A1 =
∑

i

Hobs(zi)
2

σ 2
i

, B1 =
∑

i

E(zi)Hobs(zi)

σ 2
i

,

C1 =
∑

i

1

σ 2
i

.

The parameter χ2
H has a minimum at the point H 2

0 = B1/C1,

χ̄2
H = A1 − B2

1/C1.

As in the case of the SNe data, one can minimize χ̄2
H instead

of χ2
H .

3.3 BAO data

To constrain cosmological parameters using BAO data we
follow the procedure described in Blake et al. (2011). We
use the measurements of the acoustic parameter A(z) from
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Blake et al. (2011), where the theoretically-predicted Ath(z)

is given by the relation

Ath(z) = DV (z)H0
√

Ωm0

z
, (26)

where DV (z) is a distance parameter defined as

DV (z) =
{
(1 + z)2d2

A(z)
cz

H(z)

}1/3

. (27)

Here, dA(z) is the angular diameter distance

dA(z) = y(z)

H0(1 + z)
, y(z) =

∫ z

0

dz

E(z)
,

E(z) = H(z)/H0.

(28)

Using Eqs. (26)–(28) we have

Ath(z) = √
Ωm0

(
y2(z)

z2E(z)

)
. (29)

Using the WiggleZ Aobs(z) data from Table 3 of Blake et al.
(2011), we compute χ2

A as

χ2
A = AT (CA)−1A. (30)

Here, A is a vector consisting of differences, Ai =
Ath(zi) − Aobs(zi) and C−1

A is the inverse of the 3 × 3 co-
variance matrix given in Table 3 of Blake et al. (2011).

3.4 Matter density perturbations

As it was shown in Christopherson (2010) one can neglect
the density perturbations of dark energy. In this case the dark
matter perturbations effectively decouple from DE pertur-
bations. The equation that determines the evolution of the
density contrast δ in a flat background filled by matter with
density ρm is

δ̈m + 2Hδ̇m = 1

2
ρmδm. (31)

It is convenient to introduce the growth rate function of the
perturbations f = d ln δm/d lna. Using the FRW equations,
one can get the following equation for f

df

d lna
+f 2 +

(
Ḣ

H 2
+ 2

)
f − 3

2
Ωm(1 +ρ/2λ)−1 = 0, (32)

where Ωm is the matter fraction of the total energy-density
Ωm = Ωm0(1 + z)3/(Ωm0(1 + z)3 +ΩD0F(z)). Finally, us-
ing the relation

d

d lna
= −(1 + z)

d

dz

Table 2 The available data growth factor fobs at various redshifts
from the change of power spectrum Ly-α forest data in SDSS

z fobs Ref.

0.15 0.51 ± 0.11 Hawkins et al. (2003)

0.32 0.654 ± 0.18 Reyes et al. (2010)

0.35 0.70 ± 0.18 Tegmark et al. (2006)

0.55 0.75 ± 0.18 Ross et al. (2007)

0.77 0.91 ± 0.36 Guzzo et al. (2008)

1.4 0.90 ± 0.24 da Ângela et al. (2008)

3.0 1.46 ± 0.29 McDonald et al. (2005)

and taking into account that

ä

a
− ȧ2

a2
= −ρ + p

2
(1 + ρ/λ),

we get

−(1 + z)
df

dz
+ f 2 +

(
2 − 3

2
Ωm + 3

2

g(ρD)

ρ

)
f −

−3

2
Ωm(1 + ρ/2λ)−1 = 0, (33)

where ΩD = ρD/ρ and we have introduced the parameter
 = (1 + ρ/λ)(1 + ρ/2λ)−1.

For a dark fluid with given EoS, one can find the DE den-
sity as a function of the redshift z. Then, Eq. (33) can be
solved numerically. The observational data for the growth
factor fobs at various redshifts are given in Table 2.

4 ΛCDM model on the brane

First, we consider the simple cosmological model on the
brane with vacuum energy ρD = Λ = const. This model co-
incides in fact, in the future, with the FRLW cosmology with
a redefined cosmological constant. The asymptotic behavior
of the scale factor is

a(t) ∼ a0 exp
(
(Λeff /3)1/2t

)
, t → ∞,

Λeff = Λ(1 + Λ/2λ). (34)

One can consider the ΛCDM model on the brane as a
one-parametric one, at fixed values of δ. The results of the
calculations corresponding to this case are given in Table 3
(we have also included in our consideration the case δ = 0,
i.e. the FRW cosmology, for comparison). The BAO data
favor smaller values of ΩD0 than the H(z) and SNe data.
The optimal value of ΩΛ is closer to the one coming from
the SNe data analysis only. One easily sees that the addi-
tion of the observational data for the matter density pertur-
bations does not change the best-fit value of ΩΛ from the
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Table 3 The best fitting value for ΩΛ within 1σ and 2σ errors for various δ from observational data analysis for ΛCDM model on brane. In the
last column the minimal value of χ2

min = χ̄2
SN + χ̄2

H + χ2
A + χ2

f is given

Data sets SNe H BAO SNe + H + BAO SNe + H + BAO + F χ2
min

δ = 0 0.722−0.019,−0.039
+0.020,+0.039 0.735−0.089,−0.213

+0.066,+0.117 0.699−0.028,−0.059
+0.026,+0.049 0.712−0.011,−0.027

+0.016,+0.031 0.712−0.009,−0.025
+0.018,+0.033 562.39

δ = 0.05 0.744−0.016,−0.036
+0.016,+0.034 0.787−0.058,−0.130

+0.047,+0.086 0.686−0.031,−0.065
+0.028,+0.054 0.729−0.012,−0.028

+0.013,+0.028 0.729−0.012,−0.027
+0.013,+0.027 565.91

δ = 0.10 0.759−0.013,−0.030
+0.014,+0.032 0.813−0.046,−0.102

+0.039,+0.072 0.673−0.028,−0.072
+0.031,+0.059 0.743−0.014,−0.028

+0.011,+0.025 0.743−0.014,−0.028
+0.010,+0.023 571.38

SNe + H + BAO analysis. One can also conclude that the
best consistent description of all observational data is real-
ized in the frame of the FRW cosmology (δ = 0 or λ → ∞).
The minimal value of the total χ2 is 562.39. As δ grows, the
corresponding χ2 increases.

For δ > 0 we have the following picture. The analysis of
data sets separately does not yield a significant constraint on
the maximal value of δ. The parameter χ2 for SNe, BAO and
matter density perturbation data grows very slowly with in-
creasing δ. For instance, for δ = 0, χ̄2

SN,min = 553.18, while

for δ = 0.1 the minimal value of χ2
SN is 553.34. The data

on the evolution of the Hubble parameter are more sensitive
to increasing δ: for δ = 0.1 we found that χ̄2

H,min = 8.12, in

comparison with χ2
H,min = 7.62 in the FRW model. But one

can see that at δ ≈ 0.05 the 1σ intervals of the possible val-
ues of ΩΛ for SNe and BAO data do not intersect. The 2σ

intervals for ΩΛ from these data sets do not have common
points for δ ≈ 0.10. Therefore, one can estimate the maxi-
mal value of δ from the joint analysis of all observational
data sets.

For this, we consider the ΛCDM model on the brane as
a two-parametric one, with free parameters δ and ΩΛ. One
can see that, although the areas corresponding to the 1σ and
2σ contours from the SNe, BAO and H(z) data analysis are
sufficiently large (see Fig. 1) these contours intersect in a
quite narrow region of the parameter space. The joint data
analysis allows us to define the 1σ and 2σ contours in the
ΩΛ − δ parameter space (Fig. 2). Therefore, we can esti-
mate the upper limit of the parameter δ at which the ΛCDM
model is relevant to the observational data.

5 Other dark energy models on the brane

Let us now consider the following model with a quite simple
EoS,

g(ρD) = α2ρD0

(
ρD

ρD0

)β

, (35)

where α and β are dimensionless constants. If β = 1, we
have an ordinary phantom energy model with constant EoS
parameter w = −1 − α2. From Eqs. (15) and (16) one can

Fig. 1 The 68.3 % (upper panel) and 95.4 % (down panel) confidence
level contours in the ΩΛ − δ parameter space from the analysis of SNe
(solid), H(z) (bold solid) and BAO (dotted) data, respectively

Fig. 2 The 68.3 % (solid) and 95.4 % (dotted) confidence
level contours in the ΩΛ − δ parameter space from the
SNe + H(z) + BAO + matter density perturbation data analy-
sis. The best-fit parameters for the observational data are ΩΛ = 0.712,
δ = 0 with χ2 = 562.39
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see that, for various values of β , the model (35) describes
three types of future universe evolution:

(a) Little Rip, if β ≤ 0,
(b) Big Rip, for 0 < β ≤ 1, and
(c) a type III singularity, if β > 1.

One note that in the FRW cosmology the Little Rip oc-
curs for β ≤ 1/2. Simple calculations allow to define the
function F(z):

F(z) =
⎧
⎨

⎩
{1 − 3α2(1 − β) ln(1 + z)} 1

1−β , β �= 1,

(1 + z)−3α2
, β = 1.

(36)

We consider the case β = 0 (Little Rip) and β = 1.
The analysis of observational data for the Little Rip

model leads to the same conclusions as in a case of the
ΛCDM model: with a decreasing of the brane tension, the
common area of the confidence level contours for SNe,
H(z), and BAO data in the α2 − ΩD0 parameter space de-
creases, i.e. the agreement with observational data becomes
worse. In Fig. 3 the 1σ confidence level contours from the
data set analysis are shown. The results for the joint observa-
tional data analysis are depicted in Fig. 4. One can see that
for larger values of δ the description of the observational
data is better for larger α2.

Similar results can be derived for the simplest phan-
tom model with constant EoS parameter w0. The best-
fit parameters for the FRW cosmology are (w0 = −1.01,
ΩD0 = 0.713) with χ2 = 562.16 (recall, for comparison,
that in the ΛCDM model we have the slightly larger value of
χ2

min = 562.38). In Fig. 5 the results of the joint analysis are
depicted. For δ > 0 the observational data analysis speaks
evidently in favor of w0 < −1.

6 State-finder parameters in teleparallel theories

In this section we will compute the so-called state-finder pa-
rameters in universes described by teleparallel models which
maybe considered as one example of Loop Quantum Cos-
mology. The first of these parameters is the effective ω pa-
rameter and the second one the deceleration parameter, and
both are well-known in the literature. The other two, due to
increase in the accuracy of cosmological data, were intro-
duced in Sahni et al. (2003) (see also Bamba et al. 2012b)
in order to advance beyond the effective ω and deceleration
parameters. They are defined as follows:

1. The effective ω parameter is

ωeff = −1 − 2Ḣ

3H 2
; (37)

Fig. 3 The 68.3 % confidence level contours in the ΩΛ − α2 param-
eter space from the analysis of SNe (solid), H(z) (bold solid), and
BAO (dotted) data for the FRW cosmology (A), δ = 0.05 (B) and
δ = 0.10 (C) in the case of the Little Rip model with β = 0. We see
that, for each of the data sets, the best-fit parameters correspond to the
ΛCDM model (α2 = 0)

2. the deceleration parameter

qdec = − 1

aH 2
ä = −

(
Ḣ

H 2
+ 1

)
; (38)

3. the jerk parameter

j = 1

aH 3

...
a = Ḧ

H 3
+ 3

Ḣ

H 2
+ 1; (39)
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Fig. 4 The 68.3 % (solid) and 95.4 % (dotted) confidence level
contours in the ΩΛ − α2 parameter space from the analysis of
SNe + H(z) + BAO + matter density perturbation data for the FRW
cosmology (A), δ = 0.05 (B) and δ = 0.10 (C) in the case of the
Little Rip model with β = 0. The best-fit parameters are (α2 = 0.03,
ΩD0 = 0.713) with χ2 = 562.20 for the FRW cosmology, (α2 = 0.08,
ΩD0 = 0.714) with χ2 = 563.73 for δ = 0.05 and (α2 = 0.10,
ΩD0 = 0.722) with χ2 = 566.78 for δ = 0.10

4. and the snark parameter

s = j − 1

3(qdec − 1/2)
. (40)

We consider again a universe filled by a perfect fluid with
EoS p = g(ρ) ≡ −ρ − f (ρ). Teleparallel theories in flat
FRW cosmology are defined via a Lagrangian of the form

Fig. 5 The 68.3 % (solid) and 95.4 % (dotted) confidence level
contours in the ΩΛ − w0 parameter space from the analysis of
SNe + H(z) + BAO + matter density perturbation data for δ = 0.05
in the case of the simplest phantom model. The best-fit parameters are
(w0 = −1.08, ΩD0 = 0.718) with χ2 = 563.84

LT = V F(T ) − Vρ (see Hehl et al. 1976; Hayashi and Shi-
rafuji 1979; Bamba et al. 2013 for a review of the topic),
where V is the volume of the spatial part and T = −6H 2 is
the so-called scalar torsion (Bengochea and Ferraro 2009;
Bamba et al. 2012b).

From this Lagrangian we can see that the conjugate mo-
mentum of V is then given by pV = ∂L

∂V̇
= −4HF ′(T ), and

thus the Hamiltonian is

H = V̇ pV − L = (
2T F ′(T ) − F(T ) + ρ

)
V. (41)

It is well-known that in general relativity the Hamiltonian is
constrained to be zero. This constrain leads to the modified
Friedmann equation

ρ = −2F ′(T )T + F(T ) ≡ G(T ), (42)

which is a curve on the plane (H,ρ).
Conversely, given a curve of the form ρ = G(T ) for some

function G, it could be obtained from the modified Fried-
mann equation by choosing Bamba et al. (2013)

F(T ) = −
√−T

2

∫
G(T )

T
√−T

dT . (43)

The modified Raychaudhuri equation is obtained from the
modified Friedmann equation by taking its derivative with
respect to time and using the conservation equation ρ̇ =
3Hf (ρ), giving rise to the equation Ḣ = − f (ρ)

4G′(T )
. Then,

the dynamics of the universe is given by the modified Ray-
chaudhuri equation and the conservation equation, i.e. by the
system

{
Ḣ = − f (ρ)

4G′(T )

ρ̇ = 3Hf (ρ),
(44)

provided the universe moves along the curve ρ = G(T ).
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To compute the state-finder parameters, one has to use the
modified Friedmann, Raychauduri and conservation equa-
tions, to get

ωeff (T ) = −1 − f (G(T ))

T G′(T )
,

qdec(T ) = −3f (G(T ))

2T G′(T )
− 1,

j (T ) = 9f (G(T ))

2T (G′(T ))3

× [(
f ′(G(T )

) + 1
)(

G′(T )
)2

− G′′(T )f
(
G(T )

)] + 1, (45)

s(T ) = −f (G(T ))

(G′(T ))2

× [(f ′(G(T )) + 1)(G′(T ))2 − G′′(T )f (G(T ))]
f (G(T )) + T G′(T )

.

These formulas mean that the parameters are functions
of H . Then, since H0 (the current value of the Hubble pa-
rameter) is well-known, one can test all the F(T ) models
with current observations without actually solving them. In
particular, as we will see, one can test loop quantum cosmol-
ogy or brane cosmology in the Randall-Sundrum scenario,
i.e., brane cosmology described in Sect. 2. In fact, H0 could
be calculated from measurement of the luminosity distance
DL(z) via the well-known formula (Sahni et al. 2003)

H(z) =
[

d

dz

(
DL(z)

1 + z

)]−1

, (46)

being z the redshift, or as we have already explained in
Sect. 3.2.

A remark is important: the formulas (45) could be ex-
pressed in function of ρ via the relation T = G−1(ρ). This
will be relevant when we deal with loop quantum cosmology
and brane cosmology. The formulas read

ωeff (ρ) = −1 − f (ρ)(G−1)′(ρ)

G−1(ρ)
,

qdec(ρ) = −
(

3f (ρ)(G−1)′(ρ)

2G−1(ρ)
+ 1

)
,

j (ρ) = 9f (ρ)

2G−1(ρ)
(47)

× [(
f ′(ρ) + 1

)(
G−1)′

(ρ) + f (ρ)
(
G−1)′′

(ρ)
] + 1,

s(ρ) = − f (ρ)

f (ρ)(G−1)′(ρ) + G−1(ρ)

× [(
f ′(ρ) + 1

)(
G−1)′

(ρ) + f (ρ)
(
G−1)′′

(ρ)
]
.

We start calculating the parameters for the simplest but
one of the most interesting EoS, namely when the depen-

dence between pressure and energy density is linear, i.e.,
when

p = ωρ ⇐⇒ f (ρ) = −(1 + ω)ρ.

In that case, one has

ωeff (T ) = −1 + (1 + ω)
G

T G′ ,

qdec(T ) = −
(

−3

2
(1 + ω)

G

T G′ + 1

)
,

j (T ) = −9

2
(1 + ω)

G

T (G′)3

(−ω
(
G′)2 + (1 + ω)GG′′) + 1,

s(T ) = (1 + ω)G[−ωG′ + (1 + ω)GG′′]
(G′)2[−(1 + ω)G + T G′] .

(48)

As an application, we study FRW cosmology with an
small cosmological constant Λ. In this case G(T ) = −T

2 −
Λ, and from (48) a simple calculation yields

ωeff (T ) = ω + 2(1 + ω)
Λ

T
,

qdec(T ) = −
(

−3

2
(1 + ω)

[
1 + 2Λ

T

]
+ 1

)
,

j (T ) = 9

2
(1 + ω)ω

[
1 + 2Λ

T

]
+ 1, (49)

s(T ) = ω

(
1 − 1

(1 + ω)[1 + 2Λ
T

]
)−1

.

We should remark that, when ω > −1, at late times ρ → 0
and thus T → −2Λ. Obviously one has ωeff (T ) → −1,
qdec(T ) → −1, j (T ) → 1 and s(T ) → 0. On the other
hand, when ω < −1 at late times one has a Big Rip sin-
gularity.

Another interesting model in FRW cosmology has re-
cently been introduced in de Haro and Amoros (2013) in or-
der to deal with non-singular universes. One considers once
again the curve ρ = G(T ) = −T

2 − Λ, but with a non-linear
EoS

p(ρ) = −ρ2

ρi

⇔ f (ρ) = −ρ

(
1 − ρ

ρi

)
, (50)

where ρi is a constant satisfying Λ � ρi .

This model has two de Sitter solutions Hf =
√

Λ
3 and

Hi =
√

Λ+ρi

3 , and shows a universe evolving from an early
inflationary phase (de Sitter phase Hi ) to a late time accel-
erated expansion (de Sitter phase Hf ) passing trough a mat-
ter dominated phase which allows the formation of struc-
tures. It could be also understood as an universe which a
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huge cosmological constant ρi at early times, that evolves,
at late times, to a small cosmological constant Λ leading the
current cosmological acceleration.

In this case, for the current (small) value of T , using (47),
(50) and G−1(ρ) = −2(ρ + Λ) one gets

ωeff (ρ) = −1 − ρ(ρi − ρ)

ρi(ρ + Λ)

qdec(ρ) = −1 − 3ρ(ρi − ρ)

2ρi(ρ + Λ)
,

j (ρ) = 1 − 9ρ2(ρi − ρ)

ρ2
i (ρ + Λ)

, s(ρ) = −2
ρ2(ρi − ρ)

ρi(ρ2 + ρiΛ)
.

(51)

6.1 Loop quantum cosmology and brane cosmology with a
small cosmological constant Λ

In loop quantum cosmology which reminds brane one the
effective Friedmann equation depicts the following ellipse
(see for example Bamba et al. 2013)

H 2 = ρ + Λ

3

(
1 − ρ + Λ

ρc

)
, (52)

in the plane (H,ρ). Where ρc is the so-called critical den-
sity, that satisfies Λ � ρc . In this case this curve can be writ-
ten in two pieces ρm = G−(T ) and ρm = G+(T ), where

G±(T ) = −Λ + ρc

2

(
1 ±

√

1 + 2T

ρc

)
. (53)

Since nowadays H0 and ρ0 have small values, we need
to choose G(T ) ≡ G−(T ) and then, using the formula (43),
one gets

F(T ) = −
√

−Tρc

2
arcsin

(√

−2T

ρc

)

+ ρc

2

(
1 −

√

1 + 2T

ρc

)
− Λ, (54)

what shows that the effective formulation of LQC is a
teleparallel theory.

To compare with FRW cosmology, since nowadays T is
small compared with ρc, we can expand G(T ) up to second
order in T , to get

G(T ) = −Λ − T

2
+ T 2

4ρc

, (55)

and inserting this expression into (45), one obtains the first
order correction to the FRW cosmology. Moreover, in order

to obtain exact formulas one has to use Eq. (47), because in
that case G−1(ρ) has a very simple, quadratic expression:

G−1(ρ) = −2(ρ + Λ)

(
1 − ρ + Λ

ρc

)
.

A straightforward calculation gives

ωeff (ρ) = −1 + f (ρ)(ρc − 2(ρ + Λ))

(ρ + Λ)(ρc − (ρ + Λ))
,

qdec(ρ) = −1 + 3

2

f (ρ)(ρc − 2(ρ + Λ))

(ρ + Λ)(ρc − (ρ + Λ))
,

j (ρ) = −9

2

f (ρ)[−(f ′(ρ) + 1)(ρc − 2(ρ + Λ)) + 2f (ρ)]
(ρ + Λ)(ρc − (ρ + Λ))

+ 1,

s(ρ) = f (ρ)[−(f ′(ρ) + 1)(ρc − 2(ρ + Λ)) + 2f (ρ)]
(ρ + Λ)(ρc − (ρ + Λ)) + f (ρ)(ρc − 2(ρ + Λ))

.

(56)

On the other hand, as we have already seen in Sect. 2, in
brane cosmology in the Randall-Sundrum scenario the mod-
ified Friedmann equation depicts the following hyperbola

H 2 = ρ + Λ

3

(
1 + ρ + Λ

2λ

)
, (57)

on the plane (H,ρ).
Finally, by comparing this equation with (52) it follows

that, in order to obtain the corresponding formulas in brane
cosmology, we just need to make the change ρc → −2λ.
Moreover, with this replacement one can apply the general
formulas (56) to any EoS, in particular to the model studied
is Sect. 4.

A very important remark is here in order. As a result of
the above replacement it follows that the dynamics result-
ing for both theories, LQC and BC, are very different, be-
cause their corresponding Freedmann equations depict two
completely different curves. In particular, Rip singularities,
as we have seen in Sect. 5, are allowed in BC because the
hyperbola is an unbounded curve. But, since in LQC the
Friedmann equation depicts a bounded curve (an ellipse),
Rip singularities cannot appear in this case. For example,
for the EoS p(ρ) = ωρ, the universe is non-singular (see
de Haro and Amoros 2013 for a detailed explanation). In
fact, for ω > −1 (resp. for ω < −1) it moves in an anti-
clockwise (resp. clockwise) way from the anti de Sitter so-

lution H = −
√

Λ
3

√
1 − Λ

ρc
(resp. from the de Sitter solution

H =
√

Λ
3

√
1 − Λ

ρc
) to the de Sitter one H =

√
Λ
3

√
1 − Λ

ρc

(resp. to the anti de Sitter one H = −
√

Λ
3

√
1 − Λ

ρc
).

In the early universe the parameter ρc is very large ρc �
ρ0. In principle, the parameter ρc can vary with time or, in
other words, we can consider LQC with the parameter ρc in
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Fig. 6 The 68.3 % (solid) and 95.4 % (dotted) confidence level con-
tours in the ΩΛ − γ parameter space from the SNe + H(z) + BAO
data analysis in the case when ρ = ρm. The best-fit parameters for the
observational data are ΩΛ = 0.712, ρ/ρc = 0.03 with χ2 = 560.58 (to
compare with χ2

min = 561.31 for the ΛCDM model)

some cosmological epoch. For illustration we can estimate
the possible value ρ/ρc at the present epoch (at redshifts 0 <

z < 1.75). As the LQC equations formally coincide with the
cosmological equations on the brane in the RS scenario, one
can confront the simplest loop quantum cosmology model
(ρ = ρm) with observational data, in the same manner as it
was done in Sect. 4. The analysis shows (see Fig. 6) that the
best fit for the SNe + H(z) + BAO data is achieved for γ =
(ρ0 + Λ)/ρc ≈ 0.03. Maybe this result can be considered as
an argument in favor of loop quantum cosmology.

7 Conclusion

We have confronted in this paper several DE models on
the brane with combined data coming from different and
independent cosmological surveys. The analysis here per-
formed shows that the fitting of these observational data
is actually better for the FRW cosmology in the frame of
the chosen model for dark energy. Also, owing to the fact
that the LQC equations formally coincide with the cos-
mological equations on the brane in the RS scenario, we
could additionally confront the simplest (but very impor-
tant) loop quantum cosmology model (ρ = ρm) with obser-
vational data, in the same manner as it was done with the
brane models. The analysis we carried out showed (Fig. 6)
that the best fit for SNe + H(z) + BAO data is achieved for
γ = (ρ0 + Λ)/ρc ≈ 0.03, what could be actually viewed as
an argument in favor of loop quantum cosmology.

Taking everything into account, the observational cosmo-
logical results do not exclude, in principle, that the real cos-
mology could in fact differ from that of the FRW model.
A window is still open to discrepancy. The importance of
joint analysis of the various observational independent data
sources has been clearly manifested, in the discussions of
the several tables and plots. Taking into account together

the SNe apparent magnitude measurements, Hubble param-
eter evolution data, and BAO and matter density perturba-
tion data we are able to get a quite rigid constraint on the
allowed value for the brane tension in the frames of the dif-
ferent brane models considered here.

Acknowledgements The work by AVY has been supported by the
ESF, project 4868 “The cosmological constant as eigenvalue of Sturm-
Liouville problem”, and the work by AVA has been supported by the
ESF, project 4760 “Dark energy landscape and vacuum polarization
account”, both within the European Network “New Trends and Appli-
cations of the Casimir Effect”. EE’s research has been partly supported
by MICINN (Spain), contract PR2011-0128, and it was partly carried
out while on leave at the Department of Physics and Astronomy, Dart-
mouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA.
JdH was supported by MICINN (Spain), projects MTM2011-27739-
C04-01 and MTM2009-14163-C02-02. EE and SDO have been sup-
ported in part by MICINN (Spain) project FIS2010-15640, by the
CPAN Consolider Ingenio Project, and by AGAUR (Generalitat de Ca-
talunya), contract 2009SGR-994.

References

Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Bar-
bary, K., Burns, M.S., Conley, A., et al.: Astrophys. J. 716, 712
(2010). arXiv:1004.1711 [astro-ph.CO]

Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. D 74, 084003
(2006)

Astashenok, A.V., Nojiri, S., Odintsov, S.D., Yurov, A.V.: Phys. Lett.
B 709, 396 (2012a). arXiv:1201.4056 [gr-qc]

Astashenok, A.V., Nojiri, S., Odintsov, S.D., Scherrer, R.:. (2012b).
arXiv:1203.1976

Astashenok, A.V., Elizalde, E., Odintsov, S.D., Yurov, A.V.: Eur. Phys.
J. C 72, 2260 (2012c). arXiv:1206.2192

Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.:.
arXiv:1205.3421 (2012a)

Bamba, K., Myrzakulov, R., Nojiri, S., Odintsov, S.D.: Phys. Rev. D
85, 104036 (2012b). arXiv:1202.4057 [gr-qc]

Bamba, K., de Haro, J., Odintsov, S.D.: J. Cosmol. Astropart. Phys.
(2013). arXiv:1211.2968 [gr-qc]

Barrow, J.: Class. Quantum Gravity 21, L79 (2004)
Barrow, J.D., Lip, S.Z.W.: Phys. Rev. D 80, 043518 (2009)
Barrow, J.D., Tsagas, C.G.: Class. Quantum Gravity 22, 1563 (2005)
Bengochea, G.R., Ferraro, R.: Phys. Rev. D 79, 124019 (2009).

arXiv:0812.1205 [astro-ph]
Blake, C., et al.: Mon. Not. R. Astron. Soc. 418, 1707 (2011)
Brevik, I., Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84,

103508 (2011). arXiv:1107.4642 [hep-th]
Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)
Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phys. Rev. Lett.

91, 071301 (2003)
Carroll, S.M., Hofman, M., Trodden, M.: Phys. Rev. D 68, 023509

(2003)
Christopherson, A.J.: Phys. Rev. D 82, 083515 (2010)
Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: J. Cos-

mol. Astropart. Phys. 0502, 010 (2005)
Copeland, E.J., Liddle, A.R., Lidsey, J.E.: Phys. Rev. D 64, 023509

(2001)
Copeland, E.J., Lee, S.-J., Lidsey, J.E., Mizuno, S.: Phys. Rev. D 71,

023526 (2005)
Cotsakis, S., Klaoudatou, I.: J. Geom. Phys. 55, 306 (2005)
da Ângela, J., et al.: Mon. Not. R. Astron. Soc. 383, 565 (2008)
de Haro, J., Amoros, J.: Phys. Rev. Lett. (2013)

http://arxiv.org/abs/arXiv:1004.1711
http://arxiv.org/abs/arXiv:1201.4056
http://arxiv.org/abs/arXiv:1203.1976
http://arxiv.org/abs/arXiv:1206.2192
http://arxiv.org/abs/arXiv:1205.3421
http://arxiv.org/abs/arXiv:1202.4057
http://arxiv.org/abs/arXiv:1211.2968
http://arxiv.org/abs/arXiv:0812.1205
http://arxiv.org/abs/arXiv:1107.4642


Astrophys Space Sci (2013) 347:1–13 13

Elizalde, E.: J. Phys. A 39, 6299 (2006). arXiv:hep-th/0607185
Elizalde, E.: Ten Physical Applications of Spectral Zeta Functions, 2nd

edn. Lecture Notes in Physics. Springer, Berlin (2012)
Elizalde, E., Odintsov, S.D., Romeo, A., Bytsenko, A., Zerbini, S.:

Zeta-Regularization with Applications. World Sci., Singapore
(1994)

Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 043539
(2004)

Faraoni, V.: Int. J. Mod. Phys. D 11, 471 (2002)
Fernandez-Jambrina, L., Lazkoz, R.: Phys. Rev. D 70, 121503 (2004)
Frampton, P.H., Ludwick, K.J.: Eur. Phys. J. C 71, 1735 (2011).

arXiv:1103.2480 [hep-th]
Frampton, P.H., Takahashi, T.: Phys. Lett. B 557, 135 (2003)
Frampton, P.H., Ludwick, K.J., Scherrer, R.J.: Phys. Rev. D 84, 063003

(2011)
Frampton, P.H., Ludwick, K.J., Scherrer, R.J.: Phys. Rev. D 85, 083001

(2012a). arXiv:1112.2964 [astro-ph.CO]
Frampton, P.H., Ludwick, K.J., Nojiri, S., Odintsov, S.D., Scherrer,

R.J.: Phys. Lett. B 708, 204 (2012b)
Gonzalez-Diaz, P.F.: Phys. Lett. B 586, 1 (2004)
Guzzo, L., et al.: Nature 451, 541 (2008)
Hawkins, E., et al.: Mon. Not. R. Astron. Soc. 346, 78 (2003).

arXiv:astro-ph/0212375
Hayashi, K., Shirafuji, T.: Phys. Rev. D 19, 3524 (1979). Addendum-

ibid. D 24, 3312 (1982)
Hehl, F.W., Von Der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod.

Phys. 48, 393 (1976)
Ito, Y., Nojiri, S., Odintsov, S.D.:. arXiv:1111.5389 [hep-th] (2011)
Kanekar, N., Sahni, V., Shtanov, Yu.: Phys. Rev. D 63, 083520 (2001)
Kowalski, M.: Astrophys. J. 686, 74 (2008)
Langlois, D.: Prog. Teor. Phys. Suppl. 148, 181 (2003)
Li, M., Li, X., Wang, S., Wang, Y.: Commun. Theor. Phys. 56, 525

(2011)
Maartens, R., Koyama, K.: Living Rev. Relativ. 13, 5 (2010).

arXiv:1004.3962 [hep-th]
Makarenko, A.N., Obukhov, V.V., Kirnos, I.V.:. arXiv:1201.4742 [gr-

qc] (2012)
McDonald, P., et al.: Astrophys. J. 635, 761 (2005)
McInnes, B.: J. High Energy Phys. 0208, 029 (2002)
Nesseris, S., Perivolaropoulos, L.: Phys. Rev. D 70, 123529 (2004)

Nesseris, S., Perivolaropoulos, L.: Phys. Rev. D 72, 123519 (2005).
astro-ph/0511040

Nojiri, S., Odintsov, S.D.: Phys. Lett. B 562, 147 (2003)
Nojiri, S., Odintsov, S.D.: Phys. Lett. B 595, 1 (2004a)
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 103522 (2004b).

hep-th/0408170
Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011). arXiv:1011.0544
Nojiri, S., Odintsov, S.D., Tsujikawa, S.: Phys. Rev. D 71, 063004

(2005)
Nojiri, S., Odintsov, S.D., Saez-Gomez, D.:. arXiv:1108.0767 [hep-th]

(2011)
Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)
Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)
Reyes, R., et al.: Nature 464, 256 (2010). arXiv:1003.2185
Riess, A.G., et al.: Astron. J. 116, 1009 (1998)
Ross, N.P., et al.: Mon. Not. R. Astron. Soc. 381, 573 (2007)
Sahni, V., Shtanov, Yu.: J. Cosmol. Astropart. Phys. 0311, 014 (2003)
Sahni, V., Shtanov, Yu.:. arXiv:0811.3839 [astro-ph] (2008)
Sahni, V., Sami, M., Souradeep, T.: Phys. Rev. D 65, 023518 (2002)
Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: JETP Lett. 77, 201

(2003). arXiv:astro-ph/0201498
Saitou, R., Nojiri, S.:. arXiv:1203.1442 [hep-th] (2012)
Sami, M., Sahni, V.: Phys. Rev. D 70, 083513 (2004)
Sami, M., Singh, P., Tsujikawa, S.: Phys. Rev. D 74, 043514 (2006)
Shtanov, Yu., Sahni, V.: Class. Quantum Gravity 19, L101 (2002)
Shtanov, Yu., Sahni, V.: Phys. Lett. B 557, 1 (2003)
Singh, P., Sami, M., Dadhich, N.: Phys. Rev. D 68, 023522 (2003)
Starobinsky, A.A.: Gravit. Cosmol. 6, 157 (2000)
Stefancic, H.: Phys. Lett. B 586, 5 (2004)
Stefancic, H.: Phys. Rev. D 71, 084024 (2005)
Stern, D., et al.: J. Cosmol. Astropart. Phys. 1002, 008 (2010)
Tegmark, M., et al.: Phys. Rev. D 74, 123507 (2006)
Tretyakov, P., Toporensky, A., Shtanov, Y., Sahni, V.: Class. Quantum

Gravity 23, 3259 (2006)
Wei, H., Wang, L.-F., Guo, X.-J.: Phys. Rev. D 86, 083003 (2012).

arXiv:1207.2898 [gr-qc]
Yurov, A.V., Moruno, P.M., Gonzalez-Diaz, P.F.: Nucl. Phys. B 759,

320 (2006)
Yurov, A.V., Astashenok, A.V., Gonzalez-Diaz, P.F.: Gravit. Cosmol.

14, 205 (2008)

http://arxiv.org/abs/arXiv:hep-th/0607185
http://arxiv.org/abs/arXiv:1103.2480
http://arxiv.org/abs/arXiv:1112.2964
http://arxiv.org/abs/arXiv:astro-ph/0212375
http://arxiv.org/abs/arXiv:1111.5389
http://arxiv.org/abs/arXiv:1004.3962
http://arxiv.org/abs/arXiv:1201.4742
http://arxiv.org/abs/astro-ph/0511040
http://arxiv.org/abs/hep-th/0408170
http://arxiv.org/abs/arXiv:1011.0544
http://arxiv.org/abs/arXiv:1108.0767
http://arxiv.org/abs/arXiv:1003.2185
http://arxiv.org/abs/arXiv:0811.3839
http://arxiv.org/abs/arXiv:astro-ph/0201498
http://arxiv.org/abs/arXiv:1203.1442
http://arxiv.org/abs/arXiv:1207.2898

	Brane cosmology from observational surveys and its comparison with standard FRW cosmology
	Abstract
	Introduction
	Comparison of dark energy in FRW cosmology and on the brane
	Observational data
	SNe observations
	Hubble parameter
	BAO data
	Matter density perturbations

	LambdaCDM model on the brane
	Other dark energy models on the brane
	State-finder parameters in teleparallel theories
	Loop quantum cosmology and brane cosmology with a small cosmological constant Lambda

	Conclusion
	Acknowledgements
	References


