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Abstract In this paper, we study the nonlinear electrody-
namics in the framework of f (T ) gravity for FRW universe
along with dust matter, magnetic and torsion contributions.
We evaluate the equation of state and deceleration param-
eters to explore the accelerated expansion of the universe.
The validity of generalized second law of thermodynamics
for Hubble and event horizons is also investigated in this
scenario. For this purpose, we assume polelike and power-
law forms of scale factor and construct f (T ) models. The
graphical behavior of the cosmological parameters versus
smaller values of redshift z represent the accelerated expan-
sion of the universe. It turns out that the generalized second
law of thermodynamics holds for all values of z with Hub-
ble and event horizons in polelike scale factor whereas for
power-law form, it holds in a specific range of z for both
horizons.

Keywords f (T ) gravity · Magnetic field · Dark energy ·
Generalized second law of thermodynamics

1 Introduction

The fact that the universe is expanding at every point in
space has become the most popular issue in cosmology. It
is found that the universe is nearly spatially flat and con-
sists of about 74 % dark energy (DE) (Perlmutter et al.
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1997, 1998; Riess et al. 1998) and the remaining 26 % cor-
responds to matter. Dark energy has positive energy den-
sity with large negative pressure in order to derive the ac-
celeration of the universe. There are many proposals which
serve as a candidate of the DE in spite of lack of best fit
model for this acceleration. Modified theories of gravity
(Nojiri and Odintsov 2007; Paul et al. 2009) has played an
important role during last decades to explain this acceler-
ated expansion. The generalized teleparallel theory of grav-
ity (Bengochea and Ferraro 2009; Linder 2010; Yang 2011;
Ferraro and Fiorini 2011; Myrzakulov 2011; Tsyba et al.
2011) dubbed as f (T ) gravity is commonly used to explore
the insights of the universe with T as the torsion scalar.

There are several cosmological ingredients in the uni-
verse including radiations, dark matter and DE. The prop-
erties of these ingredients are well specified by the equation
of state (EoS) parameter ω which is the ratio of pressure
to energy density of the universe. The radiation dominated
phase corresponds to ω = 1/3, whereas ω = 0 represents the
matter dominated phase. The DE dominated phase inherits
different regions with the help of EoS parameter including
the quintessence region for −1 < ω < −1/3, vacuum energy
due to the cosmological constant for ω = −1 and phantom
region for ω < −1. The EoS parameter for f (T ) gravity also
corresponds to these regions in different scenarios. Recently,
we have reconstructed the f (T ) models using EoS param-
eter for the above mentioned cases and explored the accel-
erated expansion of the universe (Sharif and Rani 2011a).
Also, the relationship between f (T ) gravity and k-essence
model has been discussed with the help of this parameter to
present the evolving universe (Sharif and Rani 2011b).

Bamba et al. (2011) examined the EoS parameter in this
gravity by taking into account exponential, logarithmic and
their combined models which result different DE regions.
Karami and Abdolmaleki (2012) investigated the validity
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of generalized second law of thermodynamics (GSLT) for
Hubble horizon in f (T ) gravity using power-law and expo-
nential models. They concluded that GSLT holds for both
these models from early to present universe, while it is vio-
lated in the future epoch. Bamba and Geng (2011) explored
the thermodynamics in equilibrium and non-equilibrium de-
scriptions for apparent horizon in f (T ) gravity. Bamba
et al. (2012) studied the finite time singularities, Little Rip,
Pseudo-Rip cosmologies and thermodynamics for the appar-
ent horizon bounded universe for this gravity.

The nonlinear electrodynamics (NLED) has gained an in-
creasing revival during last years. This was firstly proposed
by Born and Infeld (1934) who determined an electron of
finite radius. After this achievement, the effects of NLED
have been studied in several papers. De Lorenci et al. (2002)
investigated the consequences of NLED which indicate a
universe in the radiation phase. Novello et al. (2007) deter-
mined three different phases of the universe, bounce, matter
and DE phases using NLED. Câmara et al. (2004) derived
the general nonsingular solution supported by a magnetic
field plus a cosmic fluid and also a non-vanishing vac-
uum energy density, which may exhibit the inflationary dy-
namics of the universe. Nashed (2011) constructed regular
charged spherically symmetric solutions with NLED cou-
pled to teleparallel theory of gravity. Bandyopadhyay and
Debnath (2011) considered a universe with magnetic field
and matter in NLED and checked the validity of GSLT for
magnetic universe bounded by Hubble, apparent, particle
and event horizons. They concluded that the GSLT violates
initially but holds for later times.

This work provides a motivation to consider a universe
with matter, magnetic field and DE contributions to the
energy-momentum tensor. In this paper, we assume mat-
ter in the form of dust and magnetic field in f (T ) gravity,
while torsion serves as the DE component. We evaluate EoS
as well as deceleration parameters to explore the acceler-
ated expansion of the universe. We also check the validity
of the GSLT in this scenario. The format of the paper is
as follows: In Sect. 2, we present the preliminaries of the
generalized teleparallel gravity along with NLED for FRW
universe. Section 3 is devoted to construct some cosmolog-
ical parameters and the rate of change of total entropy in
the universe for Hubble and event horizons. We discuss all
these results by constructing f (T ) models for polelike and
power-law forms of scale factor. The validity of GSLT in
this scenario is investigated in Sect. 4. The last section sum-
marizes all the results.

2 Basics of f (T ) gravity and NLED

In this section, we provide the basic formulation of the gen-
eralized teleparallel gravity and NLED.

2.1 Generalized teleparallel gravity

The Riemann-Cartan spacetime is the general structure that
possesses both curvature and torsion tensors. There are
two main subclasses of this spacetime, i.e., the Riemannian
spacetime and the Weitzenböck spacetime. The torsion ten-
sor becomes zero in the Riemannian spacetime due to sym-
metric properties of the Levi-Civita connection defined by
the metric tensor. Using this connection with scalar cur-
vature R, Einstein theory of gravity and its modifications
are formed such as f (R), f (R, G), f (R, T ) (De Felice
and Tsujikawa 2010; Harko et al. 2011; De Felice et al.
2011) etc. gravity theories, where G and T are the Gauss-
Bonnet invariant and trace of the energy-momentum ten-
sor. By setting curvature tensor zero, Weitzenböck space-
time is obtained, which gives rise to TPG and its generalized
forms f (T ) (Bengochea and Ferraro 2009; Yang 2011; Fer-
raro and Fiorini 2011; Myrzakulov 2011; Tsyba et al. 2011;
Linder 2010) and f (R,T ) (Myrzakulov 2012; Chattopad-
hyay 2012; Sharif et al. 2012), depending upon the tetrad
field and the torsion scalar T .

The basic element in the structure of f (T ) gravity is the
tetrad field ha(x

μ), where the Latin alphabets (a, b, . . . =
0,1,2,3) denote the tangent space indices and the space-
time indices are represented by Greek alphabets (μ, ν, . . . =
0,1,2,3). This field forms an orthonormal basis for the tan-
gent space at each point xμ of the manifold and can be
identified by its components ha

μ such that ha = h
μ
a ∂μ. These

components satisfy the following properties

ha
μh

μ
b = δa

b , ha
μhν

a = δν
μ. (1)

The relationship between tetrad field and metric tensor
gμν is given by gμν = ηabh

a
μhb

ν , where ηab = diag(1,−1,

−1,−1) is the Minkowski metric for the tangent space. With
the help of Weitzenböck connection (Γ λ

μν = hλ
a∂νh

a
μ),

the torsion tensor T ρ
μν and the tensor Sρ

μν are defined
as follows (Sharif and Amir 2006, 2007; Sotirious et al.
2011)

T λ
μν = Γ λ

νμ − Γ λ
μν = hλ

a

(
∂νh

a
μ − ∂μha

ν

)
, (2)

Sρ
μν = 1

2

(
Kμν

ρ + δμ
ρ T θν

θ − δν
ρT θμ

θ

)
, (3)

and Kμν
ρ = − 1

2 (T μν
ρ − T νμ

ρ − Tρ
μν) is the contorsion

tensor. These tensors inherit the antisymmetric property and
give the torsion scalar as T = Sρ

μνT ρ
μν .

The action of f (T ) gravity is given by (Bengochea
and Ferraro 2009; Yang 2011; Ferraro and Fiorini 2011;
Myrzakulov 2011; Tsyba et al. 2011)

S = 1

2κ2

∫
d4x

[
ef (T ) + Lm

]
, (4)

where e = √−g, κ2 = 8πG, G is the gravitational constant
and Lm is the matter Lagrangian density inside the universe.
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The corresponding field equations are obtained by varying
this action with respect to tetrad as
[
e−1∂μ

(
eSa

μν
) + hλ

aT
ρ

μλSρ
νμ

]
fT

+ Sa
μν∂μ(T )fT T + 1

4
hν

af = 1

2
κ2hρ

aT ν
ρ , (5)

where fT = df/dT , fT T = d2f/dT 2 and T ν
ρ is the energy-

momentum tensor of perfect fluid. The flat FRW universe is
described by

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2), (6)

where a is the time dependent scale factor. The correspond-
ing tetrad components are ha

μ = diag(1, a, a, a), which sat-
isfy Eq. (1). The modified Friedmann equations are

12H 2fT + f = 2κ2ρt , (7)

48H 2ḢfT T − (
12H 2 + 4Ḣ

)
fT − f = 2κ2pt , (8)

where H = ȧ/a is the Hubble parameter and ρt , pt are the
total energy density and pressure of the universe, dot repre-
sents derivative with respect to time.

2.2 Nonlinear electrodynamics

The standard cosmological model is successful in resolving
many issues but still there are some issues which remain to
be solved. One of the issues is the initial singularity (big
bang) which leads to a troubling state of affairs because at
this point, all known physical theories break down. It has
been claimed that very strong electromagnetic field might
help in avoiding the occurrence of spacetime singularities.
Here we give some general properties of the nonlinear elec-
trodynamics (Born and Infeld 1934; De Lorenci et al. 2002;
Câmara et al. 2004; Novello et al. 2007; Nashed 2011;
Bandyopadhyay and Debnath 2011) in cosmology and dis-
cuss its particular case. The FRW universe model (6) re-
quires an averaging procedure in electrodynamics to main-
tain its geometry. For this purpose, the volumetric spatial
average of an arbitrary quantity Y is defined by

Y = lim
V →V0

1

V

∫
Y

√−gd3x, (9)

where g is the determinant of the metric tensor, V =∫ √−gd3x and V0 stands for a sufficiently large time de-
pendent volume of the whole space. This procedure sets up
the mean values of the electric Ei and magnetic Bi fields as
follows

Ei = 0, Bi = 0, EiBi = 0,

EiEj = −1

3
E2gij , BiBj = −1

3
B2gij .

(10)

We consider the extended Maxwell electromagnetic La-
grangian density up to second order terms in the field invari-
ants F and F ∗ as

L = −1

4
F + ω0F

2 + η0F
∗2, (11)

with F = FμνF
μν = 2(B2 −E2), F ∗ ≡ F ∗

μνF
μν = −4E·B,

ω0 and η0 are arbitrary constants. The Maxwell term (first
term) dominates in the radiation era while the quadratic
terms dominates during very early epoch of the evolv-
ing universe. The corresponding energy-momentum tensor
takes the form

Tμν = −4LF Fμ
αFαν + (

F ∗LF ∗ − L
)
gμν, (12)

where LF and LF ∗ represent the partial derivatives of the
nonlinear Lagrangian with respect to field invariants. Us-
ing the average values given in Eq. (10), the comparison of
the energy-momentum tensor (12) with that of perfect fluid,
Tμν = (ρ + p)uμuν − pgμν , yields the general form of en-
ergy density ρ and pressure p as

ρ = −L − 4E2 LF , (13)

p = L + 4

3

(
E2 − 2B2)LF . (14)

We assume the case of homogenous electric field in
plasma which gives non-vanishing magnetic field whereas
the electric field rapidly decays and becomes zero. The non-
linear term F 2 with only magnetic field helps to avoid the
initial singularity by inducing the universe to bounce (Nov-
ello et al. 2007). The vanishing E2 helps to neglect the vis-
cosity terms in the electric conductivity of the primordial
plasma while its presence removes the bounce which results
a universe with a singular state. Inserting the corresponding
values in Eqs. (13) and (14), the magnetic energy density
and pressure take the form

ρB = 1

2
B2(1 − 8ω0B

2), (15)

pB = 1

6
B2(1 − 40ω0B

2). (16)

When ω0 = 0 = η0, Eqs. (11) and (12) reduce to the
linear Maxwell electromagnetic Lagrangian and energy-
momentum tensor as follows

L = −1

4
F, Tμν = Fμ

αFαν + 1

4
Fgμν. (17)

For the Lagrangian with the energy-momentum tensor and
the same assumptions as for nonlinear process, we obtain

ρ = 3p = 1

2

(
E2 + B2), (18)

which shows that the universe is composed of ordinary radi-
ations with positive pressure. For the homogeneous electric
field case, it yields p = 1

3ρ = 1
6B2.

3 Cosmological parameters and thermodynamics

In this section, we construct the EoS and deceleration pa-
rameters as well as the GSLT for Hubble and event hori-
zons. Jamil et al. (2010) checked the validity of GSLT for a
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universe composed of DE interacting with dark matter and
radiation fluid. Karami et al. (2011) studied GSLT for non-
flat FRW universe containing the same fluids for apparent
horizon. Here we assume a universe where the three generic
sources fueled its spatial sections including the pressureless
cold dark matter, DE as modified form of torsion scalar and
NLED. The first two sources relate with the late-time evo-
lution of the universe. The third component is important for
avoiding initial singularity and behaves like standard radia-
tion field at later times. Thus these contributions develop the
budget of energy density of the universe according to recent
observations (i.e., 72.8 % is DE, 22.7 % is dark matter and
4.5 % is ordinary matter) (Komatsu et al. 2011).

The field equations (7) and (8) can be written as

3H 2

κ2
= ρt , −2Ḣ

κ2
= ρt + pt , (19)

where ρt = ρm + ρB + ρT , pt = pm + pB + pT . The sub-
scripts m, B and T denote the matter, magnetic and torsion
contributions to the total energy density and pressure of the
universe with ρT and pT as

ρT = 1

2κ2

(−12H 2fT − f + 6H 2), (20)

pT = − 1

2κ2

(
48ḢH 2fT T − (

12H 2 + 4Ḣ
)
fT

− f + 6H 2 + 4Ḣ
)
. (21)

For the sake of simplicity, we take dust like matter, i.e.,
pm = 0. The corresponding energy conservation equations
take the form

ρ̇m + 3Hρm = 0, (22)

ρ̇B + 3H(ρB + pB) = 0, (23)

ρ̇T + 3H(ρT + pT ) = 0. (24)

Equation (22) gives

ρm = ρm0a
−3,

where ρm0 is an arbitrary constant. Inserting Eqs. (15) and
(16) in (23), we obtain

B = B0

a2
,

where B0 is an arbitrary constant. This shows that the evolu-
tion of energy density of the magnetic field decays with the
expansion of the universe and corresponds to the early phase
for small values of the scale factor (Novello et al. 2004) as
well as to radiation phase in linear case.

Now we investigate the behavior of the universe inherit-
ing magnetic field and dust matter with f (T ) gravity as the
DE source. The EoS parameter is

ωt =
[
− 1

κ2

(
48ḢH 2fT T − (

12H 2 + 4Ḣ
)
fT

− f + 6H 2 + 4Ḣ
) + B2

6

(
1 − 40ω0B

2)
]

×
[
ρm0a

−3 + 1

2κ2

(
6H 2 − f − 12H 2fT

)

+ B2

2

(
1 − 8ω0B

2)
]−1

. (25)

The deceleration parameter is the measure of the cosmic ac-
celeration of the expanding universe and is given by

q = −1 − Ḣ

H 2
. (26)

The negative value of q corresponds to the accelerated
regime, for positive q decelerated and q = 0 leads to con-
stant expansion of the universe. In the present case, it be-
comes

qt = 1

2
(1 + 3ωt),

hence

qt = 1

2

[
1 + 3

{
− 1

κ2

(
48ḢH 2fT T − (

12H 2 + 4Ḣ
)
fT

− f + 6H 2 + 4Ḣ
) + B2

6

(
1 − 40ω0B

2)
}

×
{
ρm0a

−3 + 1

2

(
6H 2 − f − 12H 2fT

)

+ B2

2

(
1 − 8ω0B

2)
}−1]

. (27)

Equations (25) and (27) represent the general form of the
EoS and the deceleration parameters in terms of f (T ). We
may check the behavior of these cosmological parameters
for some viable f (T ) models.

It has been interesting to study the GSLT in the con-
text of modified theories of gravity (Akbar and Cai 2006;
Sadjadi 2007; Sheykhi and Wang 2009; Karami and Khale-
dian 2011, 2012; Karami and Abdolmaleki 2012; Karami
et al. 2012). This law states that the sum of entropy of total
matter inside the horizon and entropy of the horizon does not
decrease with time. Using the first law of thermodynamics,
the Clausius relation is obtained as, −dE = TXdSX , where
SX = A

4G
is the Bekenstein entropy, A = 4πR2

X is the area
of horizon with X as an arbitrary horizon and TX = 1

2πRX

is the Hawking temperature. Miao et al. (2011) found that
the first law of thermodynamics violates in f (T ) gravity
due to local Lorentz invariance (Li et al. 2011) which re-
sults in addition a entropy production term SP . However, its
validation takes place if fT T is very small and entropy hori-
zon becomes SX = AfT

4G
with vanishing SP in this case. We

use the general approach (i.e., independent of fT T condi-
tion) to study the GSLT in magnetic f (T ) scenario along
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with Gibbs’ equation (Bandyopadhyay and Debnath 2011;
Cai and Kim 2005; Bamba et al. 2013). The time derivative
of the entropy on the horizon is

dSX

dt
+ dSP

dt
= πRX

G
(2ṘXfT + RXṪ fT T ). (28)

If the condition fT T � 1 does not satisfy, then we have to
find out the entropy production term (Bamba et al. 2013).

The Gibbs’ equation is used to find the rate of change of
normal entropy SI of the horizon

dSI

dt
= 1

TX

(
dEI

dt
+ pt

dV

dt

)
, (29)

where EI = ρtV , V = 4
3πR3

X is the volume of the horizon.
Inserting the values in Eq. (29), it follows that

dSI

dt
= 4πR2

X

TX

(ṘX − HRX)(ρt + pt). (30)

Combining Eqs. (28) and (30), we obtain the time derivative
of total entropy for the arbitrary horizon as

dSX

dt
+ dSP

dt
+ dSI

dt

= πRX

G

[
2ṘXfT + RXṪ fT T + 8πGR2

X

×
{
ρm0a

−3 + 1

κ2

(
4ḢTfT T + 2Ḣ (fT − 1)

)

+ 2B2
0

3a4

(
1 − 16ω0B

2
0

a4

)}
× (ṘX − HRX)

]
. (31)

The validity of the GSLT (ṠX + ṠI + ṠP ≥ 0) on the
horizon of radius RX for viable f (T ) models can be inves-
tigated. Here we discuss two forms of cosmological hori-
zons widely used in literature (Bak and Rey 2000; Li 2004;
Sharif and Jawad 2013).

Hubble horizon Let us assume that the boundary of the
thermal system of the FRW universe is occupied by the ap-
parent horizon (Bak and Rey 2000) in equilibrium state. For
the flat FRW, it reduces to the Hubble horizon with radius
RH as

RH = 1

H
, ṘH = − Ḣ

H 2
. (32)

Inserting these values (X → H) in Eq. (31), we obtain

dSH

dt
+ dSP

dt
+ dSI

dt

= − π

GH

[
2Ḣ

H 2
fT + 12ḢfT T + 8πG

H 2

(
1 + Ḣ

H 2

)

×
{
ρm0a

−3 + 1

κ2

(
4ḢTfT T + 2Ḣ (fT − 1)

)

+ 2B2
0

3a4

(
1 − 16ω0B

2
0

a4

)}]
. (33)

This is the rate of change of total entropy of all the fluids
(dust matter, magnetic and torsion contributions) in the uni-
verse for Hubble horizon.

Event horizon The radius of event horizon is given by (Li
2004)

RE = a

∫ ∞

t

dt

a
, ṘE = HRE − 1. (34)

The convergence of this integral leads to the existence of the
event horizon. Basically, it is the distance of light traveling
from present time to infinity. If Big Rip singularity occurs
at some future time denoted by ts , then we must replace ∞
by ts . Using Eq. (34) in (31) and replacing X by E, it follows
that

dSE

dt
+ dSI

dt
+ dSP

dt

= π

G

(
a

∫ ∞

t

dt

a

)[
2

(
ȧ

∫ ∞

t

dt

a
− 1

)

− 12HḢ

(
a

∫ ∞

t

dt

a

)
+ 8πG

(
a

∫ ∞

t

dt

a

)2

×
((

ȧ

∫ ∞

t

dt

a
− 1

)
− H

(
a

∫ ∞

t

dt

a

))

×
{
ρm0a

−3 + 1

κ2

(
4ḢTfT T + 2Ḣ (fT − 1)

)

+ 2B2
0

3a4

(
1 − 16ω0B

2
0

a4

)}]
. (35)

This represents the rate of change of total entropy in the uni-
verse for event horizon in equilibrium state and its validity
depends upon the viable f (T ) model. Sadjadi (2007) inves-
tigated the validity of GSLT for event horizon in f (R) grav-
ity which also depends upon some viable f (R) model. In
the following, we construct some f (T ) models to check the
behavior of cosmological parameters ωt , qt and validity of
GSLT for Hubble and event horizons in a universe composed
of dust, magnetic and torsion contributions.

4 f (T ) model: an example

Since there are mainly two possible ways of working with
cosmological equations of motion, either postulating a the-
ory with matter content of the universe and then solving
corresponding equation to discuss the cosmological time be-
havior of the model under consideration. Or, vice versa, pos-
tulating a theory with desired time behavior of the model
deriving information about the matter content. Novello et al.
(2007) investigated the removing of initial singularity by
NLED and resulted a power-law form of scale factor in the
corresponding scenario. Here we adopt the second method
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Fig. 1 Plot of EoS parameter ωt (left) and deceleration parameter qt (right) versus z for polelike type scale factor

by assuming the following polelike type scale factor (Sad-
jadi 2006; Nojiri and Odintsov 2006)

a(t) = a0(ts − t)−h, h > 0, ts ≥ t (36)

where a0 is the present value of the scale factor. This scale
factor indicates the superaccelerated universe with a Big Rip
singularity at t = ts . Using above scale factor, Hubble pa-
rameter, torsion scalar and Ḣ become

H = h

ts − t
, T = − 6h2

(ts − t)2
, Ḣ = h

(ts − t)2
. (37)

Inserting these values in the first equation of modified Fried-
mann equations (19), we obtain the f (T ) model as

f (T ) = c1

(
− T

6h2

) 1
2 + 2κ2ρm0

a3
0(3h + 1)

(
−6h2

T

) 3h
2

+ κ2B2
0

a4
0(4h + 1)

(
−6h2

T

)2h

− 8κ2B4
0ω0

a8
0(8h + 1)

(
−6h2

T

)4h

, (38)

which shows the contributions from dust matter and mag-
netic field with nonlinear terms of torsion scalar. Here c1 is
an integration constant and can be found through a bound-
ary condition. For this purpose, Eq. (7) can be rewritten as
follows

H 2 = 8πG

6fT

(
ρt − f

16πG

)
.

This equation implies that the gravitational constant G has
to be replaced by an effective gravitational constant (time
dependent), Geff for nonlinear f (T ) model (Capozziello
et al. 2011; Wei et al. 2012). For a linear f (T ), Geff should
reduce to the present day value of G which yields the con-
dition fT (T0) = 1, where T0 = −6H 2

0 and H0 is the present
day value of Hubble parameter. Applying this condition in
model (38), we obtain

c1 = 12hH0

[
hκ2ρm0

2a3
0(3h + 1)H 2

0

(
h

H0

)3h

+ hκ2B2
0

3a4
0(4h + 1)H 2

0

(
h

H0

)4h

− 16hκ2B4
0ω0

3a8
0(8h + 1)H 2

0

(
h

H0

)8h

− 1

]
. (39)

Also, the model (38) satisfies the condition f
T

→ 0 at high
redshift T → ∞ to be a realistic model representing ac-
celerated expansion of the universe. This is consistent with
the primordial nucleosynthesis and cosmic microwave back-
ground constraints (Wu and Yu 2010; Karami and Abdol-
maleki 2012).

We check the behavior of the expanding universe along
with GSLT for this model by adopting z = a0

a
− 1. Inserting

the above values in Eqs. (25) and (27), we obtain

ωt = 20κ2B4
0ω0

9h2a8
0

(1 + z)
8h+2

h − κ2B2
0

18h2a4
0

(1 + z)
4h+2

h

− 2(3h + 2)

3h
, (40)

qt = 10κ2B4
0ω0

3h2a8
0

(1 + z)
8h+2

h − κ2B2
0

12h2a4
0

(1 + z)
4h+2

h

− 5h + 4

2h
. (41)

The graphical behavior of the cosmological parameters
ωt and qt versus z is shown in Fig. 1. We use a0 = 1 = κ2,
H0 = 74.2 Km s−1 Mpc−1 for h = 2,3,5 and fix the val-
ues ω0 = 0.05, B0 = 0.8 for the magnetic contribution.
In the left graph, ωt shows the phantom dominated uni-
verse as z decreases for all values of h. Approximately at
z = 0.75,0.95,1.2, the graph shows the crossing of phan-
tom divide line and converges to phantom era of the expand-
ing universe which is consistent with the recent observations
(Sadjadi and Vadood 2008). The EoS parameter converges
to ωt = −2.7,−2.5,−2.3 for h = 2,3,5 respectively. The
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range z > 1.2 does not correspond to the accelerated phase
of the universe. As we increase the value of h, the graph
shifts towards phantom divide line but it crosses the line for
higher value of z. The deceleration parameter remains nega-
tive for decreasing z as shown in the right graph. The graph
of this parameter becomes negative in the range, z < 1.3 and
shows the accelerated expansion of the universe. For higher
values of redshift, roughly z ≥ 1.3, the positive behavior of
qt indicates the positive decelerated expansion of the uni-
verse. This implies that for decreasing z, the torsion contri-
bution overcomes the magnetic contribution completely.

Now to check the validity of GSLT, we first see the be-
havior of second derivative of the model (38) given by

fT T = (1 + z)
4
h

36h4

[
3h(3h + 2)κ2ρm0

2a3
0(3h + 1)

(1 + z)3

+ 2h(2h + 1)κ2B2
0

a4
0(4h + 1)

(1 + z)4

− 32h(4h + 1)κ2B4
0ω0

a8
0(8h + 1)

(1 + z)8 − c1

4(1 + z)
1
h

]
.

(42)

Fig. 2 Plot of fT T versus z for polelike type scale factor

Its plot versus z is shown in Fig. 2 indicating that fT T � 1
for z < 0.2. Thus we take the entropy production term to
zero in Eqs. (33) and (35). Using Eqs. (37) and (38) in (33),
the rate of change of total entropy in terms of redshift for the
Hubble horizon turns out to be

dSH

dt
+ dSI

dt
= −π(1 + z)

3
h

Gh3

[
(3h + 4)κ2ρm0

2a3
0(3h + 1)

(1 + z)3

+ 4(h + 1)κ2B2
0

3a4
0(4h + 1)

(1 + z)4

− 64(2h + 1)κ2B4
0ω0

3a8
0(8h + 1)

(1 + z)8
]

+ 2π

Gh3
(1 + h)(1 + z)

1
h . (43)

Figure 3 (left graph) represents the plot of the rate of change
of total entropy versus redshift keeping the same values of
the constants as in the previous figure. This shows the pos-
itive behavior of ṠH + ṠI as z decreases. Thus the GSLT
always holds for the Hubble horizon in the magnetic f (T )

scenario.
For the event horizon, inserting Eqs. (37) and (38) in (35),

the rate of total entropy becomes

dSE

dt
+ dSI

dt
= − π(1 + z)

3
h

Gh(1 + h)2

[
(3h + 4)κ2ρm0

2a3
0(3h + 1)

(1 + z)3

+ 4(h + 1)κ2B2
0

3a4
0(4h + 1)

(1 + z)4

− 64(2h + 1)κ2B4
0ω0

3a8
0(8h + 1)

(1 + z)8
]

+ 2πh

G(1 + h)3
(1 + z)

1
h . (44)

Fig. 3 Plot of the rate of change of total entropy versus redshift for polelike type scale factor. The left graph is for ṠH + ṠI versus z for Hubble
horizon and the right graph is for ṠE + ṠI versus z for event horizon
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Fig. 4 Plot of EoS parameter ωt (left) and deceleration parameter qt (right) versus z for power-law scale factor

The plot of ṠE + ṠI versus z is shown in Fig. 3 (right
graph). This also represents positive behavior of the total
entropy as z decreases indicating the validity of GSLT for
the event horizon in the magnetic f (T ) gravity. It is inter-
esting to mention here that the time derivative of total en-
tropy always remains positive for Hubble and event hori-
zons and GSLT holds for all values of z. For the mag-
netic universe only (Bandyopadhyay and Debnath 2011), the
GSLT remains valid for Hubble horizon whereas its validity
is investigated up to a certain level along z for event hori-
zon.

There is another type of scale factor in the exact power-
law form as, a(t) = a0(ts − t)h (Sadjadi 2006; Nojiri and
Odintsov 2006; Setare and Darabi 2012) which is sim-
ply obtained by replacing h with −h in Eq. (36) and
gives the inverse power-law expansion. Debnath et al.
(2012) investigated the validity of GSLT in general rel-
ativity using this scale factor (in the limit t → ts − t)
along with some other forms of a(t) without using the first
law of thermodynamics. We analyze the behavior of ωt ,
qt and time derivative of total entropy for the Hubble
and event horizons using the same approach as for pole-
like scale factor. The corresponding f (T ) model is given
by

f (T ) = c2

(
− T

6h2

) 1
2 + 2κ2ρm0

a3
0(1 − 3h)

(
− T

6h2

) 3h
2

+ κ2B2
0

a4
0(1 − 4h)

(
− T

6h2

)2h

− 8κ2B4
0ω0

a8
0(1 − 8h)

(
− T

6h2

)4h

, (45)

where c2 is an integration constant which can be found by
applying the same boundary condition as for polelike scale
factor, and is given by

c2 = 12hH0

[
− hκ2ρm0

2a3
0(1 − 3h)H 2

0

(
h

H0

)3h

− hκ2B2
0

3a4
0(1 − 4h)H 2

0

(
h

H0

)4h

+ 16hκ2B4
0ω0

3a8
0(1 − 8h)H 2

0

(
h

H0

)8h

− 1

]
. (46)

This model does not satisfy the condition for a realis-
tic model (Wu and Yu 2010; Karami and Abdolmaleki
2012) at high redshift. It may give some relativistic re-
sults for h < 1

4 but this range does not represent ac-
celerated expansion of the universe (h > 1). However,
this model satisfies the condition f (T ) → 0 as T → 0
(Rastkar et al. 2012; Chattopadhyay and Pasqua 2013).
By comparing this model with Eq. (38), the only dif-
ference is the sign of h. Thus omitting the expressions
for ωt , qt and time derivative of total entropy for the Hubble
and event horizons, we discuss graphically these phenom-
ena.

The EoS and deceleration parameters represent a phan-
tom dominated accelerated phase of the universe for de-
creasing values of z as shown in Fig. 4. It shows the
same behavior of these parameters as for polelike type
scale factor. However, ωt crosses the phantom divide line
at z = 0.4,0.65,0.9 and becomes convergent at ωt =
−1.3,−1.5,−1.7 for h = 2,3,5. As we decrease the value
of h, the graph of ωt shifts towards −1. For the chosen
values of h with z < 1.4, the deceleration parameter shows
negative behavior. It converges to qt = −1.5,−1.85,−2.1
for z < 0.7 and corresponds to the accelerated expansion of
the universe.

The second derivative of model (45) is also satisfies the
condition fT T � 1 as shown in Fig. 5. Thus we take SP = 0
and check the validity of GSLT for Hubble and event hori-
zons. The time derivative of total entropy for Hubble and
event horizons using Eqs. (33) and (35) in terms of red-
shift. The time derivative of total entropy of Hubble horizon
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shows positive behavior for z > 0.7 as shown in Fig. 6 (left),
hence the GSLT holds. The quantity ṠH + ṠI becomes neg-
ative at z ≤ 0.7 violating the GSLT in the magnetic f (T )

scenario for h = 2,3 whereas it remains positive for h = 5.
In the right graph, ṠE + ṠI represents negative behavior in
the limit z ≤ 0.95, showing the violation of GSLT while it
holds when z > 0.95 for all chosen values of h in this sce-
nario.

5 Concluding remarks

We have studied the NLED in the framework of f (T )

gravity using FRW universe containing DE, dust matter
and magnetic field contribution. An averaging procedure is
adopted to preserve the isotropy of spacetime in the NLED.
In this scenario, we have evaluated EoS and deceleration pa-
rameters for the total energy density and pressure of the uni-
verse. The time derivative of the total entropy for the Hub-
ble and event horizons are developed to investigate the va-
lidity of GSLT using horizon entropy and Gibbs’ equation.

Fig. 5 Plot of fT T versus z for exact power-law scale factor

Dias and Moraes (2005) investigated that torsion affects the
magnetic field only in the topological defect and found that
it spirals up the magnetic field lines along defect axis. The
NLED serves to remove the initial singularity and becomes
standard radiation phase in later times. We have constructed
f (T ) models using polelike and power-law forms of scale
factor. The graphical behavior is discussed for some partic-
ular model parameters. The results of the paper are summa-
rized as follows.

• The cosmological parameters for the first constructed
f (T ) model by polelike scale factor represent a phan-
tom dominated universe with acceleration for z ≤ 1.3 as
shown in Fig. 1. For higher values of z, the expansion rate
reduces and magnetic field dominates the torsion contri-
bution representing a decelerated universe.

• The time derivative of total entropy for Hubble and event
horizons are plotted versus z to discuss the validity of
GSLT for this model satisfying the condition fT T � 1
(Fig. 2). The GSLT holds for all the values of z for both
these horizons (Fig. 3).

• Using the second constructed f (T ) model from the exact
power-law scale factor, plots of ωt and qt versus z (Fig. 4)
indicate the same behavior as the first model.

• The second model also meets the condition fT T � 1 as
shown in Fig. 5 to discuss the GSLT with the help of first
law of thermodynamics. Figure 6 shows the positive be-
havior of time derivative of the total entropy for both hori-
zons upto a certain range. For Hubble horizon, the GSLT
is valid for z ≥ 0.7, while it holds for z ≥ 0.95 in case of
event horizon.

It is interesting to mention here that for the magnetic uni-
verse (Bandyopadhyay and Debnath 2011) only, the time
rate of the total entropy stays positive when z ≥ −0.1 for
event horizon and becomes negative after this range. On the
other hand, in our case, it remains in the positive region for

Fig. 6 Plot of the rate of change of total entropy versus redshift for exact power-law scale factor. The left graph is for ṠH + ṠI versus z for Hubble
horizon and the right graph is for ṠE + ṠI versus z for event horizon
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all values of z in the magnetic f (T ) framework for this hori-
zon with polelike scale factor. The Hubble horizon shows
the similar behavior of the time derivative of total entropy in
both scenarios. For higher values of redshift, the cosmolog-
ical parameters indicate a universe where torsion contribu-
tion has become faint as compared to the magnetic field. It
is pointed towards early decelerated phase of the universe.
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