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Abstract In this paper, we study an anisotropic Bianchi-I
space-time model in f (R) theory of gravity in the presence
of perfect fluid as a matter contains. The aim of this paper is
to find the functional form of f (R) from the field equations
and hence the solution of various cosmological parameters.
We assume that the deceleration parameter to be a constant,
and the shear scalar proportional to the expansion scalar to
obtain the power-law form of the scale factors. We find that
the model describes the decelerated phases of the universe
under the choice of certain constraints on the parameters.
The model does not show the acceleration expansion and
also transition from past deceleration to present accelerat-
ing epoch. We discuss the stability of the functional form of
f (R) and find that it is completely stable for describing the
decelerating phase of the universe.

Keywords f (R) gravity · Anisotropic models

1 Introduction

The recent developments in cosmology with the observa-
tions such as Ia supernova (Riess et al. 1998, 1999; Perlmut-
ter et al. 1999; Tonry et al. 2003), cosmic microwave back-
ground anisotropy (Spergel et al. 2003), large scale structure
(Tegmark et al. 2004; Seljak et al. 2005; Percival et al. 2007;
Kamatsu et al. 2009), baryon oscillation (Eisenstein et al.
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2005) and weak lens (Jain and Taylor 2003) have led to
the conclusion that the universe is accelerating in the cur-
rent epoch. It has been observed that a fluid known as dark
energy (DE) with large negative pressure is responsible for
this acceleration. Many DE models have been proposed to
explain the cosmic accelerated expansion (Copeland et al.
2006). A cosmological constant Λ responsible for accelera-
tion is the simplest candidate of DE (Sahni and Starobinsky
2000; Padmanabhan 2003), which so far best fits with the
observational data. However, the observed value of the cos-
mological constant is much smaller (10120 orders of smaller
magnitude) than any other energy (vacuum energy) pre-
dicted by quantum physics (Peebles and Ratra 2003; Car-
roll 2001). This problem is known as fine-tuning problem in
cosmology. Therefore, there is no guiding principle for con-
struction of a promising model of cosmological constant.

The second alternative of cosmological constant, which
is not stable, is a minimally coupled scalar field φ, usually
called quintessence. These scalar fields may be responsible
for a stage of accelerated expansion (Steinhardt et al. 1999;
Zlatev et al. 1999). A further interesting possibility is pro-
vided by non-minimally coupled scalar field (Amendola
1999; Chiba 2003a). It is also mentioned that energy condi-
tions are violated in all these kind of scalar fields. Also, these
models end with a finite future singularity known as Big
Rip. Modification of the gravity theory is an alternative ap-
proach, for example, f (R) model (Capozziello et al. 2003;
Nojiri and Odintsov 2003; Carroll et al. 2004). The f (R)

model is a modified gravity model, constructed by replacing
the gravitational Lagrangian with a general function of the
Ricci scalar R.

The f (R) gravity provides a very natural unification of
the early-time inflation and late-time acceleration. It de-
scribes the transition from deceleration to acceleration in
the evolution of the universe (Nojiri and Odintsov 2007a,
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2008). Over the past few years, Many works are available
in literature (Capozziello and Francaviglia 2008; Abdalla
et al. 2005; Nojiri and Odintsov 2007b; Bertolami and Pár-
mos 2008; Harko 2008) addressing the well-known issues
of stability (Dolgov and Kawasaki 2003), singularity prob-
lem (Frolov 2008), solar system test (Chiba 2003b), etc. The
general scheme for modified gravity reconstruction from
any realistic FRW cosmology have been discussed by No-
jiri and Odintsov (2006). It seems that f (R) gravity models
pass all known observational local test currently (Elizalde et
al. 2010, 2011; Nojiri and Odintsov 2011).

Almost all of these considerations are mainly investi-
gated in a spatially flat homogeneous and isotropic universe
described by Friedmann- Robertson-Walker (FRW) metric.
The theoretical studies and observational data, which sup-
port the existence of anisotropic phase, lead to consider
the model of universe with anisotropic background. Since,
the universe is almost isotropic at large scale, the study-
ing of the possible effects of anisotropic universe in the
early time makes the Bianchi-I type (BI) model as a prime
alternative. Many authors have tried to find analytical so-
lutions for the known functional form f (R). For exam-
ples, Barrow and Clifton (2006) have obtained exact cos-
mological solutions for scale invariant theories which gen-
eralize Einstein’s GR to a theory derived from the La-
grangian R1+δ . The solutions were expanding universe of
Kasner form and exist for − 1

2 < δ < 1
4 . However, these

solutions were obtained for vacuum universe. Sharif and
Shamir (2009, 2010a, 2010b), Sharif and Zubair (2010a),
Shamir (2010), Sharif and Kausar (2011a, 2011b, 2011c),
and Aktaş et al. (2012) have studied anisotropic models in
f (R) theory. Recently, Yilmaz et al. (2012) have discussed
quark and strange quark matter in f (R) gravity for Bianchi
I and V space time models. The ordering of this approach
can also be reversed. Namely, for a known scale factor,
one may construct functional form of f (R) which yields
such scale factors as solutions (Nojiri and Odintsov 2007c;
Capozziello and Francaviglia 2008; Nojiri et al. 2009).

In this paper, we are interested to find a functional form
of f (R) for a known scale factor in anisotropic locally-
rotationally-symmetric (LRS) Bianchi I model with perfect
fluid as a source of matter. A functional form of f (R) is
obtained from the field equations by assuming the constant
deceleration parameter and the shear scalar proportional to
the expansion scalar. We find that the model describes the
decelerated phase of the universe under the choice of cer-
tain constraints on the parameter. We discuss the stability of
f (R) theory for the decelerated phase of the solution and
it is found that it is completely stable for the defined con-
straint.

The paper is organized as follows. In Sect. 2, we present
the gravitational action of f (R) gravity and the correspond-
ing field equations. Section 3 provides the solution of the

field equations. In Sect. 4 we discuss the stability condition
for Bianchi model in f (R) gravity. In the last Sect. 5, sum-
mary of the finding is given.

2 Field equations for [f (R) + Lm] gravity

The gravitational action for f (R) theory of gravity coupled
with matter fluid in the units 16πG = 1 and c = 1, takes
the following form (Nojiri and Odintsov 2007c; Capozziello
and Francaviglia 2008)

I =
∫

d4x
√−g

[
f (R) + Lm

]
, (1)

where R is the Ricci scalar and Lm corresponds to the matter
Lagrangian.

The field equations are obtained by varying the action (1)
with respect to metric tensor gμν

F (R)Rμν − 1

2
f (R)gμν − ∇μ∇νF (R) + gμν�F(R)

= Tμν, (2)

where F(R) = f ′(R) and Tμν is the energy momentum ten-
sor. The other symbols have their usual meanings.

The energy momentum tensor for a perfect fluid is given
as

Tμν = (ρ + p)uμuν − pgμν, (3)

where ρ is the energy density and p is the thermodynamical
pressure of the fluid. uμ is the four velocity of the fluid such
that uμuν = 1 and in comoving coordinates, uμ = δ

μ
0 .

We consider a homogeneous and anisotropic Locally-
rotationally-symmetric (LRS) Bianchi type-I line element
whose metric is given by

ds2 = dt2 − A2dx2 − B2(dy2 + dz2), (4)

where the metric coefficients A and B are the scale factors
in an anisotropic background and are functions of cosmic
time t only.

The average scale factor is defined as

a = (
AB2) 1

3 . (5)

The rate of the expansion along x-, y-, and z-axes can be
defined as,

Hx = Ȧ

A
, Hy = Hz = Ḃ

B
, (6)

where a dot denotes ordinary derivative with respect to cos-
mic time t . The average Hubble parameter (average expan-
sion rate), which is the generalization of the Hubble param-
eter in an isotropic case, H is given as

H = ȧ

a
= 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
. (7)
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The expansion scalar, θ and the shear scalar, σ 2 are respec-
tively defined as

θ = ui
;i = 3H = Ȧ

A
+ 2

Ḃ

B
, (8)

σ 2 = 1

2
σijσ

ij = 1

3

(
Ȧ

A
− Ḃ

B

)2

, (9)

where

σ 1
1 = 2

3

(
Ȧ

A
− Ḃ

B

)
,

σ 2
2 = σ 3

3 = −1

3

(
Ȧ

A
− Ḃ

B

)
, σ 4

4 = 0.

(10)

The scalar curvature for the metric (4) is given by

R = −2

(
Ä

A
+ 2

B̈

B
+ 2

ȦḂ

AB
+ Ḃ2

B2

)
. (11)

Using comoving coordinates, the field Eqs. (2) for the met-
ric (4) and energy-momentum tensor (3) yield the following
system of equations.(

Ȧ

A
+ 2

Ḃ

B

)
Ḟ −

(
Ä

A
+ 2

B̈

B

)
F − 1

2
f = ρ, (12)

F̈ + 2
Ḃ

B
Ḟ −

(
Ä

A
+ 2

ȦḂ

AB

)
F − 1

2
f = −p, (13)

F̈ +
(

Ȧ

A
+ Ḃ

B

)
Ḟ −

(
B̈

B
+ ȦḂ

AB
+ Ḃ2

B2

)
F − 1

2
f = −p.

(14)

From (13) and (14), we get

Ḟ

F
= − ( Ä

A
− B̈

B
+ ȦḂ

AB
− Ḃ2

B2 )

( Ȧ
A

− Ḃ
B

)
. (15)

On integration of (15), we obtain

F = F0

B(ȦB − ḂA)
, provided A �= B, (16)

where F0 is a constant of integration. Equation (16) rep-
resents the most general form of F(R) in terms of direc-
tional scale factors in f (R) gravity for the anisotropic LRS
Bianchi-I space-time.

3 Solution of the field equations

Many authors have tried to find analytical solutions from
the known functional form f (R) (Barrow and Clifton 2006).
The ordering of this approach can also be reversed. Namely,
for a known scale factor, one may construct functional form
of f (R) which yields such scale factor as a solution (No-
jiri and Odintsov 2007c; Capozziello and Francaviglia 2008;
Nojiri et al. 2009). As we observe that the solution of F(R)

in (16) can be found only if the scale factors are known. In
this paper our aim is to find a general form of f (R) for a
known scale factor and study the stability of functional form
of f (R) in anisotropic model to describe the decelerated and
accelerated phases of the universe.

For any physically relevant model, the Hubble parameter
and deceleration parameter are the most important observa-
tional quantities in cosmology. Berman (1983), and Berman
and Gomide (1988) proposed a law of variation for Hubble
parameter in FRW model that yields a constant value of de-
celeration parameter and a power-law and exponential forms
of the scale factor. In recent papers (see Refs. Singh and Ku-
mar 2006; Singh et al. 2008; Singh 2009a, 2009b; Singh and
Beesham 2010; Sharif and Zubair 2010b, 2012a) have gen-
eralized this assumption in anisotropic model. According to
the assumption let us take the deceleration parameter as a
constant, that is,

q = −aä

ȧ2
= n − 1, (17)

where n(≥ 0) is a constant. In the present anisotropic model,
the assumption (17) yields

a = (
AB2) 1

3 = (ct + d)
1
n , n �= 0, (18)

where c and d are positive constants of integration. For a
power-law expansion (18), we must have n > 0.

In view of anisotropy of the space-time, we assume that
shear scalar (σ ) is proportional to the expansion scalar (θ ).
This leads to a relation between the metric coefficients, i.e.,

A = Bk, (19)

where k > 1 is a constant (Collins et al. 1980). For sake of
simplicity, we have taken the integration constant as a unity.

Using (18) and (19), we get the metric coefficients as

A = (ct + d)
3k

n(k+2) , (20)

B = (ct + d)
3

n(k+2) . (21)

From (11), (20) and (21), the expression for the Ricci scalar
becomes

R(t) = −2

[
9{k(k + 2) + 3} − 3n(k + 2)2

n2(k + 2)2

]
t−2

= −2αt−2, (22)

where α = 9{k(k+2)+3}−3n(k+2)2

n2(k+2)2 .
Using the above background solutions into (16), we find

f ′(R) in terms of R as

F(R) = f ′(R) = 2
n−3
2n F0(k + 2)

3(k − 1)

[
n

√
− α

R

] n−3
n

. (23)

We observe that for a real valued solution of f (R), R and α

must be of opposite sign.
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On integration of (23), we get

f (R) = 2
3(n−1)

2n F0(k + 2)nR

3(k − 1)(n + 3)

[
n

√
− α

R

] n−3
n + f0, (24)

where f0 is a constant of integration. On imposing f (0) = 0,
we find f0 = 0, therefore, Eq. (24) gives the required form
of the function f (R) as

f (R) = 2
3(n−1)

2n F0(k + 2)nR

3(k − 1)(n + 3)

[
n

√
− α

R

] n−3
n

, (25)

which is basically of the form f (R) ∝ Rλ, where λ =
n+3
2n

> 0 as n > 0. For n = 1, f (R) ∝ R2 and for n = 3,
the model reduces to general relativity form, i.e., f (R) ∝ R.
It is also clear that the power of R, i.e., λ contains only n

and is independent of k.
The energy density and pressure in terms of cosmic time

t are given as

ρ = 6

[
n(k + 2)2 − 3{k(k + 2) + 3}

(k + 2)(k − 1)(n + 3)

]
1

(nt)
n+3
n

, (26)

p = 2

[
n(k + 2)2 − 3{k(k + 2) + 3}

(k + 2)(k − 1)(n + 3)

]
n

(nt)
n+3
n

. (27)

For reality of the viable model, the energy density must be
positive and therefore we must take n(k+2)2 −3{k(k+2)+
3} > 0, as k > 1. Equations (26) and (27) give

ρ + p = 2

[
n(k + 2)2 − 3{k(k + 2) + 3}

(k + 2)(k − 1)

]
1

(nt)
n+3
n

, (28)

which shows that null energy condition (NEC) is satisfied
for k > 1. The energy density and pressure decrease with
time and tend to zero for large t . The equation of state pa-
rameter ω, which is defined as ω = p

ρ
, is given by

ω = n

3
, (29)

which is positive through out the evolution. This shows that
the functional form of f (R) in (25) with the metric coeffi-
cients (20) and (21) describes the decelerated phases of the
universe. From (17) and (29), we have the following linear
relation in q and ω

q = 3ω − 1. (30)

which also shows that the model decelerates.
We now find the following constraints under which the

model decelerates keeping in view of the positivity of energy
density

2 < n < 3 and 1 < k <
3 − 2n

n − 3
+ 3

√
n − 2

(n − 3)2
(31)

or,

n ≥ 3 and k > 1. (32)

Therefore, we conclude that the f (R) model obtained here
in (25) favors the decelerating phase of the universe under
above constraints (31) and (32), which is not in according to
the present day scenario of the accelerating universe. Also,
the model does not show transition from decelerated to ac-
celerated phase of the universe. In literature it can be seen
that the f (R) models may imply accelerated expansion and
also transition from past deceleration to present accelera-
tion epoch. It may be noted that the anisotropic Bianchi
models represent cosmos in its early stages of the evolu-
tion of the universe. In a paper (Sharif and Zubair 2012b),
it is shown that some models can explain the evolutionary
paradigm which would result in deceleration phase. There-
fore, this functional form of f (R) can also explain some of
the physical properties of the evolution of the decelerating
universe.

4 Stability analysis

In Sect. 3, we have obtained a suitable functional form of
f (R), which describes the decelerating phase of the uni-
verse under some defined constraints. In this section, we
study the stability of a foresaid form of f (R). An accept-
able cosmological model in f (R) theory is considered to be
viable if it satisfies the following stability conditions

f ′(R) > 0, (33)

and

f ′′(R) > 0. (34)

The conditions for the cosmological viability of f (R) mod-
els have been derived in Ref. (Amendola et al. 2007).
Among those conditions the requirement of the above two
are particularly important to give rise to a saddle matter era
followed by a late time cosmic acceleration. The cosmolog-
ically viable f (R) models need to be close to the Λ-Cold
Dark Matter (ΛCDM) model in the deep matter era, but the
deviation from it becomes important around the late stage
of the matter era. Several examples of such viable mod-
els were presented in Li and Barrow (2007), Amendola and
Tsujikawa (2008).

The stability condition (33) always holds as k > 1. To ob-
tain the constraints which satisfy (34), we differentiate (23)
with respect to R, to get

f ′′(R) = 2− (n+3)
2n F0(k + 2)n(n − 3)α

3(k − 1)R2

[
n

√
− α

R

]− n+3
n

, (35)

which gives

n > 3, k > 1. (36)

Thus, we find that out of two constraints described in (31)
and (32), the constraint in Eq. (32) only favors the stability
of the solution for the decelerated phases of the universe.
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5 Conclusion

In this paper, we have studied f (R) theory of gravity in
anisotropic LRS Bianchi-I space-time model. We have as-
sumed the constant deceleration parameter, and a propor-
tionality relation between shear scalar and scalar expansion
to obtain exact form of f (R) and then the solution of the var-
ious cosmological parameters. We have found that the value
of EoS parameter is constant, i.e., ω = n

3 , which remains
positive as n > 0 throughout the evolution of the universe.
This allows to describe the decelerated phases of the uni-
verse. We have obtained a linear relation between the decel-
eration parameter, q and EoS parameter, ω as q = 3ω − 1,
which also describes the decelerated epoch. In Sect. 3 we
have obtained some specific constraints on parameters keep-
ing in view of positivity of the energy density under which
the model exhibits decelerated universe. The model does not
show transition from decelerated to accelerated phase of the
universe.

We have also analyzed the stability of the functional form
of f (R) and found that it is completely stable to describe the
decelerated phases of the universe. We have not obtained
any suitable constraints to describe the accelerated expan-
sion and also the transition from past deceleration to present
accelerating epoch of the universe in this anisotropic model.
It is well known that the anisotropic models represent cos-
mos in its early stages of the evolution of the universe and
some models can explain the evolutionary paradigm which
would result in deceleration phase. It may be noted that
even though the f (R) gravity describes an early-time infla-
tion and late-time acceleration, this results shows that f (R)

gravity theory is also suitable to describe the decelerated
phase of the universe in anisotropic models which is stable.
The approach introduced is simple and much more univer-
sal. We hope that this will make it useful in future applica-
tions of f (R) theory of gravity in anisotropic models.
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Aktaş, C., Aygün, S., Yilmaz, İ.: Phys. Lett. B 707, 237 (2012)
Amendola, L.: Phys. Rev. D 60, 043501 (1999)
Amendola, L., Tsujikawa, S.: Phys. Lett. B 660, 125 (2008)
Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Phys. Rev. D

75, 083504 (2007)
Barrow, J.D., Clifton, T.: Class. Quantum Gravity 23, L1 (2006)
Berman, M.S.: Nuovo Cimento B 74, 182 (1983)
Berman, M.S., Gomide, F.M.: Gen. Relativ. Gravit. 20, 191 (1988)
Bertolami, O., Pármos, J.P.: Class. Quantum Gravity 25, 245017

(2008)
Capozziello, S., Francaviglia, M.: Gen. Relativ. Gravit. 40, 357 (2008)

Capozziello, S., Carloni, S., Troisi, A.: Recent Res. Dev. Astron. As-
trophys. 1, 625 (2003)

Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001)
Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D

70, 043528 (2004)
Chiba, T.: Phys. Rev. D 60, 083508 (2003a)
Chiba, T.: Phys. Lett. B 575, 1 (2003b)
Collins, C.B., Glass, e.N., Wilkinson, D.A.: Gen. Relativ. Gravit. 12,

805 (1980)
Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753

(2006)
Dolgov, A.D., Kawasaki, M.: Phys. Lett. B 573, 1 (2003)
Eisenstein, D.J., et al.: Astrophys. J. 633, 560 (2005)
Elizalde, A., Nojiri, S., Odintsov, S.D., Gomez, D.S.: Eur. Phys. J. C

70, 351 (2010)
Elizalde, A., Nojiri, S., Odintsov, S.D., Sebastiani, L., Zerbini, S.:

Phys. Rev. D 83, 086006 (2011)
Frolov, A.V.: Phys. Rev. Lett. 101, 061103 (2008)
Harko, T.: Phys. Lett. B 669, 376 (2008)
Jain, B., Taylor, A.: Phys. Rev. Lett. 91, 141302 (2003)
Kamatsu, E., et al.: Astrophys. J. Suppl. Ser. 180, 330 (2009)
Li, B., Barrow, J.D.: Phys. Rev. D 75, 084010 (2007)
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 74, 086005 (2006)
Nojiri, S., Odintsov, S.D.: Phys. Lett. B 657, 238 (2007a)
Nojiri, S., Odintsov, S.D.: Phys. Lett. B 646, 105 (2007b)
Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115

(2007c)
Nojiri, S., Odintsov, S.D.: Phys. Rev. D 77, 026007 (2008)
Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)
Nojiri, S., Odintsov, S.D., Saez-Gomez, D.: Phys. Lett. B 681, 74

(2009)
Padmanabhan, T.: Phys. Rep. 380, 235 (2003)
Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)
Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 381, 1053 (2007)
Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)
Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998)
Riess, A.G., et al.: Astrophys. J. 117, 707 (1999)
Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373 (2000)
Seljak, U., et al.: Phys. Rev. D 71, 103515 (2005)
Shamir, M.F.: Astrophys. Space Sci. 330, 183 (2010)
Sharif, M., Kausar, H.R.: Astrophys. Space Sci. 332, 463 (2011a)
Sharif, M., Kausar, H.R.: J. Phys. Soc. Jpn. 80, 044004 (2011b)
Sharif, M., Kausar, H.R.: Phys. Lett. B 697, 1 (2011c)
Sharif, M., Shamir, M.F.: Class. Quantum Gravity 26, 235020 (2009)
Sharif, M., Shamir, M.F.: Gen. Relativ. Gravit. 42, 2643 (2010a)
Sharif, M., Shamir, M.F.: Mod. Phys. Lett. A 25, 128 (2010b)
Sharif, M., Zubair, M.: Astrophys. Space Sci. 330, 399 (2010a)
Sharif, M., Zubair, M.: Int. J. Mod. Phys. D 19, 1957 (2010b)
Sharif, M., Zubair, M.: Astrophys. Space Sci. 339, 45 (2012a)
Sharif, M., Zubair, M.: Astrophys. Space Sci. 342, 511 (2012b)
Singh, C.P.: Pramāna 72, 429 (2009a)
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