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Abstract A five dimensional Kaluza-Klein cosmological
model is considered in the frame work of f (R,T ) gravity
proposed by Harko et al. (Phys. Rev. D 84:024020, 2011)
when the source for energy momentum tensor is a bulk
viscous fluid containing one dimensional cosmic strings.
A barotropic equation of state is assumed to get a determi-
nate solution of the field equations. Also, the bulk viscous
pressure is assumed to be proportional to the energy density.
The physical behavior of the model is also discussed.

Keywords Kaluza-Klein universe · Cosmic strings · Bulk
viscosity · f (R,T ) gravity

1 Introduction

It is well known that the discovery of the accelerated ex-
pansion of the universe has revolutionized modern cosmol-
ogy (Riess et al. 1998; Perlmutter et al. 1999; Bennet et al.
2003). Astrophysical observations indicate that this cosmic
acceleration is driven by exotic energy with a large negative
pressure which is known as dark energy (for a general com-
plete review see Nojiri and Odintsov 2007). In recent years
modified theories of gravity are attracting much attention to
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explore the dark energy and late time acceleration of the uni-
verse. Among the various modifications of general relativity,
f (R) theory of gravity has gained importance during the last
decade since it provides a natural gravitational alternative
to dark energy. It has been suggested that cosmic accelera-
tion can be achieved by replacing the Einstein-Hilbert action
of general relativity with a general function f (R) of Ricci
scalar R. The explanation of cosmic acceleration is obtained
just by introducing the term 1/R which is essential at small
curvatures. The useful aspects of f (R) gravity are that it
gives an easy unification of early time inflation and late time
acceleration. It also describes the transition phase of the uni-
verse from deceleration to acceleration (Nojiri and Odintsov
2007). Capozziello et al. (2007, 2008), Multamaki and Vilja
(2006, 2007), Sharif (2010). Azadi et al. (2008), Caroll et al.
(2004), Nojiri and Odintsov (2003, 2004, 2007) and Chiba
et al. (2007) are some of the authors who have investigated
several aspects of f (R) gravity. Copeland et al. (2006) have
given a comprehensive review of f (R) gravity.

Recently, Harko et al. (2011) proposed another modifi-
cation of Einstein’s theory of gravitation which is known
as f (R,T ) theory of gravity wherein the gravitational La-
grangian is given by an arbitrary function of the Ricci scalar
R and of the trace T of the stress energy tensor Tij . They
have derived the field equations of f (R,T ) gravity from
Hilbert-Einstein type variational principle by taking the ac-
tion

S = 1

16π

∫ [
f (R,T ) + Lm

]√−gd4(x) (1)

where f (R,T ) is an arbitrary function of the Ricci scalar
R, T is the trace of energy tensor of the matter Tij and Lm

is the matter Lagrangian density. By varying the action S

of the gravitational field with respect to the metric tensor
components gij , they have obtained the field equations of
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f (R,T ) gravity, with the special choice of f (R,T ) (Harko
et al. 2011) given by

f (R,T ) = R + 2f (T ) (2)

as (for a detailed derivation of the field equations one can
refer to Harko et al. 2011)

Rij − 1

2
Rgij = 8πTij + 2f ′(t)Tij + [

2pf ′(T ) + f (T )
]
gij

(3)

where the overhead prime indicates derivative with respect
to the argument and Tij is given by

Tij = (ρ + p)uiuj + pgij (4)

ρ and p being energy density and isotropic pressure respec-
tively.

During the past two decades, string cosmological models
have received considerable attention of research workers be-
cause of their importance in structure formation in the early
stages of evolution of the universe. During the phase tran-
sition in the early universe, spontaneous symmetry breaking
gives rise to a random network of stable line like topological
defects known as cosmic strings. It is well known that mas-
sive strings serve as seeds for the large structures like galax-
ies and cluster of galaxies in the universe. Letlier (1983),
Stachel (1980), Vilenkin et al. (1987), Banerjee et al. (1990),
Tripathy et al. (2009), Reddy (2003a, 2003b), Katore and
Rane (2006) and Sahoo (2008) are some of the authors who
have investigated several important aspects of string cosmo-
logical models either in the frame work of general relativity
or in modified theories of gravitation.

It is well known that viscosity plays an important role
in cosmology (Singh and Devi 2011; Singh and Kale 2011;
Setare and Sheyki 2010 and Misner 1969). Also, bulk vis-
cosity appears as the only dissipative phenomenon occurring
in FRW models and has a significant role in getting acceler-
ated expansion of the universe popularly known as inflation-
ary space. Bulk viscosity contributes negative pressure term
giving rise to an effective total negative pressure stimulating
repulsive gravity. The repulsive gravity overcomes attractive
gravity of matter and gives an impetus for rapid expansion
of the universe hence cosmological models with bulk viscos-
ity have gained importance in recent years. Barrow (1986),
Pavon et al. (1991), Martens (1995), Lima et al. (1993), and
Mohanty and Pradhan (1992) are some of the authors who
have investigated bulk viscous cosmological models in gen-
eral relativity. Johri and Sudharsan (1989), Pimental (1994),
Banerjee and Beesham (1996), Singh et al. (1997), Rao et al.
(2011, 2012), Naidu et al. (2012) and Reddy et al. (2012a)
have studied bulk viscous and bulk viscous string cosmolog-
ical models in Brans and Dicke (1961) and other modified
theories of gravity.

Friedmann-Robertson-Walker (FRW) models being spa-
tially homogeneous and isotropic in nature are best for
the representation of large scale structure of the present
day universe. However, it is believed that the early uni-
verse may not have been exactly uniform. Thus the mod-
els with anisotropic background are suitable to describe the
early stages of the universe. Bianchi type models are among
the simplest models with anisotropic back ground Hence
the investigation of Bianchi type models in modified or al-
ternative theories of gravity is also an interesting discus-
sion. Adhav (2012) has obtained Bianchi type-I cosmolog-
ical model in f (R,T ) gravity. Reddy et al. (2012b) have
discussed Bianchi type-III cosmological model in f (R,T )

gravity while Reddy et al. (2012a), Reddy and Shanthikumar
(2013a, 2013b) studied Bianchi type-III dark energy model
and some anisotropic cosmological models, respectively, in
f (R,T ) gravity.

The study of higher dimensional space-time is important
at early stages of evolution of the universe. Witten (1984),
Applequist et al. (1987), Chodos and Detweller (1980) and
Marchiano (1984) have studied higher dimensional cosmol-
ogy because it has physical relevance to the early times
before the universe has undergone compactification transi-
tions. Reddy et al. (2007), Reddy and Naidu (2007) have dis-
cussed five dimensional Kaluza-Klein cosmological models
in Brans and Dicke (1961) and Saez and Ballester (1985)
modified theories of gravitation. Reddy et al. (2012b) stud-
ied Kaluza-Klein model in f (R,T ) gravity while Reddy et
al. (2013a, 2013b) have discussed Kaluza-Klein bulk vis-
cous string cosmological model in Saez and Ballester (1985)
scalar-tensor theory of gravitation. Very recently Reddy and
Shanthikumar (2013a, 2013b) have obtained LRS Bianchi
type-II model in f (R,T ) gravity.

Motivated by the above discussion and investigations in
modified theories of gravity, we have studied, in this paper,
Kaluza-Klein cosmological model in the modified f (R,T )

gravity proposed by Harko et al. (2011), in the presence of
cosmic strings and bulk viscosity. In Sect. 2, explicit field
equations in f (R,T ) gravity for Kaluza-Klein metric are
obtained in the presence of bulk viscous fluid containing one
dimensional strings. In Sect. 3 the cosmological model is
presented by solving the field equations. Physical and kine-
matical properties of the model are discussed in Sect. 4. The
last section contains some conclusions.

2 Metric and field equations

We consider five dimensional Kaluza-Klein metric in the
form

ds2 = dt2 − A2(dx2 + dy2 + dz2) − B2dψ2 (5)

where A and B are functions of cosmic time t .
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We consider the energy momentum tensor for a bulk vis-
cous fluid containing one dimensional cosmic strings as

Tij = (ρ + p)uiuj + pgij − λxixj (6)

and

p = p − 3ζH (7)

where ρ is the rest energy density of the system, ζ(t) is the
coefficient of bulk viscosity, 3ζH is usually known as bulk
viscous pressure, H is Hubble’s parameter and λ is string
tension density.

Also, ui = δi
4 is a four-velocity vector which satisfies

giju
iuj = 1, xixj = 1 and uixi = 0 (8)

Here we also consider ρ, p and λ are functions of time t

only.
Using co moving coordinates and a particular choice of

the function given by (Harko et al. 2011)

f (T ) = μT, μ is a constant (9)

the field equations (3), for the metric (5) with the help of
Eqs. (6)–(9) can be written, explicitly, as

3

(
Ȧ

A

)2

+ 3
ȦḂ

AB
= ρ(8π + 3μ) − μ(2p + λ) (10)

2
Ä

A
+

(
Ȧ

A

)2

+2
ȦḂ

AB
+ B̈

B
= −p(8π +4μ)+μ(ρ −λ) (11)

3
Ä

A
+ 3

(
Ȧ

A

)2

= −p(8π + 4μ) − λ(8π + 3μ) + μρ (12)

where an overhead dot indicates differentiation with respect
to time t .

The spatial volume is given by

V = (
A3B

) 1
3 = a (13)

where a(t) is the scale factor of the universe.
The scalar expansion θ and the shear scalar σ 2 in the

model are defined by

θ = 3
Ȧ

A
+ Ḃ

B
(14)

σ 2 = 1

3

(
3
Ȧ

A
+ Ḃ

B

)2

(15)

3 Solutions and the model

The field equations (10)–(12) are a system of three indepen-
dent equations in five unknowns A,B,p,ρ and λ. Also the
field equations are highly non-linear in nature and therefore
we use the following plausible physical conditions to find
determinate solution.

(i) The shear scalar σ 2 is proportional to scalar of expan-
sion θ so that we can take (Collins et al. 1980)

A = Bm (16)

where m �= 1 is a constant and it takes care of the
anisotropic nature of the model.

(ii) A more general relationship between the proper rest en-
ergy density ρ and string tension density λ is taken to
be

ρ = γ λ (17)

where γ is an arbitrary constant which can take both
positive and negative values. The negative values of γ

lead to the absence of strings in the universe and the
positive values show the presence of one dimensional
strings in the cosmic fluid. The energy density of the
particles attached to the strings is

ρp = ρ − λ = (γ − 1)λ (18)

(iii) For a barotropic fluid, the combined effect of the proper
pressure and the bulk viscous pressure can be expressed
as

p = p − 3ςH = ερ (19)

where

ε = ε0 − α (0 ≤ ε0 ≤ 1), p = ε0ρ, H = ȧ

a
(20)

and α is an arbitrary constant.
Now using the above conditions the field equations

(10)–(12) reduce to the equation

B̈

B
+ d

(
Ḃ

B

)2

= 0 (21)

where we have put the constants

d = −m2(3a + 1) + m(1 − 6a)

m(2a + 1) + a + 1
, a = a1

a2
,

(22)
a1 = 8π + 2μ, a2 = 16πγ + 5μγ − μ + 8πεγ

Integrating Eq. (21) and using (16) we obtain the metric
coefficients as
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A = (d + 1)m/d+1(c1t + c2)
m/d+1,

(23)
B = (d + 1)1/d+1(c1t + c2)

1/d+1

where c1 �= 0 and c2 are constants of integration. Now
by a suitable choice of coordinates and integration con-
stants (i.e. c1 = 1 and c2 = 0) the metric (5), with the
help of Eq. (23), can be written as

ds2 = dt2 − [
(d + 1)t

] 2m
d+1

(
dx2 + dy2 + dz2)

− [
(d + 1)t

] 2
d+1 dψ2 (24)

4 Physical properties of the model

Equation (24) represents LRS Bianchi type-II bulk viscous
string cosmological model in f (R,T ) gravity with the fol-
lowing physical and kinematical parameters which are very
important for physical discussion of the model.

Spatial volume of the model from Eq. (13) is

V = [
(d + 1)t

] 3m+1
3(d+1) (25)

Scalar of expansion from Eq. (14) is

θ = 3m + 1

(d + 1)t
(26)

Shear scalar from Eq. (15) is

σ 2 = (3m + 1)2

3[(d + 1)t]2
(27)

σ 2

θ2
= 1

3
�= 0 (28)

The Hubble’s parameter is

H = 1

3

(
3
Ȧ

A
+ Ḃ

B

)
= 3m + 1

3(d + 1)t
(29)

The energy density in the model is

ρ = 3m2 + m

[8π + μ(3 − 2ε − 1
γ
)](d + 1)2

1

t2
(30)

The string tension density is

λ = 3m2 + m

γ [8π + μ(3 − 2ε − 1
γ
)](d + 1)2

1

t2
(31)

Coefficient of bulk viscosity

ζ = m(ε0 − ε)

[8π + μ(3 − 2ε − 1
γ
)](d + 1)

1

t
(32)

Energy density of the particles attached to the string

ρp=
(γ − 1)(3m2 + m)

γ [8π + μ(3 − 2ε − 1
γ
)](d + 1)2

1

t2
(33)

Scale factor of the model is

a(t) = (
A3B

) 1
3 = [

(d + 1)t
] 3m+1

3(d+1) (34)

The deceleration parameter in this model is

q = −aä

ȧ2
= 3(d − m) + 2

3m + 1
= a constant (35)

It is obvious that q depends on the constants d and m and
it may be noted that in order to get accelerated expansion
model, one should have 3(d−m)+2

3m+1 < 0.
From the above results it can be observed that the

model (24) has no initial singularity and the spatial vol-
ume increases as t increases giving the accelerated expan-
sion of the universe. In this model, we also observe that
θ, σ 2,H,p,p,ρ,λ, ζ and ρp all diverge at the initial epoch,
i.e. at t = 0 while they vanish for infinitely large t . Also
σ 2

θ2 �= 0, the model does not approach isotropy throughout
the evolution of the universe.

5 Conclusions

It is well known that f (R,T ) gravity has been proposed
to explain the recent scenario of accelerated expansion of
the universe. In spite of the fact the present day universe
is well represented by the spatially homogeneous isotropic
FRW model, experiments reveal that there is certain amount
of anisotropy in our universe. Hence, in this paper, we stud-
ied five dimensional cosmological model in f (R,T ) grav-
ity proposed by Harko et al. (2011) when the source of en-
ergy momentum tensor is a viscous fluid containing one di-
mensional cosmic strings. A barotropic cosmic fluid is con-
sidered for this study. A general equation of state for the
energy density is assumed. We have also assumed that the
scalar expansion of the space-time is proportional to shear
scalar to get a determinate solution. Here the model does not
approach isotropy throughout the evolution of the universe.
But Nojiri and Odintsov (2003) have investigated Kaluza-
Klein cosmology wherein the universe in turns inflates, de-
celerates and then accelerates in, respectively, early times,
radiation dominated era and matter dominated era. This is
possible by cosmic recollapse of the universe in the finite
future. Thus, even though the early universe is anisotropic
it becomes isotropic and will accelerate in finite time estab-
lishing consistency with the present day universe. The model
presented will, also, help to discuss the role of bulk viscosity
in getting an inflationary model and to understand structure
formation in the universe.
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