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Abstract We provide a new matter source that supplies fuel
to construct wormhole spacetime. The exact wormhole solu-
tions are found in the model having, besides real matter, an
anisotropic dark energy. We have shown that the exotic mat-
ters that are the necessary ingredients for wormhole physics
violate null and weak energy conditions but obey strong en-
ergy condition marginally. Though the wormhole comprises
of exotic matters yet the effective mass remains positive. We
have calculated the effective mass of the wormhole up to
8 km from the throat (assuming throat radius as 4 km) as
1.3559M�. Some physical features are briefly discussed.

Keywords General relativity · Dark energy · Wormholes

1 Introduction

It was revealed by the observations on supernova due to
the High-z Supernova Search Team (HZT) and the Super-
nova Cosmology Project (SCP) (Riess et al. 1998; Perl-
mutter et al. 1998) that the present expanding Universe is
getting gradual acceleration. As a cause of this accelera-
tion it is argued that a kind of exotic matter having repul-
sive force is responsible for speeding up the Universe some
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7 billion years ago. To understand the nature of this hy-
pothetical energy that tends to increase the rate of expan-
sion of the Universe several models have been proposed
by the scientists so far (Overduin and Cooperstock 1998;
Sahni and Starobinsky 2000).

As far as matter content of the Universe is concerned, it
is convincingly inferred from distant supernovae, large scale
structure and CMB, that 96 % of matter is hidden mass con-
stituted by 23 % dark matter and 73 % unknown exotic en-
tity known as dark energy whereas only 4 % mass in the
form of ordinary mass which is visible contrary to the non-
luminous dark matter (Pretzl 2004; Freeman and McNamara
2006; Wheeler 2007; Gribbin 2007).

On the other hand, theoretically a wormhole, which is
similar to a tunnel with two ends each in separate points
in spacetime or two connecting black holes, was conjec-
tured first by Weyl (Coleman and Korte 1985) and later on
by Wheeler (1957). This is essentially some kind of hypo-
thetical topological feature of spacetime which may acts as
shortcut through spacetime. In principle this means that a
wormhole would allow travel in time as well as in space and
can be shown explicitly how to convert a wormhole travers-
ing space into one traversing time (Morris et al. 1988). The
possibility of traversable wormholes in general relativity
was demonstrated by Morris and Thorne (1988) which held
open by a spherical shell of exotic matter whereas quite a
number of wormhole solutions were obtained much earlier
with different physical motivation by other scientists (Ellis
1973; Bronnikov 1973; Clement 1984).

However, other types of wormholes where the traversing
path does not pass through a region of exotic matter were
also available in the literature (Visser 1989, 1996).

In this connection we are interested to mention that in
some of our previous works we dealt with a new type of
thin-shell wormhole constructed by applying the cut-and-
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paste technique to two copies of a charged black hole (Us-
mani et al. 2010). This has been done in generalized dilaton-
axion gravity which was inspired by low-energy string the-
ory. This was done following the work of Visser (1989), who
proposed a theoretical method for constructing a new class
of traversable Lorentzian wormholes from black-hole space-
times by surgical grafting of two Schwarzschild spacetimes.
The main benefit in Visser’s approach is that it minimizes
the amount of exotic matter required.

However, the necessary ingredients that supply fuel to
construct wormholes remain an elusive goal for theoreti-
cal physicists. Several proposals have been offered in lit-
erature (Kuhfittig 1999; Sushkov 2005; Lobo 2005, 2006;
Zaslavskii 2005; Das and Kar 2005; Rahaman et al. 2006,
2007, 2008, 2009a, 2009b; Kuhfittig et al. 2010; Jamil et al.
2010). In the present work taking cosmic fluid as source
we have provided a new class of wormhole solutions under
the framework of general relativity. Here this matter source
would supply fuel to construct the exact wormhole space-
time. Besides the real matter source an anisotropic dark en-
ergy also considered here. Regarding anisotropy of dark en-
ergy we notice that several works are now available in the
literature (Battye and Moss 2009; Campanelli et al. 2010;
Appleby et al. 2011) which support this idea.

It is shown in the present investigation that the exotic
matters violate null and weak energy conditions but obey
strong energy condition marginally. The wormhole con-
structed here in the presence of real and exotic matters pro-
vides a positive effective mass. This effective mass of the
wormhole is 1.3559M� up to 4 km throat radius. The plan
of the investigation is as follows: in Sect. 2 basic equations
for constructing wormhole are provided and as a result some
toy models for wormholes are presented in Sect. 3 whereas
in Sect. 4 we have discussed various physical features of the
model supported by exotic matters. In Sect. 5 specific con-
cluding remarks are made.

2 Basic equations for constructing wormhole

The metric for a static spherically symmetric spacetime is
taken as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θdφ2), (1)

where r is the radial coordinate. Here ν and λ are the metric
potentials which have functional dependence on r .

We propose matter sources, which constitutes with two
non-interacting fluids, as follows: the first one is real matter
in the form of perfect fluid and the second one is anisotropic
dark energy which is phantom energy type. The mining of
this second ingredient can be done from cosmic fluid that is
responsible for acceleration of the Universe (Rahaman et al.
2012).

Therefore, the energy-momentum tensors can be ex-
pressed in the following form

T 0
0 = −ρeff ≡ −(

ρ + ρde
)

(2)

T 1
1 = p

eff
r ≡ (

p + pde
r

)
(3)

T 2
2 = T 3

3 = p
eff
t ≡ (

p + pde
t

)
, (4)

where ρde, pde
r and pde

t are dark energy density, dark energy
radial pressure and dark energy transverse pressure respec-
tively whereas ρ and p are assigned for the real matter.

Now, we specially consider that the dark energy radial
pressure is proportional to the dark energy density, so that

pde
r = −ωρde, ω > 1. (5)

Also, we assume that the dark energy density is propor-
tional to the mass density

ρde = nρ. (6)

Here the constraint to be imposed is n > 0.
In connection to the ansatz (5) it is worthwhile to men-

tion that the equation of state of this type which implies
that the matter distribution under consideration is in is phan-
tom energy type (Lobo 2005). However, for ω = 1, the mat-
ter distribution is known as a ‘false vacuum’ or ‘degen-
erate vacuum’ or ‘ρ-vacuum’ (Blome and Priester 1984;
Davies 1984; Hogan 1984; Kaiser and Stebbins 1984).

Now, as usual we employ the following standard equation
of state (EOS)

p = mρ, 0 < m < 1, (7)

where m is a parameter corresponding to normal matter. The
Einstein equations are

e−λ

(
λ′

r
− 1

r2

)
+ 1

r2
= 8π

(
ρ + ρde

)
, (8)

e−λ

(
ν′

r
+ 1

r2

)
− 1

r2
= 8π

(
p + pde

r

)
, (9)

1

2
e−λ

[
1

2
ν′2 + ν′′ − 1

2
λ′ν′ + 1

r

(
ν′ − λ′)

]

= 8π
(
p + pde

t

)
. (10)

The generalized Tolman-Oppenheimer-Volkov (TOV)
equation is

d(p
eff
r )

dr
+ ν′

2

(
ρeff + p

eff
r

) + 2

r

(
p

eff
r − p

eff
t

) = 0. (11)

Let us write the metric coefficient grr as

e−λ(r) = 1 − b(r)

r
, (12)

where, b(r) is the shape function of the wormhole structure
which can easily be recognized as mass function (Landau
and Lifshitz 1959).
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Here, the above shape function, by use of Eqs. (6) and (8),
can be expressed as

b(r) = 8π

∫ (
ρ + ρde

)
r2dr = 8π

∫
ρ(1 + n)r2dr. (13)

From the field Eqs. (8) and (9), via the ansatz (5), we get

8π
(
ρ + ρde + p + pde

r

) = e−λ

(
λ′

r
+ ν′

r

)
, (14)

which readily gives

ν =
∫

eλ
[
8πρ(1 + m + n − nω)r + (

e−λ
)′]

dr. (15)

3 Toy models for wormholes

Now we consider several toy models for the present case of
wormholes.

3.1 Specific shape function

Consider the specific form of shape function as

b(r) = r0

(
r

r0

)α

, (16)

where r0 corresponds to the wormhole throat and α is an
arbitrary constant.

Using the above shape function (16) in the field equa-
tions, we get the following expressions of the parameters

ρ = α

8π(1 + n)r2
0

(
r

r0

)α−3

, (17)

ν = 1 − A

(α − 1)
ln

[
1 −

(
r

r0

)α−1]
, (18)

p = mρ = mα

8π(1 + n)r2
0

(
r

r0

)α−3

, (19)

pde
r = −ωρde = −ωnρ = − ωnα

8π(1 + n)r2
0

(
r

r0

)α−3

, (20)

pde
t = α(α − 3)(m − ωn)

16π(1 + n)r2
0

(
r

r0

)α−3

− ωnα

8π(1 + n)r2
0

(
r

r0

)α−3

+ α(1 + m)A

32π(1 + n)r2
0 [1 − ( r

r0
)α−1]

(
r

r0

)2α−4

, (21)

where

A =
[
(1 + m + n − nω)α

(1 + n)
+ (1 − α)

]
. (22)

Since the spacetime is asymptotically flat, we demand in-
tegration constant to be unity.

One can note that, b(r)
r

−→ 0 as r −→ ∞ implies α < 1.
Also, flare-out condition, which can be found out by tak-
ing the derivative of the shape function b(r) at r = r0 i.e.
b′(r0) < 1 gives, α < 1.

3.2 Specific energy density

Let us consider the energy density function as

ρ(r) = ρ0

(
r0

r

)β

. (23)

Here, r0 is the wormhole throat and ρ0 > 0 corresponds to
the energy density at the throat and β is an arbitrary con-
stant.

Using the above energy density function (23), one can get
the solutions of the parameters characterized the wormhole
as

b(r) = 8π(1 + n)ρ0r
β

0 r3−β

(3 − β)
. (24)

At the throat radius r = r0, b(r0) = r0 and this implies

ρ0 = (3 − β)

8π(1 + n)r2
0

. (25)

Here, ρ0 > 0 implies β < 3.
Using the value of ρ0 in Eq. (25), one gets the following

form of the shape function as

b(r) = r0

(
r

r0

)3−β

. (26)

Now the other parameters can be found as

eν =
[

1 −
(

r

r0

)2−β]B

(27)

where

B =
[

3 − β

(β − 2)(1 + n)

][
(m − nω) + 1 + n

3 − β

]
, (28)

pde
t = β(3 − β)(nω − m)

16π(1 + n)r2
0

(
r

r0

)−β

− nω(3 − β)

8π(1 + n)r2
0

(
r

r0

)−β

− B(3 − β)(2 − β)(1 + m)

32π(1 + n)r2
0 [1 − ( r

r0
)2−β ]

(
r

r0

)2−2β

. (29)

One can note that b(r)
r

−→ 0 as r −→ ∞ implies β > 2.
Also, flare-out condition b′(r0) < 1 gives β > 2. Therefore
the possible range of β is 2 < β < 3.

3.3 Constant redshift function

Consider the constant redshift function and without loss of
generality we assume

ν = 0. (30)
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Here the specific form of shape function is

b(r) =
(

r

γ0

)γ

, (31)

where γ = 1+n
nω−m

and γ0 is an integration constant. Note
that, at the throat radius r = r0, b(r0) = r0 implies γ0 =
r

γ−1
γ

0 . Thus b takes the form as

b(r) = r0

(
r

r0

)γ

. (32)

The other parameters are

ρ = γ

8π(1 + n)r2
0

(
r

r0

)γ−3

, (33)

p = mγ

8π(1 + n)r2
0

(
r

r0

)γ−3

, (34)

pde
r = −ωρde = −nωρ = − nωγ

8π(1 + n)r2
0

(
r

r0

)γ−3

, (35)

pde
t =

[
γ (m − nω)(γ − 3) − 2nγω

16π(1 + n)r2
0

](
r

r0

)γ−3

. (36)

One can note that, if one chooses the values of the param-
eters n, m, ω for which γ > 1, then b(r)

r
does not tend to zero

as r −→ ∞. This implies that the solution is not asymptot-
ically flat. So, we have to match our interior solution to the
exterior Schwarzschild solution. According to some authors
(Morris et al. 1988; Morris and Thorne 1988) for traversable
wormhole the spacetime is to be nearly flat i.e. b(a)

a
� 1 for

cut off at some r = a. Unfortunately, since γ > 1, we can
not get a > r0, for which b(a)

a
� 1. Thus γ > 1 is not accept-

able. However, γ < 1 implies b(r)
r

tends to zero as r −→ ∞.
Note that one can never choose nω = m.

4 Some features of the models

4.1 Visual structure

Fortunately, all the three models have the shape functions
that are of polynomial form of different power index i.e.
b(r) = r0(

r
r0

)X , where

X =
⎧
⎨

⎩

α, for model-I,
3 − β, for model-II,
γ, for model-III.

We note that for A �= 0 in Eq. (18) and B �= 0 in Eq. (27),
gtt = 0 at r = r0. This indicates that there is an infinite red-
shift at r = r0 and the system is not a wormhole. This r = r0

is either a black hole horizon or a singularity. In other words,
these solutions reflect a non-traversable wormholes. How-
ever, if we impose the conditions A = 0 in Eq. (18) and

Fig. 1 The profile curve of the wormhole

B = 0 in Eq. (27), then for both cases, one gets eν = 1
(re-scaling the case given in Sect. 3.1) and rendering them
traversable.

Now, the conditions A = 0 and B = 0 imply,

X = α = 3 − β = γ = 1 + n

nω − m
. (37)

As discussed in Sect. 3.3, we should choose the value of X

less than unity.
It is argued that (Morris et al. 1988; Morris and Thorne

1988) one can picture the special shape of the wormhole
by rotating the profile curve z = z(r) about the z-axis. This
curve is defined by

dz

dr
= ± 1√

r/b(r) − 1
= ± 1

√
( r
r0

)1−X − 1
. (38)

One can note from the definition of wormhole that at r = r0

(the wormhole throat) Eq. (38) is divergent i.e. embedded
surface is vertical there.

For the specific value of X, say X = 0.5, we draw the em-
bedded diagram of the wormhole which is shown in Fig. 1.
One can note that this value of X can be achieved by choos-
ing α = 0.5 in model-I, β = 2.5 in model-II and ω = 5,
m = 0.4 and n = 0.8 in model-III.

The surface of revolution of the curve about vertical z

axis makes the diagram complete. The full visualization of
the surface generated by the rotation of the embedded curve
about the vertical z axis is shown in Fig. 2.
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Fig. 2 The embedding diagram generated by rotating the profile curve
about the z-axis

Fig. 3 The graph of the radial proper distance l(r)

According to Morris and Thorne (1988), the r-coordinate
is ill-behaved near the throat, but proper radial distance

l(r) = ±
∫ r

r+
0

dr
√

1 − b(r)
r

(39)

must be well behaved everywhere i.e. we must require that
l(r) is finite throughout the spacetime.

The proper radial distance l(r) from the throat to a point
outside is given in Fig. 3.

4.2 Energy conditions

Now, we check the material compositions comprising the
wormhole whether it will satisfy or not the null energy con-

Fig. 4 The variation of left hand side of the expressions of energy
conditions are shown against r

dition (NEC), weak energy condition (WEC) and strong en-
ergy condition (SEC) simultaneously at all points outside
the source. Since we write all equations in terms of X and
follow the assumptions A = 0 and B = 0, we have

ρeff = X

8πr2
0

(
r

r0

)X−3

, (40)

p
eff
r = − 1

8πr2
0

(
r

r0

)X−3

, (41)

p
eff
t = (1 − X)

16πr2
0

(
r

r0

)X−3

, (42)

ρeff + p
eff
r = (X − 1)

8πr2
0

(
r

r0

)X−3

, (43)

ρeff + p
eff
t = (1 + X)

16πr2
0

(
r

r0

)X−3

, (44)

ρeff + p
eff
r + 2p

eff
t = 0. (45)

Figure 4 indicates that the null energy condition (NEC),
weak energy condition (WEC) are violated, however, the
strong energy condition (SEC) is satisfied marginally. Hence,
in our models, the null energy condition (NEC) is violated
to hold a wormhole open.

4.3 Equilibrium condition

Following Ponce de León (1993), we write the TOV Eq. (11)
for an anisotropic fluid distribution, in the following form
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−MG(ρeff + p
eff
r )

r2
e

λ−ν
2 − dp

eff
r

dr
+ 2

r

(
p

eff
t − p

eff
r

) = 0,

(46)

where MG = MG(r) is the effective gravitational mass
within the radius r and is given by

MG(r) = 1

2
r2e

ν−λ
2 ν′, (47)

which can easily be derived from the Tolman-Whittaker for-
mula and the Einstein’s field equations. Obviously, the mod-
ified TOV equation (46) describes the equilibrium condition
for the wormhole subject to gravitational (Fg) and hydro-
static (Fh) plus another force due to the anisotropic nature
(Fa) of the matter comprising the wormhole. Therefore, for
equilibrium the above Eq. (46) can be written as

Fg + Fh + Fa = 0, (48)

where,

Fg = −ν′

2

(
ρeff + p

eff
r

) = 0, (49)

Fh = −dp
eff
r

dr
= (X − 3)

8πr3
0

(
r

r0

)X−4

, (50)

Fa = 2

r

(
p

eff
t − p

eff
r

) = (3 − X)

8πr3
0

(
r

r0

)X−4

. (51)

The profiles of Fg , Fh and Fa for our chosen source are
shown in Fig. 5. The figure indicates that equilibrium stage
can be achieved due to the combined effect of pressure
anisotropic, gravitational and hydrostatic forces. It is to be
distinctly noted that by virtue of Eq. (30), the gravitational

Fig. 5 Three different forces acting on fluid elements in static equilib-
rium is shown against r

force term in Eq. (49) vanishes which is readily observed
from Fig. 5 as the plot for Fg coincides with the coordi-
nate r . The other two plots reside opposite to each other to
make the system balanced.

4.4 Effective gravitational mass

In our model the effective gravitational mass, in terms of the
effective energy density ρeff , can be expressed as

Meff = 4π

∫ R

r0

(
ρ + ρde

)
r2dr

= 4π

∫ R

r0

[
X

8πr2
0

(
r

r0

)X−3]
r2dr = RX − rX

0

2rX−1
0

. (52)

The effective mass of the wormhole up to radius 8 km from
the throat (assuming the throat radius r0 = 4 km and X =
0.5) is obtained as Meff = 0.828 km = 0.561 M� (where 1
Solar Mass = 1.475 km).

We note from the Eq. (52) that though wormholes are
supported by the exotic matter, but the effective mass is pos-
itive. This implies that for an observer sitting at large dis-
tance could not distinguish the gravitational nature between
wormhole and a compact mass M .

4.5 Total gravitational energy

It is known that total gravitational energy of a localized real
matter obeying all energy conditions is negative. Naturally,
we would like to know how the gravitational energy behaves
for the matters that supply fuel of our wormhole structure.
Following Lynden-Bell et al. (2007) and Nandi et al. (2009),
we have the following expression for the total gravitational
energy of the wormhole as

Eg = 1

2

∫ r

r0

[1 − √
grr ]ρeff r2dr + r0

2
, (53)

where the second part is the contribution from the effective
gravitational mass. It is to note that here the range of the
integration is considered from the throat r0 to the embed-
ded radial space of the wormhole geometry. Here, the total
gravitational energy of the wormhole is given by

Eg =
∫ r=ar0

r0

(
X

16π

)[
1 −

√
1

1 − ( r
r0

)X−1

](
r

r0

)X−1

dr

+ r0

2
. (54)

For the specific value of X, say X = 0.5, we calculate the
numerical value of the integrand (54) describing the total
gravitational energy from the throat r0 = 4 to the embedded
radial space 1.5r0 = 7 (i.e. a = 1.5) as Eg = 1.9397, which
indicates that Eg > 0, in other words, there is a repulsion
around the throat. This result is very much expected for con-
structing a physically valid wormhole. It is to be noted that
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the non-vanishing of EG explains why the wormhole is able
to affect on the test particles despite gtt = constant (Nandi
et al. 2009).

4.6 Traversability conditions

If the tidal gravitational forces felt by a traveler be reason-
ably small, then travel through wormhole is possible. Due
to Morris et al. (1988), the acceleration experienced by the
traveler should be less than the Earth’s gravity. A traveler of
two meter height feels the tidal accelerations between two
parts of his body should be less than the gravitational ac-
celeration at Earth’s surface gearth (gearth ≈ 10 m/s2). Now,
the testing tangential tidal constraint is given by (assuming
ν′ = 0)

|Rtθtθ | = Rtφtφ | =
∣∣∣∣
β2

2r2

(
v

c

)2(
b′ − b

r

)∣∣∣∣ ≤ gearth

2c2m

≈ 1

1010m2
(55)

with β = 1√
1−( v

c
)2

and c is the velocity of light.

For v � c, we have β ≈ 1. We substitute the expression
of our shape function to yield a restriction for the velocity as

v

c
<

1

108

2r0√
(1 − X)( r

r0
)X−2

(56)

The above inequality represents the tangential tidal force
and restrict the speed v of the traveler while crossing the
wormhole. Here radial acceleration is zero since Rrtrt = 0,
for our wormhole spacetime. Acceleration felt by a traveler
should less than the gravitational acceleration at earth sur-
face, gearth. The condition imposed by Morris et al. (1988)
is as follows:

|f| =
∣∣∣∣

√[
1 − b(r)

r

]
β ′c2

∣∣∣∣ ≤ gearth for ν′ = 0. (57)

For the traveler’s velocity v = constant, one finds that
|f| = 0. In our model the above condition is automatically
satisfied, the traveler feels a zero gravitational acceleration.

5 Final remarks

In searching for a possibility of Lorentzian traversable
wormhole in general relativity we have, in the present pa-
per, considered the anisotropic dark energy along with the
real matter source. The novel point here seems to be the
interpretation in terms of two fluids, which is more or less
arbitrary. We have constructed the wormholes from three
different points of view (namely, specific shape function,
specific energy density and constant redshift function) for
the two non interacting fluids. To get realistic models, one

has to impose different restrictions on the parameters. For-
tunately, after imposing the restriction all the three models
give the same structure of the wormhole.

Our main observations of the present investigation are as
follows:

(1) The exotic matter though as usual violates null and weak
energy conditions but does obey strong energy condition
marginally.

(2) Since, Eg > 0, there is a repulsion around the throat
which is very much expected for valid construction of
a wormhole.

Some of the other minor observations are as follows:

(1) For the spacetime to be asymptotically flat we note that,
b(r)
r

−→ 0 as r −→ ∞ implies X < 1. Flare-out condi-
tion, b′(r0) < 1 also gives, X < 1.

(2) To travel through a wormhole, the tidal gravitational
forces experienced by a traveler must be reasonably
small. In our model the above condition is automatically
satisfied, the traveler feels a zero gravitational accelera-
tion since ν = 0.

Based on the above observations we would like to
conclude that the wormhole model provided here with
anisotropic dark energy and real matter is fascinating in sev-
eral aspects and hence very promising one.

However, we observe in the present investigation that
anisotropic dark energy with different energy density and
radial pressure may also provide the exotic fuel in construct-
ing the wormhole. So, interpretations within dark energy or
other than dark energy is needed for exotic sector of the
energy-momentum tensor which can be sought for in a fu-
ture work.
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