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Abstract A spatially homogeneous and anisotropic Bianchi
type-VI0 space-time filled with perfect fluid in general rel-
ativity and also in the framework of f (R,T ) gravity pro-
posed by Harko et al. (in arXiv:1104.2669 [gr-qc], 2011)
has been studied with an appropriate choice of the function
f (R,T ). The field equations have been solved by using the
anisotropy feature of the universe in Bianchi type-VI0 space
time. Some important features of the models, thus obtained,
have been discussed. We noticed that the involvement of
new function f (R,T ) doesn’t affect the geometry of the
space-time but slightly changes the matter distribution.

Keywords Bianchi type-VI0 · f (R,T ) gravity · Perfect
fluid · General relativity

1 Introduction

In recent years, there has been a lot of interest in alterna-
tive theories of gravitation. In view of the late time accelera-
tion of the universe and the existence of the dark matter and
dark energy, very recently, modified theories of gravity have
been developed. Noteworthy amongst them are f (R) theory
of gravity formulated by Nojiri and Odintsov (2003a) and
f (R,T ) theory of gravity proposed by Harko et al. (2011).
Carroll et al. (2004) explained the presence of a late time
cosmic acceleration of the universe in f (R) gravity. No-
jiri and Odintsov (2003b) demonstrated that phantom scalar
in many respects looks like strange effective quantum field
theory by introducing a non-minimal coupling of phantom
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field with gravity. Recently, Harko et al. (2011) developed
f (R,T ) modified theory of gravity, where the gravitational
Lagrangian is given by an arbitrary function of the Ricci
scalar R and of the trace T of the stress-energy tensor. They
have obtained the gravitational field equations in the met-
ric formalism, as well as, the equations of motion for test
particles, which follow from the covariant divergence of the
stress-energy tensor. The f (R,T ) gravity model depends on
a source term, representing the variation of the matter stress
energy tensor with respect to the metric. A general expres-
sion for this source term is obtained as a function of the mat-
ter Lagrangian Lm so that each choice of Lm would generate
a specific set of field equations. Some particular models cor-
responding to specific choices of the function f (R,T ) are
also presented, they have also demonstrated the possibility
of reconstruction of arbitrary FRW cosmologies by an ap-
propriate choice of a function f (T ). In the present model the
covariant divergence of the stress energy tensor is nonzero.
Hence the motion of test particles is non-geodesic and an
extra acceleration due to the coupling between matter and
geometry is always present.

In f (R,T ) gravity, the field equations are obtained from
the Hilbert-Einstein type variational principle.

The action principle for this modified theory of gravity is
given by

S = 1

16πG

∫
f (R,T )

√−gd4x +
∫

Lm

√−gd4x (1.1)

where f (R,T ) is an arbitrary function of the Ricci scalar R

and of the trace T of the stress energy tensor of matter and
Lm is the matter Lagrangian.

The stress energy tensor of matter is

Tij = − 2√−g

∂(
√−g)

∂gij
Lm, Θij = −2Tij − pgij (1.2)
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Using gravitational units (by taking G & c as unity) the cor-
responding field equations of f (R,T ) gravity are obtained
by varying the action principle (1.1) with respect to gij as

fR(R,T )Rij − 1

2
f (R,T )gij + (

gij∇ i∇i − ∇i∇j

)
fR(R,T )

= 8πTij − fT (R,T )Tij − fT (R,T )Θij (1.3)

where

fR = δf (R,T )

δR
, fT = δf (R,T )

δT
and

Θij = gαβ δTαβ

δgij

Here ∇i is the covariant derivative and Tij is usual matter
energy-momentum tensor derived from the Lagrangian Lm.

It can be observed that when f (R,T ) = f (R), then (1.3)
reduce to field equations of f (R) gravity.

It is mentioned here that these field equations depend
on the physical nature of the matter field. Many theoretical
models corresponding to different matter contributions for
f (R,T ) gravity are possible. However, Harko et al. gave
three classes of these models

f (R,T ) =

⎧⎪⎨
⎪⎩

R + 2f (T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T )

In this paper we are focused to the first class, i.e.

f (R,T ) = R + 2f (T ) (1.4)

where f (T ) is an arbitrary function of trace of the stress
energy tensor of matter.

Then from (1.3) & (1.4), we get the gravitational field
equations as

Rij − 1

2
Rgij = 8πTij − 2f ′(T )Tij − 2f ′(T )Θij

− f (T )gij (1.5)

where the overhead prime indicates differentiation with re-
spect to the argument.

Reddy et al. (2012a, 2012b) have obtained Kaluza-Klein
cosmological model in the presence of perfect fluid source
and Bianchi type-III cosmological model in f (R,T ) grav-
ity using the assumption of law of variation for the Hub-
ble parameter proposed by Bermann (1983). Adhav (2012)
has obtained LRS Bianchi type-I cosmological model in
f (R,T ) gravity using the same assumption of law of varia-
tion for the Hubble parameter proposed by Bermann (1983).
Chaubey and Shukla (2013) have obtained a new class of
Bianchi cosmological models in f (R,T ) gravity. Reddy
and Santi Kumar (2013) have presented some anisotropic
cosmological models in this theory. Recently Rao and Neel-
ima (2013) have discussed perfect fluid Einstein-Rosen uni-
verse in f (R,T ) gravity.

Motivated by the above investigations, we study spatially
homogeneous and anisotropic Bianchi type-VI0 cosmologi-
cal models with perfect fluid matter source in f (R,T ) gravi-
ty, where f (R,T ) = R + 2f (T ). This model is very im-
portant in the discussion of large scale structure, to identify
early stages and finally to study the evolution of the universe.

2 Metric and field equations

The Bianchi type-VI0 line element can be written in the
form

ds2 = dt2 − A2dx2 − B2e2xdy2 − C2e−2xdz2 (2.1)

where A,B&C are functions of time ‘t’ only.
The matter tensor for perfect fluid is

Θi
j ≡ −2T i

j − δi
jp = (ρ,−p,−p,−p)

where T i
j = (ρ + p)uiu

j − δi
jp

(2.2)

The field equations in f (R,T ) theory of gravity for the
function f (R,T ) = R + 2f (T ) when the matter source is
perfect fluid are given by

Gi
j ≡ Ri

j − 1

2
δi
jR

≡ 8πT i
j + 2f ′(T )T i

j + [
2pf ′(T ) + f (T )

]
δi
j (2.3)

where the prime indicates the derivative with respect to the
argument.

Now, choose the function f (T ) as the trace of the stress
energy tensor of the matter so that

f (T ) = λT (2.4)

where λ is a constant.
Using commoving coordinate system, the field equations

for the metric (2.1) with the help of (2.2) to (2.4) can be
written as

B̈

B
+ C̈

C
+ ḂĊ

BC
+ 1

A2
= (8π + 3λ)p − ρλ (2.5)

Ä

A
+ C̈

C
+ ȦĊ

AC
− 1

A2
= (8π + 3λ)p − ρλ (2.6)

Ä

A
+ B̈

B
+ ȦḂ

AB
− 1

A2
= (8π + 3λ)p − ρλ (2.7)

ȦḂ

AB
+ ȦĊ

AC
+ ḂĊ

BC
− 1

A2
= −(8π + 3λ)ρ + pλ (2.8)

Ċ

C
− Ḃ

B
= 0 (2.9)

From (2.9), we get

C = αB

Without loss of generality we can take α = 1, so that we
have

C = B (2.10)
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Using (2.10), the field equations (2.5) to (2.8) can reduce to

2
B̈

B
+ Ḃ2

B2
+ 1

A2
= (8π + 3λ)p − ρλ (2.11)

Ä

A
+ B̈

B
+ ȦḂ

AB
− 1

A2
= (8π + 3λ)p − ρλ (2.12)

2
ȦḂ

AB
+ Ḃ2

B2
− 1

A2
= −(8π + 3λ)ρ + pλ (2.13)

where the overhead dot(.) indicates the derivative with re-
spect to ‘t’.

These are three linearly independent equations with four
unknowns A,B,ρ and p. In order to solve the system com-
pletely, we assume that the expansion scalar is proportional
to shear scalar. This condition leads to

A = Bm, m �= 0 (2.14)

From (2.11) and (2.12), we get

B̈

B
+ Ḃ2

B2
+ 2

A2
− Ä

A
− ȦḂ

AB
= 0 (2.15)

Using (2.14) in (2.15), we get

B = [
m(k1t + k2)

] 1
m

where k2
1 = 1

m − 1
, m �= 1

(2.16)

A = m(k1t + k2) (2.17)

Then the metric (2.1) can now be written in the form

ds2 = dt2 − [
m(k1t + k2)

]2
dx2 − [

m(k1t + k2)
] 2

m e2xdy2

− [
m(k1t + k2)

] 2
m e−2xdz2 (2.18)

From (2.11) to (2.13), we obtain the pressure as

p = 1

8m2(k1t + k2)2

[ [(3 + m)k2
1 − 1]

(λ + 2π)

+ 2[1 + (1 − 3m)k2
1]

(λ + 4π)

]
(2.19)

and the density

ρ = 1

8m2(k1t + k2)2

[
2[1 + (1 − 3m)k2

1]
(λ + 4π)

− [(3 + m)k2
1 − 1]

(λ + 2π)

]
(2.20)

The metric (2.18) together with (2.19) and (2.20) represents
an anisotropic Bianchi type-VI0 perfect fluid cosmological
model in f (R,T ) gravity.

3 Some important features of the model

The volume element of the model (2.18) is given by

V = (−g)
1
2 = [

m(k1t + k2)
]m+2

m (3.1)

The scalar expansion θ , shear scalar σ are given by

θ = (m + 2)k1

m(k1t + k2)
(3.2)

σ 2 = 7

18

(m + 2)2k2
1

m2(k1t + k2)2
(3.3)

The mean Hubble parameter (H) is given by

H = (m + 2)k1

3m(k1t + k2)
(3.4)

The deceleration parameter (q) is given by

q = 2(m − 1)

(m + 2)
, m �= −2 (3.5)

The deceleration parameter q > 0 for −∞ < m < −2 and
m > 1 and q < 0 for −2 < m < 1.

If q < 0, the model accelerates and when q > 0, the
model decelerates in the standard way. Here the models
sometimes decelerate in the standard way and later accel-
erate which is in accordance with the present day scenario.
It may be noted that Bianchi models represent cosmos in its
early stage of evolution. However, in spite of the fact that the
universe, in this case, decelerates in the standard way it will
accelerate in finite time due to cosmic re collapse where the
universe in turns inflates “decelerates and then accelerates”
(Nojiri and Odintsov 2003c).

The average anisotropy parameter Am is given by

Am = 1

3

3∑
i=1

(
Hi − H

H

)2

= 2(m − 1)2

(m + 2)2
(3.6)

The overall density parameter Ω is given by

Ω = 3

16k2
1(m − 1)2

[
2[1 + (1 − 3m)k2

1]
(λ + 4π)

− [(3 + m)k2
1 − 1]

(λ + 2π)

]
Am (3.7)

4 Perfect fluid cosmological model in general relativity

Interestingly we can observe that, if λ = 0, the metric (2.18)
together with (2.19) and (2.20) represents an anisotropic
Bianchi type-VI0 perfect fluid cosmological model in gen-
eral relativity.

5 Conclusions

In this paper, we have presented a spatially homogeneous
and anisotropic Bianchi type-VI0 space-time filled with per-
fect fluid in the framework of f (R,T ) gravity proposed by
Harko et al. (2011) and in general relativity.

The following are the observations and conclusions.
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(1) The model (2.18) has no initial singularity for positive
values of m.

(2) The spatial volume increases with time.
At t = −k2

k1
, the volume element of the model van-

ishes while all other parameters diverge.
(3) Since the mean anisotropy parameter Am �= 0, the mod-

els do not approach isotropy for m �= 1.
(4) For m = 1, from the field equations, we can easily see

that we will get only isotropic Zeldovich universe.
(5) The deceleration parameter q > 0 for −∞ < m < −2

and m > 1 and q < 0 for −2 < m < 1. If q < 0, the
model accelerates and when q > 0, the model deceler-
ates in the standard way. Here the models sometimes de-
celerate in the standard way and later accelerate which
is in accordance with the present day scenario. It may
be noted that Bianchi models represent cosmos in its
early stage of evolution. However, in spite of the fact
that the universe, in this case, decelerates in the stan-
dard way it will accelerate in finite time due to cosmic
re collapse where the universe in turns inflates “deceler-
ates and then accelerates” (Nojiri and Odintsov 2003c).

(6) The involvement of new function f (R,T ) doesn’t affect
the geometry of the space-time but slightly changes the
matter distribution.
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