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Abstract A theoretical investigation has been made on the
Dust ion-acoustic (DIA) Gardner solitons (GSs) and dou-
ble layers (DLs) in electronegative plasma consisting of in-
ertial positive and negative ions, super-thermal (kappa dis-
tributed) electrons, and negatively charged static dust. The
standard reductive perturbation method is employed to de-
rive the Korteweg-de Vries (K-dV), modified K-dV (mK-
dV), and standard Gardner equations, which admits solitary
waves (SWs) and DLs solutions. It have been found that
GSs and DLs exist for α around its critical value αc, where
αc is the value of α corresponding to the vanishing of the
nonlinear coefficient of the K-dV equation. The paramet-
ric regimes for the existence of both the positive as well
as negative SWs and negative DLs are obtained. The ba-
sic features of DIA SWs and DLs are analyzed and it has
been found that the polarity, speed, height, thickness of such
DIA SWs and DLs structures, are significantly modified due
to the presence of two types of ions and spectral index (κ)
of super-thermal electrons. It has also been found that the
characteristics of DIA GSs and DLs, are different from that
of the K-dV solitons and mK-dV solitons. The relevance of
our results to different interstellar space plasma situations
are discussed.
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1 Introduction

Recently, there have been up-growing interests for re-
searchers in understanding the non-linear features of elec-
tronegative plasmas (plasmas with significant amount of
negative ions) (Berezhnoj et al. 2000; Franklin 2002; Ma-
mun et al. 2010; Rahman et al. 2011; Plihon and Chabert
2011; Mannan and Mamun 2012). Electronegative plas-
mas (ENP) have attracted a great deal of attention not only
because of their potential applications in microelectronic
and photoelectronic industries (Lieberman and Lichtenberg
2005) but also because of their occurrence in both labora-
tory devices (Jacquinot et al. 1977; Weingarten et al. 2001;
Ichiki et al. 2002) and space environments (Meige et al.
2007; Coates et al. 2007; Plihon and Chabert 2011). ENP
are contaminated by solid impurities (dust). Therefore, ENP
are also called dirty or dusty ENP (Kim and Merlino 2006;
Merlino and Kim 2006; Mamun et al. 2009a).

The nonlinear features of the dust ion-acoustic (DIA)
waves in ENP have been analyzed by many authors (Mamun
et al. 2009a, 2009b, 2009c; Kim and Hershkowitz 2009;
Rahman et al. 2011). Rahman et al. (2011) have studied the
dust ion-acoustic solitary waves and their multi-dimensional
instability in a magnetized dusty electronegative plasma
with trapped negative ions. Sayed et al. (2008) studied dust
ion-acoustic solitary waves in a dusty plasma with positive
and negative ions. Mamun et al. (2010) investigated the ef-
fects of adiabaticity of electrons and negative ions on soli-
tary waves and double layers in an electronegative plasma.

According to the various observations (Feldman et al.
1973; Formisano et al. 1973; Scudder et al. 1981; Marsch
et al. 1982), the presence of super-thermal electron and ion
structures is ubiquitous in a variety of astrophysical plasma
environments. Due to the effect of external forces acting
on the natural space environment plasmas or because of
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waveparticle interactions, super-thermal particles may arise.
Plasmas with super-thermal electrons are normally char-
acterized by a long tail in the high energy region. Such
space plasmas can be modeled by generalized Lorentzian
of kappa distribution, better than the Maxwellian distribu-
tion (Hasegawa et al. 1985; Thorne and Summers 1991;
Summers and Thorne 1991,1994; Mace and Hellberg 1995).
The velocity distribution functions in terms of Lorentzian
or kappa distribution, was first given by Vasyliunas (1968).
The velocity distribution function approaches a Maxwellian
distribution for very large values of the spectral index (κ)
but for low values of κ , they represent a hard spectrum
with a strong non-Maxwellian tail. Kappa (superthermal)
distribution has been used to analyze and interpret space-
craft data on the earth’s magnetospheric plasma sheet (Lui
and Krimigis 1987), Jupiter (Leubner 1982) and Saturn
(Armstrong et al. 1983). Solar wind plasmas, auroral zone
plasmas, and magnetosphere (Scudder and Olbert 1979a,
1979b; Baluku and Hellberg 2008; Tribeche and Boubak-
our 2009; Pakzad 2011; Mannan et al. 2012; Ghosh et al.
2012a), are also examples of such plasmas where highly
deviated velocity distribution functions are found to exist
for the electron population. Super-thermal plasma behav-
ior was also observed in various experimental fields such as
laser matter interactions or plasma turbulence (Magni et al.
2005).

Several authors (Hellberg and Mace 2002; Podesta 2005;
Abbasi and Pajouh 2007; Baluku and Hellberg 2008; Hell-
berg et al. 2009; Sultana et al. 2010; Baluku et al. 2010) have
studied the effect of Landau damping on various plasma
modes by using the kappa distribution. Many authors have
considered such superthermal plasmas involving electrons,
ions, and positrons (Eslami and Mottaghizadeh 2012; Run-
moni et al. 2011; Pakzad 2011; El-Tantawy et al. 2011;
Sabry et al. 2011; Bora et al. 2012). Eslami and Mot-
taghizadeh (2012) have studied the cylindrical ion-acoustic
solitary waves in electronegative plasmas with superthermal
electrons. They found that the solution supports only com-
pressive solitary waves. Runmoni et al. (2011) have stud-
ied arbitrary amplitude dust ion acoustic solitary waves and
double layers in a kappa distributed electron plasma by us-
ing Sagdeev’s pseudo-potential method.

Recently, Hussain et al. (2012) have studied the Korte-
weg-de Vries (K-dV) equation for electrostatic wave in an
unmagnetized negative ion plasma with superthermal elec-
trons by using reductive perturbation technique. This paper
is concerned with ion-acoustic (IA) waves and has studied
the basic properties of the IA solitary waves (SWs) by deriv-
ing the K-dV equation. This work is not concerned with the
study of the SWs beyond the K-dV limit. El-Tantawy et al.
(2012) have studied arbitrary amplitude IA SWs propagat-
ing in an ion plasma and have shown the existence of pos-
itive SWs only. They have used pseudo-potential approach

to study the arbitrary amplitude SWs. Roy et al. (2012) have
investigated arbitrary amplitude double layers in a four com-
ponent dusty plasma with kappa distributed electron.

All of these previous studies (Eslami and Mottaghizadeh
2012; Runmoni et al. 2011; Pakzad 2011; El-Tantawy et al.
2011; Sabry et al. 2011; Bora et al. 2012) are limited to the
study of the K-dV or Burger equation describing the solitary
or shock waves which is not valid for a parametric regime
corresponding to A = 0 or A ∼ 0 (where A is the coefficient
of the nonlinear term of the K-dV or Burger equation, and
A ∼ 0 means here that A is not equal 0, but A is around 0).
This is because, the latter gives rise to infinitely large ampli-
tude structures which break down the validity of the reduc-
tive perturbation method (Washimi and Taniuti 1966). This
means that to study finite amplitude SWs and DLs beyond
this K-dV limit, one must resort the other type of nonlinear
dynamical equation which can be valid for A ∼ 0.

The technique of analyzing SWs and DLs, is Gardner ap-
proach which leads to a standard Gardner equation. From
the analysis of standard Gardner equation, SW of permanent
profile is found, which is known as Gardner soliton (GS)
(Hossain et al. 2011; Mannan and Mamun 2011; Asaduzza-
man and Mamun 2012; Ghosh et al. 2012a; Shuchy et al.
2012; Masud et al. 2013). Recently, many authors have suc-
cessfully studied the nature of GS (Hossain et al. 2011;
Mannan and Mamun 2011; Asaduzzaman and Mamun 2012;
Ghosh et al. 2012a; Shuchy et al. 2012; Masud et al. 2013;
Hasan et al. 2013), which is found to be more close to some
critical parameter as well as near A = 0.

El-Labany et al. (2012) have examined the solitons and
double-layers of electron-acoustic waves in magnetized
plasma. Akhter et al. (2013) have studied the effects of two
temperature electrons on Gardner solitons and double lay-
ers in a nonthermal dusty electronegative plasma. But to the
best of our knowledge no attempt has been taken to analyze
GSs and DLs in dusty electronegative plasmas with kappa
distributed electrons. Therefore, in our present work, we are
going to analyze the DIA GSs and DLs in a dusty ENP
system (consisting of positive and negative ions, kappa dis-
tributed electrons, and negatively charged static dust) by us-
ing Gardner approach. It allows us to study SWs at the vicin-
ity of come critical parameter as well as near A = 0, and
investigate the basic properties of finite amplitude DIA GSs
and DLs by the reductive perturbation method (Washimi and
Taniuti 1966).

The manuscript is organized as follows. The model equa-
tions are provided in Sect. 2. The K-dV equation is derived
in Sect. 3. The modified K-dV (mK-dV) equation is derived
in Sect. 4. The standard Gardner (SG) equation is derived
in Sect. 5. The numerical analysis is presented in Sect. 6.
A brief discussion is finally given in Sect. 7.



Astrophys Space Sci (2013) 345:283–290 285

2 Model equations

We consider a nonlinear propagation of the DIA waves in
an unmagnetized dusty ENP containing inertial positive and
negative ions, kappa distributed electrons, and negatively
charged static dust. Thus, at equilibrium we have Zpnp0 =
Znnn0 + ne0 + Zdnd0 where np0, nn0, ne0, and nd0, are, re-
spectively, positive ion, negative ion, kappa distributed elec-
trons, and negative dust number density at equilibrium. Zp

(Zn) represents the charge state of positive (negative) ion.
The number density of kappa distributed electrons

(Tribeche and Boubakour 2009; Pakzad 2011; Sultana et al.
2010), ne is given as

ne = ne0

[
1 − eφ

(κ − 3
2 )kBTe

]−κ+ 1
2

. (1)

The nonlinear dynamics of these low-frequency (purely
electrostatic) DIA waves in such a plasma system, whose
phase speed is much smaller (larger) than the electron (ion)
thermal speed is described by the normalized equations of
the

∂ns

∂t
+ ∂

∂x
(nsus) = 0, (2)

∂up

∂t
+ up

∂up

∂x
= −∂φ

∂x
, (3)

∂un

∂t
+ un

∂un

∂x
= μ

∂φ

∂x
, (4)

∂2φ

∂x2
= −ρ, (5)

ρ = np − μne − (1 − μ − μd)nn − μd, (6)

where ns is the number density of the species s (s = p for
positive ions, s = n for negative ions, s = e for kappa dis-
tributed electron) normalized by its equilibrium value ns0,
up (un) is the positive (negative) ion fluid speed normal-
ized by Cp = (ZpkBTe/mp)1/2, φ is the electrostatic wave
potential normalized by kBTe/e, ρ is the normalized sur-
face charge density, α = Znmp/Zpmn, μ = ne0/Zpnp0,
μd = Zdnd0/Zpnp0, Znnn0/Zpnp0 = 1 − μ − μd , kB is
the Boltzmann constant, and e is the magnitude of the elec-
tron charge. The time variable t is normalized by ω−1

p =
(mp/4πnp0Z

2
pe2)1/2, and the space variable x is normal-

ized by λDm = (kBTe/4πnp0Zpe2)1/2.
We are interested in the propagation of a purely electro-

static perturbation mode on the time scale of the IA waves.
Thus, the frequency (ω) of this perturbation mode is much
higher than the dust-plasma-frequency (ωpd ), i.e. ωpd � ω.
Therefore, dust are assumed to be stationary (Shukla and
Silin 1992; Mamun and Shukla 2002a, 2002b).

3 Derivation of K-dV equation

To obtain the K-dV equation, we introduce the stretched co-
ordinates (Washimi and Taniuti 1966):

ζ = ε1/2(x − Vpt), τ = ε3/2t, (7)

where ε is a small parameter (0 < ε < 1) measuring the
weakness of the dispersion, and Vp (normalized by Cp) is
the phase speed of the perturbation mode, and expand all the
dependent variables (viz. ns , us , φ, and ρ) in power series
of ε:

ns = 1 + εn
(1)
s + ε2n

(2)
s + ε3n

(3)
s + · · ·,

us = 0 + εu
(1)
s + ε2u

(2)
s + ε3u

(3)
s + · · ·,

φ = 0 + εφ(1) + ε2φ(2) + ε3φ(3) + · · ·,
ρ = 0 + ερ(1) + ε2ρ(2) + ε3ρ(3) + · · ·.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

Now, expressing (2)–(6) in terms of ζ and τ , and substi-
tuting (8) into the resulting equations [(2)–(6) expressed in
terms of ζ and τ ], one can easily develop different sets of
equations in various powers of ε. To the lowest order in ε,
one obtains

u(1)
p = ψ

Vp

, n(1)
p = ψ

V 2
p

, ρ(1) = 0, (9)

u(1)
n = − α

Vp

ψ, n(1)
n = − α

V 2
p

ψ, (10)

V 2
p = 1 + ηα

μc1
, (11)

where ψ = φ(1), η = 1 − μ − μd , c1 = κ− 1
2

κ− 3
2

. Equation (11)

represents the linear dispersion relation for the DIA waves
propagating in a dusty plasma under consideration. To the
next higher order of ε, we obtain a set of equations, which,
after using these equations, we obtain a equation of the form:

∂ψ

∂τ
+ ABψ

∂ψ

∂ζ
+ p0

∂3ψ

∂ζ 3
= 0, (12)

where

B = V 3
p

2(1 + ηα)
, (13)

A = 3

V 4
p

− 3ηα2

V 4
p

− 2μc2, (14)

where

c2 = (κ − 1
2 )(κ + 1

2 )

2(κ − 3
2 )2

. (15)

Equation (12) is the well-known K-dV equation describing
the nonlinear propagation of the DIA waves in the dusty
ENP system under consideration. The stationary SW solu-
tion of the K-dV equation (12) is obtained by transform-
ing the independent variables to ξ = ζ − U0τ

′ and τ ′ = τ ,
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Fig. 1 The variation of αc [obtained from A(α = αc) = 0] with μ

and κ for μd = 0.3. Here, κ = 5.5, κ = 7, κ = 10, κ = 50, κ = 100,
denote the pink, dotted blue, dotted black, dotted red, and full black
lines respectively

Fig. 2 The variation of αc [obtained from A(α = αc) = 0] with μ and
μd for κ = 7

where U0 is the speed of the SWs, and imposing the ap-
propriate boundary conditions, viz. ψ → 0, dψ/dξ → 0,
d2ψ/dξ2 → 0 at ξ → ±∞. Thus, one can express the sta-
tionary solitary wave solution of the K-dV equation (12) as

ψ = ψm sech2
[
(ζ − U0τ)

�

]
, (16)

where the amplitude (ψm) and the width (�) are given by

ψm = 3U0

AB
, � =

√
4B

U0
. (17)

The general expressions for the coefficients B and A [by
using (17)] are used to have some numerical appreciations
of our results, viz. the SW height and width are numeri-
cally analyzed. It is clear from (17) that the solitary poten-
tial profile is positive (negative) if A > 0 (A < 0). There-
fore, A(α = αc) = 0, where αc is the critical value of α

above (below) which the SWs with a negative (positive) po-
tential exists, gives the value of αc. To find the parametric
regimes for which the positive and negative solitary poten-
tial profiles exist, we have numerically analyzed A, and ob-
tain A(α = αc) = 0 surface plots. Figure 1 shows that αc ,
which is a function of μ, κ , and μd , increases with μ and κ .
Figure 2 shows the variation of αc with μ and μd for κ = 7.

Fig. 3 Showing the K-dV soliton (positive and negative) for
U0 = 0.005, μ = 0.4, κ = 7, μd = 0.3, α = 0.02 (for positive struc-
ture), and α = 0.09 (for negative structure)

For typical dusty plasma parameters, we have the exis-
tence of the small amplitude solitary waves with a positive
potential for α < αc , and with a negative potential for α > αc

(as shown in Fig. 3).

4 Derivation of mK-dV equation

The K-dV equation is the result of the second order calcu-
lation of the ε. For plasmas with more than two species,
there can arise a situation, where A vanishes at α = αc, and
(12) fails to describe nonlinear evolution of perturbation. So
higher order calculation is required at α = αc . From the third
order calculation, which utilizes another set of stretched co-
ordinate, a modified K-dV (mK-dV) equation is obtained to
describe the nonlinear evolution near this critical parameter.
The stretched coordinates for mK-dV equation is :

ζ = ε(x − Vpt), τ = ε3t. (18)

By using Eq. (18) in Eqs. (2)–(8), we find the same values
of n

(1)
n , u

(1)
n , n

(1)
p , u

(1)
p , and Vp as like as that of the K-dV.

To the next higher order of ε, we obtain a set of equations,
which, after using the values of n

(1)
n , u

(1)
n , n

(1)
p , u

(1)
p , and Vp ,

can be simplified as

u(2)
p = ψ2

2V 3
p

+ φ(2)

Vp

, u(2)
n = α2ψ2

2V 3
p

− αφ(2)

Vp

, (19)

n(2)
p = 3ψ2

2V 4
p

+ φ(2)

V 2
p

, n(2)
n = 3α2ψ2

2V 4
p

− αφ(2)

V 2
p

, (20)

ρ(2) = 1

2
Aψ2 = 0, (21)

A = 3

V 4
p

− 3ηα2

V 4
p

− 2μc2. (22)

To the next higher order of ε, we obtain a set of equations,
which, after using these equations, we obtain a equation of
the form:

∂ψ

∂τ
+ Dψ2 ∂ψ

∂ζ
+ B

∂3ψ

∂ζ 3
= 0, (23)
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Fig. 4 Showing the mK-dV soliton for U0 = 0.005, μ = 0.4,
μd = 0.3, and α = 0.08. Here, κ = 7, κ = 10, κ = 50, and κ = 100,
blue, pink, red, and black lines respectively

where D = BD0, and

B = V 3
p

2(1 + ηα)
, (24)

D0 = 15

2V 6
p

+ 15ηα3

2V 6
p

− 3μc3, (25)

where

c3 = (κ − 1
2 )(κ + 1

2 )(κ + 3
2 )

6(κ − 3
2 )3

. (26)

Equation (23) is known as mK-dV equation. As (12) do
not contain any ψ2 term, it is clear that (12) does not have
any DL wave solution. The stationary localized solution of
(23) is, therefore, directly given by

ψ = ψm sech[ξ�], (27)

where the amplitude ψm and the width � are given by ψm =√
6U0/D and � = √

B/U0. Figure 4 shows the variation of
mK-dV solitons. From this figure it is clear that with the
increasing values of κ , the amplitude (width) of the wave
decreases (increases). Though mK-dV solitons have a finite
value near αc , the mK-dV equation does not have any DLs
solution. As we are interested in both SWs and DLs solution,
we proceed into Gardner equation, which gives both SWs
and DLs solutions.

5 Derivation of standard Gardner equation

It is obvious from (21) that A = 0 since ψ �= 0. One can find
that A = 0 at its critical value α = αc (which is a solution of
A = 0). So, for α around its critical value (αc), A = A0 can
be expressed as

A0 	 s

(
∂A

∂α

)
α=αc

|α − αc| = −sε, (28)

where |α − αc| is a small and dimensionless parameter, and
can be taken as the expansion parameter ε, i.e. |α − αc| 	 ε,
and s = 1 for α > αc and s = −1 for α < αc. So, ρ(2) can
be expressed as

ε2ρ(2) 	 −ε3 1

2
sψ2, (29)

which, therefore, must be included in the third order Pois-
son’s equation. To the next higher order of ε, we obtain a set
of equations:

∂n
(1)
p

∂τ
− Vp

∂n
(3)
p

∂ζ
+ ∂Fp

∂ζ
= 0, (30)

∂n
(1)
n

∂τ
− Vp

∂n
(3)
n

∂ζ
+ ∂Fn

∂ζ
= 0, (31)

∂u
(1)
p

∂τ
− Vp

∂u
(3)
p

∂ζ
+ ∂

∂ζ

[
u(1)

p u(2)
p

] + ∂φ(3)

∂ζ
= 0, (32)

∂u
(1)
n

∂τ
− Vp

∂u
(3)
n

∂ζ
+ ∂

∂ζ

[
u(1)

n u(2)
n

] − α
∂φ(3)

∂ζ
= 0, (33)

∂2ψ

∂ζ 2
+ 1

2
sAαψ2 + n(3)

p − ηn(3)
n

− μ
(
c1φ

(3) + 2c2ψφ(2) + c3ψ
3) = 0, (34)

where Fn = n
(1)
n u

(2)
n + n

(2)
n u

(1)
n + u

(3)
n and Fp = n

(1)
p u

(2)
p +

n
(2)
p u

(1)
p +u

(3)
p . Now, combining Eqs.(19)–(22) and (30)–(34),

we obtain a equation of the form:

∂ψ

∂τ
+ pψ

∂ψ

∂ζ
+ Dψ2 ∂ψ

∂ζ
+ B

∂3ψ

∂ζ 3
= 0, (35)

where p = sAαB .
Equation (35) is known as standard Gardner (SG) equa-

tion. It is often called mixed mK-dV (mmK-dV) equation,
because it contains both ψ2 term of K-dV and ψ3 term of
mK-dV. Equation (35) is valid for α near αc. It is impor-
tant to note that if we neglect ψ3 term, and put sAα = A,
the SG equation reduces to a K-dV equation which can be
derived by using a lower order stretching. However, in this
K-dV equation, the nonlinear term vanishes at α = αc , is
not valid near α = αc which makes soliton amplitude large
enough to break down the validity of the reductive perturba-
tion method. But the SG equation derived here is valid for α

near αc .

6 Numerical analysis of SG equation

The exact analytical solution of (35) is not possible. There-
fore, we have numerically solved (35), and have studied the
effects of planar geometry on DIA-GSs and DIA-DLs.

The stationary SW solution of the SG equation is ob-
tained by considering a moving frame (moving with speed
U0) ξ = ζ − U0τ , and imposing all the appropriate bound-
ary conditions for the SW solution, including ψ → 0,
dψ/dξ → 0, d2ψ/dξ2 → 0 at ξ → ±∞. These bound-
ary conditions for the stationary Gardner soliton (GS) so-
lution (Mannan and Mamun 2011) allow us to express the
SG equation as
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Fig. 5 The profile of positive GSs varying with α for U0 = 0.006,
μ = 0.4, s = 1, κ = 7, and μd = 0.3

Fig. 6 The profile of negative GSs varying with α for U0 = 0.006,
μ = 0.4, s = −1, κ = 7, and μd = 0.3

ψ =
[

1

ψm2
−

(
1

ψm2
− 1

ψm1

)
cosh2

(
ξ

�

)]−1

, (36)

where

ψm1,2 = ψm

[
1 ∓

√
1 + U0

V0

]
, (37)

U0 = sAαB

3
ψm1,2 + D

6
ψ2

m1,2, (38)

ψm = −sAα/D0, V0 = A2
αs2B/6D0, and the width (�) of

the Gardner solitons (GSs), is given by

� =
√

− 24

D0ψm1ψm2
. (39)

We note that (36) represents a SW solution of (35). It is,
therefore, obvious that, to have GSs we must have U0 < V0,
otherwise ψm1,2 become imaginary. Figure 1 shows that αc ,
which is a function of μ, μ1, μ2, μd and α, decreases with
μ and increases with α. Therefore, for typical dusty plasma
parameters, we have the existence of the small amplitude
GSs with a positive potential for α < αc (shown in Fig. 5),
and with a negative potential for α > αc (shown in Fig. 6).

The stationary DL solution of the SG equation [i.e. (35)]
is obtained by considering a moving frame (moving with
speed U0) ξ = ζ − U0τ , and imposing all the appropriate

Fig. 7 Showing the parametric regime of αD for μd = 0.3, where
κ = 7, κ = 10, κ = 50, and κ = 100, blue, pink, red, and black lines
respectively

Fig. 8 Showing the DL structure varying with α for U0 = 0.1, s = −1,
μ = 0.4, κ = 7, and μd = 0.3

boundary conditions for the DL solution, including ψ → 0,
dψ/dξ → 0, d2ψ/dξ2 → 0 at ξ → −∞. These boundary
conditions for the stationary DL solution (Mamun and Man-
nan 2011; Hossain and Mamun 2012) allow us to express
the SG equation [i.e. (35)] as

ψ = ψm

2

[
1 + tanh

(
ξ

�

)]
, (40)

where the amplitude (ψm) and the width (�) of the DLs, and
U0 are given by

ψm = s
6U0

AαB
, (41)

� =
√

− 24

ψ2
mD0

, U0 = − s2A2
αB

6D0
. (42)

It is clear from (40)–(42) that DLs exist if and only if
D0 < 0, i.e. α > αD , where αD , is represented by the D0 =
0 surface plot shown in Fig. 7. Since B > 0 and U0 > 0,
(40)–(42) indicate that the DLs are associated with negative
potential if s = 1, i.e. α > αc , and associated with positive
potential if s = −1, i.e. α < αc. It is obvious from Fig. 7
that αD > αc which confirm us that DLs are associated with
negative potential only (shown in Fig. 8). The parametric
regimes for the existence of negative DLs are represented
by Fig. 7, and DLs exist for parameters corresponding to any
point above (D0 = 0) surface plot. Figure 9 shows that with
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Fig. 9 Showing the DL structure varying with α for U0 = 0.1,
μ = 0.4, α = 0.69, s = −1, κ = 7, μd = 0.3, where κ = 7, κ = 10,
κ = 50, and κ = 100, blue, pink, red, and black lines respectively

the increasing values of κ , the height of the DL increases but
it becomes narrower.

7 Discussion

We have considered the nonlinear propagation of DIA waves
in a plasma system consisting of inertial positive and nega-
tive ions, super-thermal (kappa distributed) electrons, and
negatively charged static dust. The reductive perturbation
method has been employed in order to derive the SG equa-
tion which is valid beyond the K-dV limit (corresponding
to the vanishing of the nonlinear coefficient of the K-dV
equation, i.e. α ∼ αc in our present situation). The results,
which have been found from the numerical solutions of the
SG equation, can be pointed out as follows:

1. The GSs and DLs [represented by (36) and (40)], are
found to be significantly different from the K-dV solitons
which do not exist for α ∼ αc.

2. The dusty ENP system under consideration supports the
finite amplitude GSs and DLs, whose basic features (po-
larity, amplitude, width, etc.) depend on the ratio of
masses of two types of ions(α), electron densities(μ),
static dust densities(μd ), and spectral index(κ).

3. GSs are shown to exist around α = αc , and are found to
be different from the K-dV solitons, which do not exist
around α = αc. We note that αc = 0.0639285 for μ =
0.4, κ = 7, and μd = 0.3.

4. It is found that at α < αc , positive GSs exist, whereas at
α > αc , negative GSs exist.

5. It is also found that the magnitude of the amplitude of
positive and negative GSs decreases with α and increases
with U0.

6. The width of positive and negative GSs decreases with α

and U0.
7. The DLs having large width and negative potential, exist

for α > αD , and no positive DLs are formed. We note
that αD = 0.672725 for μ = 0.4, κ = 7, and μd = 0.3.

8. The magnitude of the amplitude of the DLs increases
with the increase of α and U0. The width of negative DLs
increases with both of α and U0.

9. The spectral index κ significantly changes the amplitude,
width, and polarity of both SWs and DLs.

In our numerical analysis we have used a wide range of
the plasma parameters (μ = 0.1–0.9, μd = 0.1–0.5, κ =
5–100 and α = 0.01–0.1), are relevant to both space plas-
mas (Eslami and Mottaghizadeh 2012; Runmoni et al. 2011;
Sayed et al. 2008; Pakzad 2011; El-Tantawy et al. 2011;
Sabry et al. 2011; Bora et al. 2012; Lakhina et al. 2008;
Sheridan et al. 1991).

It may be stressed here that the results of this investi-
gation could be useful for understanding the nonlinear fea-
tures of electrostatic disturbances in laboratory (Magni et al.
2005). It also will help to analyze and interpret spacecraft
data on the earth’s magnetospheric plasma sheet (Lui and
Krimigis 1987), Jupiter (Leubner 1982) and Saturn (Arm-
strong et al. 1983). Solar wind plasmas, auroral zone plas-
mas, and magnetosphere (Scudder and Olbert 1979a, 1979b;
Baluku and Hellberg 2008; Tribeche and Boubakour 2009;
Pakzad 2011; Mannan and Mamun 2012; Ghosh et al.
2012b), are also examples of such plasma model where
highly deviated velocity distribution functions are found to
exist for the electron population.

This paper should also help to understand the salient fea-
tures of localized DIA waves in multicomponent laboratory
and space dusty plasmas which are composed of the positive
and negative ions, kappa distributed electrons and immo-
bile charged dust grains. We note that observations (Coates
et al. 2007) reveal the presence of both negative and posi-
tive ion populations in Titan’s ionosphere and our theoreti-
cal results for localized DIA waves may be relevant to the
formation of structures in an organic-rich aerosol plasma of
Titan. The present results could be applied for understanding
of the nonlinear electrostatic structures in astrophysical en-
vironments, especially in interstellar medium where the su-
perthermal electrons are expected to be present with a frac-
tion of dust impurities.

It is well known that K-dV, mK-dV, or GS differ due
to different kind of stretching coordinates that are used.
The formation of different solitons due to the use of differ-
ent stretchings and orders actually belong to different time
scales. Therefore, we have shown the formation and vari-
ation of all the three kinds of nonlinear waves. If we ne-
glect the higher order nonlinear term [viz. the term contain-
ing ψ3], but would keep the lower order nonlinear term [viz.
the term containing ψ2], we would obtain the solitary struc-
tures that are due to the balance between nonlinearity (asso-
ciated with ψ2 only) and dispersion. Any space or labora-
tory situation can be described by any one or more of these
wave structures.
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