
Astrophys Space Sci (2013) 345:113–118
DOI 10.1007/s10509-013-1384-7

O R I G I NA L A RT I C L E

Planar and nonplanar quantum dust ion-acoustic Gardner double
layers in multi-ion dusty plasma

M. Hasan · M.M. Hossain · A.A. Mamun

Received: 9 November 2012 / Accepted: 2 February 2013 / Published online: 9 February 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Nonplanar (cylindrical and spherical) double lay-
ers (DLs) in a quantum dusty plasma (composed of iner-
tial ions, Fermi electrons, and negatively charged immo-
bile dust particles) are studied by employing the reductive
perturbation method. The modified Gardner equation de-
scribing the nonlinear propagation of the quantum dust ion-
acoustic (QDIA) waves is derived, and its nonplanar dou-
ble layer solutions are numerically analyzed. The paramet-
ric regimes for the existence of the DLs, which are found
to be associated with both positive and negative potential,
are obtained. It has been found that the existence of small
but finite amplitude electrostatic double layers depends on
β = Zpnp0/Znnn0 (where Zp (Zn) is the charge states for
positive ions (negative ions) and np0 (nn0) is the equilibrium
positive ions (negative ions) number density) as well as the
quantum diffraction parameter, H . It has been also found
that the propagation characteristics of nonplanar QDIA DLs
are significantly differ from those of planar ones.

Keywords Electro-negative plasma · Modified Gardner
equation · Double layers · Reductive perturbation method

1 Introduction

Recently, there has been a great deal of interest in under-
standing linear and nonlinear features of multi-ion plasma
system. A multi-ion plasma system is a system containing
more than one types of ions. Plasmas with a significant
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amount of negative ions also called electro-negative plas-
mas (Hines et al. 1957; Buchsbaum 1957; Yakimenko 1957;
Vender et al. 1995; Kimura et al. 1998; Mamun et al. 2009),
have attracted a great deal of attention because of their po-
tential applications in microelectronic and photo-electronic
industries (Lieberman and Lichtenberg 2005). This type of
plasmas have a great importance to various fields of plas-
mas science and technology. The presence of the negative
ions in the Earth’s ionosphere (Massey 1976) and cometary
comae (Chaizy et al. 2009) is well known. In different
situations, (viz. plasma processing reactors (Gottscho and
Gaebe 1986), neutral beam sources (Bacal and Hamilton
1986), low-temperature laboratory experiments (Jacquinot
et al. 1977; Ichiki et al. 2002), etc.) the existence of positive-
negative ion plasmas has also been found. The importance of
negative ion plasmas to the field of plasma physics is grow-
ing because negative ions were found to outperform positive
ions in plasma etching. It was conclusively showed by the
Cassini spacecraft that the heavy negative ions are present in
the upper region of Titan’s atmosphere (Coates et al. 2007).
For even more complicated molecules these particles may
act as organic building blocks. The population of second ion
species of such space plasmas and many laboratory plasmas
(Jacquinot et al. 1977; Watanabe et al. 2001; Weingarten
et al. 2001) are noticeable (Mamun et al. 2004). Some new
interesting features (Hines et al. 1957; Buchsbaum 1957;
Yakimenko 1957) are introduced by this ion population and
the existing electron-proton plasma waves are modified.

Recently some authors have included quantum diffrac-
tion of plasma particles in different plasma situations
(Manfredi and Feix 1996; Chatterjee et al. 2009; Akbari-
Moghanjoughi 2010). This type of plasma is known as quan-
tum plasma. Quantum plasmas have attracted a great deal
of attention because of their potential applications in dense
plasma particularly in different astrophysical and cosmolog-
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ical systems (Opher et al. 2001; Jung 2001; Chabier et al.
1977), e.g. interstellar or molecular clouds, planetary rings,
comets, the interior of Jupiter (Fortov 2009) and massive
white dwarfs (Balberg and Shapiro 2000), magnetars (Lai
2001; Harding and Lai 2006), neutron stars (Chapman and
Gericke 2011), etc. White dwarfs and neutron stars are the
products of the final stages of stellar evolution. In such astro-
physical compact objects, the density of charged particles is
extremely high (about 1019–1026 cm−3). The properties of
matter existing under such dense plasmas are different from
the properties of classical plasmas. Quantum plasmas have
extremely high plasma number densities and low tempera-
tures. At extremely low temperatures, the thermal de Broglie
wavelength becomes comparable to the interelectron dis-
tance and the electron temperature becomes comparable to
the electron Fermi temperature (TFe) and the electrons fol-
low Fermi Dirac distribution law. In this condition quantum
mechanical effects are expected to play a significant role
in the behavior of charged particles (Shukla and Ali 2005;
Ali and Shukla 2006). As electrons are lighter than ions, the
quantum behavior of electron is reached faster than ions.
The electron gas in an ordinary metal is a good example
where both plasma and quantum effects coexist do occur. At
room temperature and standard metallic densities, quantum
effects can not be ignored, so that the electron gas consti-
tutes a true quantum plasma.

The dust particles are also quite common in various
plasma systems. The presence of static charged dust in
electron-ion plasmas leads to introduce a new mode. Shukla
and Silin (1996) have first theoretically shown the exis-
tence of low-frequency dust ion-acoustic (DIA) waves in a
dusty plasma, which was latter observed in laboratory ex-
periments (Barkan et al. 1996; Merlino et al. 1998; Shukla
and Mamun 2002). The nonlinear waves associated with
the DIA and Quantum DIA (QDIA) waves particularly
solitary waves (SWs) (Khan and Mushtaq 2007; Masood
et al. 2007), shock waves (Masood et al. 2009), and dou-
ble layers (Mamun and Shukla 2009), etc. have received
a great deal of interest in understanding the basic prop-
erties of localized electrostatic perturbation in space (Go-
ertz 1989; Mendis and Rosenberg 1994; Morfill and Ivlev
2009) and laboratory dusty plasmas (Merlino and Goree
1998). The formation of double layers (DLs) is possible in
different dense plasma environments (Moslem et al. 2007;
Khan et al. 2009; Misra and Samanta 2010) where the elec-
tron quantum statistical pressure and tunneling force asso-
ciated with the Bohm potential play important roles in the
propagation of quantum ion-acoustic waves (Khan et al.
2009), quantum dust-acoustic waves (Moslem et al. 2007),
quantum electron-acoustic waves (Misra and Samanta 2008;
Lee 2009), etc.

Very recently Hossain et al. (2011) have considered a
plasma system composed of inertial ions, massless quan-
tum electrons, and negatively charged immobile dust par-

ticles and have derived a higher order nonlinear equation,
known as modified Gardner equation (MGE) (Hossain et al.
2011). They have studied the nonlinear features of the fi-
nite amplitude nonplanar QDIA SWs beyond the Korteweg-
de Vries limit as well as DLs (Hossain and Mamun 2012).
To the best of our knowledge, no attempt has been taken to
study the DLs in multi-ion quantum plasma. Therefore, in
this present paper, we attempt to study the basic features of
cylindrical and spherical QDIA DLs by using more modern
Gardner approach (Hossain et al. 2011).

The manuscript is organized as follows. The model equa-
tions and MGE are provided in Sect. 2. The analytical anal-
ysis of the MGE (for DLs) and a brief discussion are pre-
sented in Sect. 3.

2 Governing Equations and MGE

We consider the nonlinear propagation of an unmagnetized
quantum plasma system composed of massless electrons,
inertial positive as well as negative ions and negatively
charged static dust. Thus at equilibrium overall charge neu-
trality condition implies

ne0 + Znnn0 + Zd0nd0 = Zpnp0, (1)

where Zp (Zn) Zd0 are the charge states for positive ions
(negative ions) dusts particles and np0 (nn0) ne0 is the equi-
librium positive ions (negative ions) electrons number den-
sity. The nonlinear dynamics of such QDIA waves in a non-
planar (cylindrical or spherical) geometry is governed by
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ρ = βnp − nn − μne − δ, (8)

where μ = ne0/Znnn0, β = Zpnp0/Znnn0 connected
through the charge neutrality condition (see Eq. (1)), μ =
β − 1 − δ with δ = Zd0nd0/Znnn0, m = Zpmn/Znmp ,
ν = 0 for 1D planar geometry, and ν = 1(2) for cylindri-
cal (spherical) geometry. We have considered the follow-
ing set of equations for the normalizations: x = ωppx/Cs ,
t = ωpnx/Cs , nα = nα/nα0, uα = uα/cs , φ = eφ/KBTFe
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with α = e for electrons, p for positive ions, n for negative
ions, uα is the plasma fluid speed, ωpα = (nα0e

2/ε0mα)1/2

is α-particle plasma frequency and Cs = (kBTFe/mn)
1/2 is

quantum ion-acoustic speed. In the above set of normalized
equations, we introduce the non-dimensional quantum pa-
rameter H = �ωpe/kBTFe. We have assumed that the ions
are cold and the electrons obey the following pressure law

Pe = 1

3

meV
2
Fen

3
e

n2
e0

, (9)

where VFe = (2kBTFe/me)
1/2 is the electron thermal Fermi

speed at temperature TFe and kB is the Boltzmann’s con-
stant.

We first introduce the stretched coordinates to derive K-
dV equation

ζ = ε1/2(r − Vpt), τ = ε3/2t, (10)

where Vp is the QDIA wave phase speed (ω/k) and ε is a
smallness parameter measuring the weakness of the disper-
sion (0 < ε < 1). We then expand nα , uα , and φ in power
series of ε

nα = 1 + εn(1)
α + ε2n(2)

α + ε3n(3)
α + · · ·, (11)

uα = 0 + εu(1)
α + ε2u(2)

α + ε3u(3)
α + · · ·, (12)

φ = 0 + εφ(1) + ε2φ(2) + ε3φ(3) + · · ·, (13)

ρ = 0 + ερ(1) + ε2ρ(2) + ε3ρ(3) + · · ·. (14)

By developing equations in various powers of ε, we obtain
in the lowest order of ε the dispersion law

Vp = ±
√

2(1 + mβ)

μ
. (15)

By developing equations in various powers of ε and af-
ter some mathematical calculations and assuming ν = 0, we
obtain the well known K-dV equation of the form
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This K-dV equation (16) is not valid for a parametric
regime corresponding to A = 0 or A ∼ 0 (where A is the co-
efficient of the nonlinear term of the K-dV or Burger equa-
tion, and A ∼ 0 means here that A is not equal 0, but A is

around 0). This is because, the latter gives rise to infinitely
large amplitude structures which break down the validity
of the reductive perturbation method (Washimi and Taniuti
1966). This means that to study finite amplitude solitary
waves or DLs beyond this K-dV/Burger limit, one must re-
sort the other type of nonlinear dynamical equation which
can be valid for A ∼ 0. The technique of analyzing SWs and
DLs, is Gardner approach, leads to a standard Gardner equa-
tion. To study QDIA DLs by analyzing the ingoing solutions
of Eqs. (2)–(8), we now introduce the stretched coordinates
(Hossain et al. 2011)

ζ = ε(r − Vpt), τ = ε3t. (19)

The nonlinear coefficient ‘A’ (16) vanishes at some criti-
cal value of β which can be found from the solution of A = 0
as

βc = 1

2

[
−

(
2

m
+ 3μ

)
+

√(
2

m
+ 3μ

)2

− 4

(
1 − 3μ

m2

)]
.

(20)

For β around its critical value (βc), i.e. for
|β − βc| = ε corresponding to A = A0, we can express A0

as
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where s = 1 for β > βc and s = −1 for β < βc.
So, ρ(2) (found from the second order calculation of ε)

can be expressed as
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which, therefore, must be included in the third order Pois-
son’s equation.

We follow the assumptions and mathematical methods of
Hossain et al. (2011) and obtain an equation of the form
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Equation (23) is known as modified Gardner equation
(MGE). The detailed calculations and assumptions can be
seen in Hossain et al. (2011). The modification is due the
extra term (viz. ν

2τ
ψ ), which arises due to the effects of the

nonplanar geometry. It is important to note that if we ne-
glect ψ3 term, the MGE reduces to a modified K-dV equa-
tion. However, in this modified K-dV equation the nonlinear
term vanishes at β = βc and is not valid near the critical
value β = βc . But the MGE derived here is valid for β near
its critical value. It should be noted here that Hossain et al.
(2011) and Hossain and Mamun (2012) derived this MGE
and discuss the possibility of the SWs (Hossain et al. 2011)
and DLs (Hossain and Mamun 2012) solution beyond the
K-dV limit in a DIA quantum plasma system.

3 Numerical analysis and discussion

We have already mentioned that ν = 0 corresponds to a
1D planar geometry which reduces Eq. (23) to a standard
Gardner equation (SGE). Our aim now is to numerically
analyze MGE. However, for clear understanding, we first
briefly discuss the stationary DLs solution of this SGE [i.e.
Eq. (23) with ν = 0]. The stationary DLs solution of this
SGE is obtained by considering a moving frame (moving
with speed U0) ξ = ζ − U0τ , and imposing all appropriate
boundary conditions for DLs solutions, including ψ(1) → 0,
dψ/dξ → 0, d2ψ/dξ2 → 0 at ζ → −∞. Thus, one can ex-
press the stationary DLs solution of this SGE as

ψ = ψm

2

[
1 + tanh

(
ξ

�

)]
, (28)

where the amplitude (ψm) and the width (�) of the DLs are
respectively

ψm = 6U0

c2s
, � = 2

√−ψ2
mγ

, (29)

with γ = α1/6α2.
Equation (28) represents a DLs solution when α1 and α2

maintain the opposite sign, i.e., α1/α2 < 0 to make γ < 0.
It may be noted here that if we would neglect the higher

order nonlinear term [viz. the fourth term of (23) or the
term containing ψ3], but would keep the lower order non-
linear term [viz. the third term of (23) or the term con-
taining ψ2], we would obtain the solitary structures that
are due to the balance between nonlinearity (associated

Fig. 1 Showing the parametric regime of βc for different values of m

and μ (obtained from the solutions of A = 0) (Color figure online)

Fig. 2 Profile of positive double layers in planer geometry for
μ = 0.6, U0 = 0.1, m = 0.5 and H = 0.3 (Color figure online)

with ψ2 only) and dispersion. On the other hand, in our
present work, we have kept both the terms containing ψ2

and ψ3, and have obtained the DLs structures which are
formed due to the balance between the nonlinearity (asso-
ciated with ψ2 and ψ3) and dispersion. It may be added
here that the dissipation (which is usually responsible for
the formation of the shock-like structures (Karpman 1975;
Mamun and Shukla 2009)) is not essential for the for-
mation of DLs structures (Bharuthram and Shukla 1992;
Verheest and Pillay 2008). The stationary DLs solution of
the SGE equation, and the conditions for the existence of
DLs clearly imply that the DLs structures predicted in our
present investigation is not due to the dissipation (which has
been neglected in our present investigation), but is due to the
balance between the harmonic nonlinearities and the disper-
sion caused by density correlation due to quantum fluctua-
tion and charge separation effect.

The results that we have found from the planar geometry
are depicted in Figs. 2, 3, 4. Figure 1 shows the parametric
regime of βc for different values of m and μ (obtained from
the solutions of A = 0). Figure 2 shows the profile of posi-
tive double layers in planer geometry for μ = 0.6, U0 = 0.1,
m = 0.5 and H = 0.3. Figure 3 shows the profile of posi-
tive double layers in planer geometry for μ = 0.6, U0 = 0.1,
m = 0.5 and H = 0.9. From Figs. 2 and 3, it is clear that
the amplitude of positive DLs does not vary with the quan-
tum diffraction parameter, but the width of the positive DLs
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Fig. 3 Profile of positive double layers in planer geometry for
μ = 0.6, U0 = 0.1, m = 0.5 and H = 0.9

Fig. 4 Profile of positive double layers in planer geometry for
μ = 0.2, U0 = 0.1, m = 0.5 and H = 0.3 (Color figure online)

Fig. 5 Showing the effects of cylindrical geometry on QDIA positive
DLs for μ = 0.6, U0 = 0.1, m = 0.5 and H = 0.3 (Color figure online)

decreases with the increase of it. We have found the same
results for the negative double layers.

It is also found that (from Fig. 4) magnitude of the ampli-
tude of the DLs increases with the decrease of μ. The width
of positive and negative DLs also increases with decrease of
μ.

We now turn to Eq. (23) with the term (ν/2τ)ψ , which is
due to the effects of the nonplanar (cylindrical or spherical)
geometry. An exact analytic solution of Eq. (23) is not pos-
sible. Therefore, we have numerically solved Eq. (23), and
have studied the effects of cylindrical and spherical geome-
tries on time-dependent QDIA DLs. The results are depicted
in Figs. 5, 6, 7, 8. The initial condition, that we have used

Fig. 6 Showing the effects of cylindrical geometry on QDIA negative
DLs for μ = 0.6, U0 = 0.1, m = 0.5 and H = 0.3 (Color figure online)

Fig. 7 Showing the effects of spherical geometry on QDIA positive
DLs for μ = 0.6, U0 = 0.1, m = 0.5 and H = 0.3 (Color figure online)

Fig. 8 Showing the effects of spherical geometry on QDIA negative
DLs for μ = 0.6, U0 = 0.1, m = 0.5 and H = 0.3 (Color figure online)

in our numerical analysis, is in the form of the stationary
solution of Eq. (23) without the term (ν/2τ)ψ . Figure 5 (6)
shows how the effects of a cylindrical geometry modify the
QDIA positive (negative) DLs. On the other hand, Fig. 7 (8)
shows how the effects of a spherical geometry modify the
QDIA positive (negative) DLs.

The numerical solutions of Eq. (23) (displayed in Figs. 5,
6, 7, 8) reveal that for a large value of τ , the spherical and
cylindrical DLs are similar to 1D structures. This is because
for a large value of τ ( e.g. τ = −30) the term (ν/2τ)ψ ,
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which is due to the effects of the cylindrical or spherical
geometry, is no longer dominant. However, as the value of
τ decreases, the term (ν/2τ)ψ becomes dominant, and both
spherical and cylindrical DLs structures differ from 1D ones.
It is found that as the value of τ decreases, the amplitude
(the magnitude of the amplitude) of these localized pulses
increases. It is also found that the amplitude of cylindrical
QDIA DLs is larger than those of 1D ones, but smaller than
that of the spherical ones.

To summarize, we have investigated cylindrical (ν = 1)
and spherical (ν = 2) QDIA DLs in quantum multi ion dusty
plasma by deriving MGE which is valid for β ∼ βc . It is
found that the quantum dusty plasma system under consid-
eration supports finite amplitude DLs, whose basic features
(polarity, amplitude, width, etc.) depend on the ion and dust
number densities as well as quantum diffraction (tunneling)
parameter, H . It is also found that at β < βc , positive DLs
exist, whereas at β > βc, negative DLs exist. We have used
a wide range of the quantum dusty plasma parameters (viz.
m = 0.1–0.9, μ = 0.1–0.6 and H = 0.1–0.9) in our numer-
ical analysis. Thus, the dust-plasma parameters are within
the appropriate ranges for both space environments and lab-
oratory devices.

It may be stressed here that the results of this investi-
gation could be useful for understanding the nonlinear fea-
tures of electrostatic disturbances in different astrophysical
and cosmological systems (Opher et al. 2001; Jung 2001;
Chabier et al. 1977), e.g. interstellar or molecular clouds,
planetary rings, comets, the interior of Jupiter (Fortov 2009)
and massive white dwarfs (Balberg and Shapiro 2000), mag-
netars (Lai 2001; Harding and Lai 2006), neutron stars
(Chapman and Gericke 2011), etc. and also in the other
plasma systems where the quantum effect of electron is im-
portant.
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