
Astrophys Space Sci (2013) 345:217–223
DOI 10.1007/s10509-013-1379-4

O R I G I NA L A RT I C L E

Generalized teleparallel gravity via some scalar field dark energy
models

M. Sharif · Shamaila Rani

Received: 4 January 2013 / Accepted: 23 January 2013 / Published online: 2 February 2013
© Springer Science+Business Media Dordrecht 2013

Abstract We consider generalized teleparallel gravity in
the flat FRW universe with a viable power-law f (T ) model.
We construct its equation of state and deceleration param-
eters which give accelerated expansion of the universe in
quintessence era for the obtained scale factor. Further, we
develop correspondence of f (T ) model with scalar field
models such as, quintessence, tachyon, K-essence and dila-
ton. The dynamics of scalar field as well as scalar potential
of these models indicate the expansion of the universe with
acceleration in the f (T ) gravity scenario.

Keywords f (T ) gravity · Scalar field models · Dark
energy · Dark matter

1 Introduction

There are growing evidences of dark energy (DE) respon-
sible for the present expanding universe with an acceler-
ation over the last few years. Its confirmation is made by
type Ia supernovae (Perlmutter et al. 1999), galaxy redshift
surveys (Fedeli et al. 2009), cosmic microwave background
radiation (CMBR) data (Caldwell and Doran 2004; Huang
et al. 2006a, 2006b; Keum 2007) and large scale structure
(Koivisto and Mota 2006; Daniel 2008). The standard cos-
mology has been remarkably successful but there remain
some serious unresolved issues including the search for the
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best DE candidate. The origin and nature of DE is still un-
known except some particular ranges of the equation of state
(EoS) parameter ω. In the absence of any solid argument in
favor of DE candidate, a variety of models have been inves-
tigated.

Scalar field models are one of the proposed scenarios
for DE. The mechanism of these models suggests that a
scalar field (φ) provides energy with negative pressure, lead-
ing to decrease a proper potential of the field. A great num-
ber of scalar field DE models have been studied so far, in-
cluding quintessence with dominating potential (Huang et
al. 2006a, 2006b), K-essence with non-standard kinetic term
(Armendariz-Picon et al. 2000, 2001), tachyon having neg-
ative squared mass (Sen 2002; Padmanabhan 2002), phan-
tom keeping negative energy (Nojiri and Odintsov 2003a,
2003b), ghost condensate with no potential (Arkani-Hamed
et al. 2004; Piazza and Tsujikawa 2004), quintom (Guo et al.
2005; Zhang 2005; Setare 2006) and dilaton with high en-
ergy particles (Copeland et al. 2006). There are many at-
tempts to reconstruct potential and scalar fields by establish-
ing a connection between different DE models with these
scalar field models.

Setare (2007a, 2007b, 2007c, 2007d, 2008) studied the
correspondence of HDE model with Chaplygin gas, interact-
ing generalized Chaplygin gas, interacting phantom scalar
field and tachyon scalar field model in general relativity.
Ebrahimi and Sheykhi (2011) reconstructed the power-law
entropy-corrected HDE by correspondence with the above
mentioned scalar fields in non-flat evolving universe. Sharif
and Jawad (2012) have investigated interacting HDE with
new IR cutoff to develop correspondence with the scalar
field models and discussed the accelerated expansion of the
universe. Granda and Oliveros (2009) studied the correspon-
dence between the quintessence, tachyon, K-essence and
dilaton energy density with HDE density by taking event
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horizon as IR cutoff in the flat FRW universe. They recon-
structed potentials and dynamics for the scalar field models,
which describe accelerated expansion.

The f (T ) theory of gravity (Linder 2010) is the gener-
alized form of teleparallel gravity (Nashed 2002; Sharif and
Amir 2007a, 2007b, 2008), which attracted many people to
explore the accelerated expansion of the universe. Its dy-
namics governs the torsion scalar which takes part in this ex-
pansion. This theory uses Weitzenböck connection which in-
herits only torsion and zero curvature. There are many viable
models (Bengochea and Ferraro 2009; Wu and Yu 2010;
Yang 2011; Ferraro and Fiorini 2011; Bamba et al. 2011;
Wei et al. 2012) proposed in f (T ) theory to discuss DE era.
Sharif and Rani (2011) extended this work for Bianchi type I
universe and discussed the accelerated expansion of the uni-
verse. They also remarked that these models bear no equiv-
alence at small scales. Daouda et al. (2012) reconstructed
the HDE model in this theory and observed the crossing of
phantom divide line. They also provided the unification of
dark matter and DE in this scenario.

In this paper, we establish correspondence between f (T )

gravity and scalar field models in the flat FRW universe and
discuss them graphically. We obtain the EoS and decelera-
tion parameters and explore their behavior for the derived
scale factor using a specific f (T ) model. The paper is or-
ganized as follows: In Sect. 2, the basic formalism of f (T )

and the field equations are given. Section 3 explores the EoS
and deceleration parameters for a particular f (T ) model. In
Sect. 4, we construct of f (T ) scalar field models. The last
section contains the summary of our results.

2 The generalized teleparallel gravity

In this section, we introduce basic formalism of teleparal-
lel as well as its generalization f (T ) theory of gravity. The
basic ingredient in the structure of these theories is the vier-
bein field ha(x

μ) (Nashed 2002; Sharif and Amir 2007a,
2007b, 2008) which forms an orthonormal basis for the tan-
gent space at each point xμ of the manifold. Here, the Latin
alphabets (a, b, . . . = 0,1,2,3) denote the tangent space in-
dices and the spacetime indices are represented by Greek al-
phabets (μ, ν, . . . = 0,1,2,3). Each vector ha can be identi-
fied by its components ha

μ such that ha = h
μ
a ∂μ. These tetrad

are related to the metric tensor gμν by the following relation

gμν = ηabh
a
μhb

ν, (1)

where ηab = diag(1,−1,−1,−1) is the Minkowski metric
for the tangent space and satisfy the following properties

ha
μh

μ
b = δa

b , ha
μhν

a = δν
μ. (2)

The torsion scalar is given as

T = Sρ
μνT ρ

μν, (3)

where Sρ
μν and torsion tensor T ρ

μν are defined as follows

Sρ
μν = 1

2

(
Kμν

ρ + δμ
ρ T θν

θ − δν
ρT θμ

θ

)
, (4)

T λ
μν = Γ λ

νμ − Γ λ
μν = hλ

a

(
∂νh

a
μ − ∂μha

ν

)
, (5)

and Kμν
ρ = − 1

2 (T μν
ρ − T νμ

ρ − Tρ
μν) is the contorsion

tensor. The action for f (T ) gravity is given by (Bengochea
and Ferraro 2009; Wu and Yu 2010; Yang 2011; Ferraro and
Fiorini 2011; Bamba 2011; Wei et al. 2012)

S = 1

2κ2

∫
d4x

[
ef (T ) + Lm

]
, (6)

where e = √−g, κ2 = 8πG, G is the gravitational constant
and Lm is the Lagrangian density of matter inside the uni-
verse. Here f (T ) is the general differentiable function of T .
The corresponding field equations are obtained by varying
this action with respect to vierbein as
[
e−1∂μ

(
eSa

μν
) + hλ

aT
ρ

μλSρ
νμ

]
fT + Sa

μν∂μ(T )fT T

+ 1

4
hν

af = 1

2
κ2hρ

aT ν
ρ , (7)

where fT , fT T stand for the first and second derivatives
with respect to T and T ν

ρ is the energy-momentum tensor of
the perfect fluid.

3 Some cosmological parameters

Here we discuss accelerated expansion of the universe
through EoS and deceleration parameters for the flat FRW
universe described by

ds2 = dt2 − a2(t)
(
dx2 + dy2 + dz2), (8)

where a is the time dependent scale factor. The correspond-
ing tetrad components are ha

μ = diag(1, a, a, a), which sat-
isfy Eq. (2). Substituting these tetrad components in Eq. (3),
the torsion scalar becomes T = −6H 2. Using these equa-
tions for a = 0 = ν and a = 1 = ν in Eq. (7), we obtain the
following modified Friedmann equations

12H 2fT + f = 2κ2ρ, (9)

48H 2ḢfT T − (
12H 2 + 4Ḣ

)
fT − f = 2κ2p, (10)

where ρ and p are the total energy density and pressure of
the universe and H(= ȧ/a) is the Hubble parameter with
dot representing the time derivative. We assume here a pres-
sureless universe, i.e., pm = 0 and κ2 = 1 for the sake of
simplicity. The above equations can be rewritten as

H 2 = 1

3
(ρm + ρT ), (11)

Ḣ + H 2 = −1

6
(ρm + ρT + 3pT ). (12)

Here the subscripts m and T denote the matter and torsion
contributions of energy density and pressure, and are given
as follows
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ρT = 1

2

(−12H 2fT − f + 6H 2), (13)

pT = −1

2

(
48ḢH 2fT T − (

12H 2 + 4Ḣ
)
fT − f + 6H 2

+ 4Ḣ
)
, (14)

and satisfying the energy conservation equation

ρ̇T + 3H(1 + ωT )ρT = 0. (15)

Noted that by taking f (T ) = T in the modified Friedmann
equations (11) and (12) which yield ρT = 0 = pT and the
resulting equations become the usual Friedmann equations
in general relativity. Also, the energy conservation equation
and its solution for dust matter are given by

ρ̇m + 3Hρm = 0, ρm = ρ0ma−3, (16)

where ρ0m is an arbitrary constant. Using Eqs. (13) in (15),
the EoS parameter for f (T ) gravity is obtained as

ωT = −1 + 4Ḣ (12H 2fT T − fT + 1)

12H 2fT + f − 6H 2
. (17)

We take the following viable power law f (T ) model (Wu
and Yu 2010; Wei et al. 2012) to discuss the cosmic evolu-
tion of the universe,

f (T ) = μ(−T )n; μ = (
6H 2

0

)1−n
(

Ωm0

2n − 1

)
, (18)

where n is a real constant and Ωm0 is the dimensionless mat-
ter energy density. The index 0 refers to the present values of
the corresponding quantities. Substituting this model along
with Eq. (13) in (11), we obtain the scale factor as follows

a(t) =
(

3

2n

) 2n
3
(

2ρ0m

6nμ(1 − 2n)

) 1
3

t
2n
3 . (19)

We may compare this scale factor with the exact power
law form of scale factor used in literature as a(t) = a0t

m

where m > 0 and a0 is a constant (Sadjadi 2006; Nojiri and
Odintsov 2006). For m > 1, it shows accelerating regime,
while 0 < m < 1 corresponds to the decelerating era of the
universe. Similarly, the scale factor (19) describes the expan-
sion with acceleration and deceleration of the universe for
n > 3/2 and 0 < n < 3/2 respectively. The expansion his-
tory of the universe has experienced a rapid expansion and
power law like decelerating as well as accelerating phases.
Thus it would be interesting to study these kinds of scale fac-
tors in the modified gravity models. Inserting Eqs. (18) and
(19) in (17), we obtain the following form of EoS parameter

ωT = (1 − n)(3t2)n−1

n[μ(2n − 1)(8n2)n−1 + (3t2)n−1] . (20)

The graphical behavior of ωT versus time is shown in
Fig. 1. We use the current values Ωm0 = 0.272, H0 = 74.2
and assume the real constant as n = 2. We examine that the
EoS parameter represents the quintessence region (−1 <

Fig. 1 Plot of ωT versus t

ω ≤ −1/3) of the expanding universe. For the scale factor
(19), the deceleration parameter is given by

qT = −1 − Ḣ

H 2
= −1 + 3

2n
. (21)

The negative behavior of this parameter is achieved for
n > 3/2, which represents the accelerated expansion of the
universe, whereas n ≤ 3/2 corresponds to the decelerated
phase of the universe.

4 f (T ) scalar field models

In this section, we develop the correspondence of the f (T )

model with some scalar field models like quintessence,
tachyon, K-essence and dilaton field models (Setare 2007c;
van der Plas 2008) in the flat universe.

4.1 f (T ) quintessence model

The dynamics of quintessence scalar field is governed by an
ordinary scalar field which slowly rolls down the potential.
Slow-roll is the condition in which kinetic energy of the sys-
tem is less than the potential energy, yielding the negative
pressure. Its EoS parameter describes accelerated expansion
of the universe in the interval −1 ≤ ωq < −1/3. The energy
density and pressure of quintessence scalar field are given
by (Copeland et al. 2006)

ρq = 1

2
φ̇2 + V (φ), pq = 1

2
φ̇2 − V (φ),

where φ̇2 and V (φ) are the kinetic energy and scalar poten-
tial respectively. These take the form

φ̇2 = ρq(1 + ωq), V (φ) = 1

2
ρq(1 − ωq), (22)

where the subscript q represents the quantities correspond-
ing to quintessence model. In order to apply the correspon-
dence, we equate ρT = ρq and ωT = ωq and use Eqs. (13)
and (20) in (22), it follows that
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Fig. 2 Plot of φ versus t for quintessence model

Fig. 3 Plot of V versus φ for quintessence model

φ̇ =
√

4n

3t2

[
μ(2n − 1)

(
8n2

3t2

)n−1

+ 1

] 1
2

, (23)

V (t) = 2n

3t2

[
n

{
μ(2n − 1)

(
8n2

3t2

)n−1

+ 2

}
− 1

]
. (24)

The analytical solution of Eq. (23) is difficult to deter-
mine, so we search for numerical solutions with the ini-
tial condition φ(0) = 0. Figure 2 shows the plot of φ ver-
sus t for the same parameters as in the previous section.
This represents an increasing behavior of the scalar field
as time elapses and results the decrement in kinetic en-
ergy of the potential. Figure 3 indicates that the scalar
potential is decreasing with respect to scalar field up to
a certain range and then becomes zero. It corresponds to
the scaling solution (V (φ) ∝ φ−1) (Copeland et al. 2006;
Sharif and Jawad 2012) which represents the accelerated ex-
pansion of the universe. The slow-roll condition is satisfied
for certain range as the kinetic energy is less than the po-
tential energy. Hence, the scalar field φ slowly rolls down
the scalar potential in the f (T ) quintessence model (van der
Plas 2008).

Fig. 4 Plot of φ versus t for tachyon model

Fig. 5 Plot of V (φ) versus φ(t) for tachyon model

4.2 f (T ) tachyon model

The tachyon scalar field model has the energy density and
pressure as (Copeland et al. 2006; Setare 2007c)

ρt = V (φ)
√

1 − φ̇2
, pt = −V (φ)

√
1 − φ̇2, (25)

leading to the EoS parameter

ωt = φ̇2 − 1. (26)

This equation indicates a universe dominated by cosmolog-
ical constant in the limit of vanishing kinetic energy. The
correspondence of f (T ) energy density and EoS parameter
with tachyon model yields

φ̇ =
[

1 − n

n{μ(2n − 1)( 8n2

3t2 )n−1 + 1}
+ 1

] 1
2

, (27)

V (t) = 4n2

3t2

√

1 − 1

n

[
μ(2n − 1)

(
8n2

3t2

)n−1

+ 1

] 1
2

. (28)

Figures 4 and 5 show the evolution trajectories of scalar
field and potential versus t and φ respectively. The scalar
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field indicates the increasing behavior with direct propor-
tional to time (Sharif and Jawad 2012) leads to the continu-
ous expansion. Figure 5 shows the same behavior of poten-
tial as for the previous model (Fig. 3). However the f (T )

tachyon potential shows the expansion of the universe as
it rolls down to its minimum value and corresponds to the
scaling solution (Copeland et al. 2006) for a small region
as compared to the f (T ) quintessence model. It is noted
here that interacting new holographic tachyon model also
behaves like scaling models (Sharif and Jawad 2012).

4.3 f (T ) K-essence model

The K-essence scalar model (Copeland et al. 2006) gives
the accelerated expansion of the universe with the help of
kinetic energy X and its modified forms. For FRW universe,
kinetic energy takes the form X = 1

2 φ̇2. Also, the energy
density and pressure are

ρk = V (φ)
(−X + 3X2), pk = V (φ)

(−X + X2). (29)

The corresponding EoS parameter is

ωk = 1 − X

1 − 3X
. (30)

This shows accelerating expansion of the universe with a
specific range of X. For X = 1/2, EoS parameter behaves
like cosmological constant whereas acceleration boundary
ωk = −1/3 is obtained for X = 2/3. Hence, the expand-
ing universe with acceleration corresponds to the interval
1/2 ≤ X < 2/3. Equating ρk = ρT and ωk = ωT for the cor-
respondence, we obtain

X = 1 + 2(1 − n)

[n{μ(2n − 1)( 8n2

3t2 )n−1 + 4} − 3]
. (31)

V (t) = 4n2

3t2

[
μ(2n − 1)

(
8n2

3t2

)n−1

+ 1

]

×
[

10(1 − n)

n{μ(2n − 1)( 8n2

3t2 )n−1 + 4} − 3

+ 12

(
(1 − n)2

n{μ(2n − 1)( 8n2

3t2 )n−1 + 4} − 3

)2

+ 2

]−1

.

(32)

The plot of X versus t shows consistent results within the
interval as shown in Fig. 6. Figure 7 represents the same be-
havior of V (φ) as f (T ) quintessence and new holographic
tachyon model (Sharif and Jawad 2012) inherit. Also, the
relation X = 1

2 φ̇2 yields

φ̇ =
(

2 + 4(1 − n)

n{μ(2n − 1)( 8n2

3t2 )n−1 + 4} − 3

) 1
2

. (33)

Its plot versus t is given in Fig. 8 which shows increasing
behavior (Sharif and Jawad 2012) of scalar field with direct
proportionality. It represents the continuous expansion of the
universe.

Fig. 6 Plot of X versus t for K-essence model

Fig. 7 Plot of V (φ) versus φ for K-essence model

Fig. 8 Plot of φ versus t for K-essence model

4.4 f (T ) dilaton model

The pressure of the dilaton scalar field model is given by
(Piazza and Tsujikawa 2004)

pd = −X + b1e
b2φX2, (34)
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Fig. 9 Plot of eb2φX versus t for dilaton field

where b1 and b2 are positive constants and 2X = φ̇2. It is ex-
plained by a general four dimensional effective low-energy
string action. Its dynamics is governed by negative kinetic
term and higher-order derivative terms of φ̇ to stable the sys-
tem. The energy density of dilaton model is

ρd = −X + 3b1e
b2φX2, (35)

Dividing Eq. (34) by (35), we obtain EoS parameter as

ωd = 1 − b1e
b2φX

1 − 3b1eb2φX
. (36)

It meets the universe in accelerated expansion for the bound
( 20

3 , 40
3 ) of eb2φX. Replacing ωd by ωT for f (T ) dilaton

model, it follows that

eb2φX = 1

b1

[
1 + 2(1 − n)

n{μ(2n − 1)( 8n2

3t2 )n−1 + 4} − 3

]
. (37)

Figure 9 shows the graph of eb2φX versus t with b1 =
0.07, b2 = 6. It satisfies the criteria for accelerated expan-
sion of the universe. Also, the solution of the above equation
is as follows

φ(t) = 2

b2
ln

[
b2√
2b1

×
∫ t

0

[
1 + 2(1 − n)

n{μ(2n − 1)( 8n2

3t2 )n−1 + 4} − 3

] 1
2

dt

]
.

(38)

Figure 10 represents the cosmic evolution of scalar field.
Initially, it bears increasing negative values, however it be-
comes positive after a small interval of time and shows flat-
ness with the passage of time. These types of solutions are
scaling solutions due to the relation φ(t) ∝ ln t (Sharif and
Jawad 2012).

5 Concluding remarks

The connection of scalar field models to different DE mod-
els has gained a lot of interest due to its role in discussing ac-

Fig. 10 Plot of φ versus t for dilaton field

celerated expansion of the universe. In this context, we have
considered the framework of f (T ) gravity to connect with
scalar field DE models such as, quintessence, tachyon, K-
essence and dilaton. We have discussed these models graph-
ically by taking a viable power law f (T ) model. We have
derived the scale factor from the first modified Friedmann
equation in terms of power law form. Also, we have checked
the behavior of evolution trajectory of EoS parameter and
deceleration parameter of the model. The results of the pa-
per are summarized as follows.

The EoS parameter indicates the quintessence era of the
DE dominated universe whereas the deceleration parameter
corresponds to this era for the real constant n > 3/2 of the
model. We have provided a correspondence between f (T )

model and some scalar field models to analyze the accel-
erated expansion of the universe. The scalar field and po-
tential are studied graphically with respect to time. These
correspondences give

1. The scalar field graph of f (T ) quintessence model rep-
resents increasing behavior while potential versus φ indi-
cates scaling solution, leading to the accelerated expan-
sion of the universe. The slow-roll condition is satisfied
up to a certain region of scalar field in this case.

2. The plots of φ and V of f (T ) tachyon model show the
same behavior as for the previous model but for smaller
region with scaling type solution.

3. In the f (T ) K-essence model, kinetic energy shows DE
region and the scalar field slowly rolls down the potential
which is directly proportional to the time. It indicates an
ever expanding universe.

4. For the correspondence between f (T ) and dilaton model,
the eb2φX indicates the expansion of the universe. Also,
the scaling solution is obtained for its scalar field due to
φ(t) ∝ ln t .

We would like to mention here that mostly HDE and its
modified models are taken to make such type of correspon-
dences (Granda and Oliveros 2009; Ebrahimi and Sheykhi
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2011; Sharif and Jawad 2012) to discuss accelerated expan-
sion of the universe. It is an effective procedure for the cor-
respondence of scalar field models with different DE models
which may help to comprehend the unknown DE candidate.
It is interesting to mention here that our results are viable
and consistent by comparing with those already available
for other dark energy models (Setare, 2007b, 2007c, 2007d,
2008; Granda and Oliveros 2009; Ebrahimi and Sheykhi
2011; Sharif and Jawad 2012).
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