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Abstract Investigation of nonlinear wave modulation of
electron-acoustic solitary wave packets in planar as well as
nonplanar geometry is carried out for an unmagnetized two
temperature plasma composed of cold and hot (featuring
q-nonextensive distribution) electrons with stationary ions.
It is shown that in such plasma, propagation of EA wave
packets is governed by a modified NLSE which accounts for
the geometrical effect and the nonextensivity of the hot elec-
tron species. It is found that the nature of the modulational
instabilities would be significantly modified due to the geo-
metrical effects, density ratio α of the hot-to-cold electrons
species as well as their temperature ratio θ . Also, there exists
a modulation instability period for the cylindrical and spher-
ical envelope excitations, which does not exist in the one-
dimensional case. Furthermore, spherical EA solitary wave
packets are more structurally stable to perturbations than the
cylindrical ones. The relevance of the current study to EA
wave modulation in auroral zone plasma is highlighted.
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1 Introduction

Electron-acoustic (EA) waves have shown a great deal of
interest due to their importance in interpreting the electro-
static component of the broad-band electrostatic noise ob-
served in the cusp region of the terrestrial magnetosphere
(Tokar and Gary 1984; Singh and Lakhina 2001), in the ge-
omagnetic tail (Schriver and Ashour-Abdalla 1989), in the
dayside auroral acceleration region (Dubouloz et al. 1991;
Pottelette et al. 1999) etc. The idea of EA mode had been
conceived by Fried and Gould (1961) during numerical so-
lutions of the linear Vlasov dispersion equation in an un-
magnetized, homogeneous plasma. Besides the well-known
Langmuir and ion-acoustic waves, they noticed the existence
of a heavily damped acoustic- like solution of the disper-
sion equation. It was later shown that with two species of
electrons with widely disparate temperatures, referred to as
hot and cold electrons with immobile ions, one indeed ob-
tains a weakly damped EA mode (Watanabe and Taniuti
1977), which has different properties than Langmuir and
ion-acoustic waves. Electron-acoustic waves are high fre-
quency (in comparison with the ion plasma frequency) elec-
trostatic modes (Stix 1992) in plasmas where a “minority”
of inertial cold electrons oscillate against a dominant ther-
malized background of inertialess hot electrons providing
the necessary restoring force (Watanabe and Taniuti 1977).

Non-extensive statistics or Tsallis statistics (Tsallis 1988),
is believed to be a useful generalization of the conven-
tional Boltzmann-Gibbs statistics, and suitable for the sta-
tistical description of long-range interaction systems, such
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as plasma systems (Lima et al. 2000; Silva et al. 2005;
Du 2004; Liu and Du 2008; Liu et al. 2009; Tribeche et al.
2010; Amour and Tribeche 2010; Tribeche et al. 2010;
Ait Gougam and Tribeche 2011; Moslem et al. 2011). Note
that because of a lack of formal derivation, a non-extensive
approach to kappa-distributions has been suggested (Leub-
ner 2002). It has been shown that distributions very close
to the so-called κ (kappa)-distributions are a consequence
of the generalized entropy favored by non-extensive statis-
tics. In fact, non-Maxwellian distribution is a common fea-
ture of the Earth’s atmosphere and, in general, it is turning
out to be a characteristic feature of space plasmas (see e.g.,
Asbridge et al. 1968; Lundin et al. 1987; Hall et al. 1991;
Sabry et al. 2009; Shalaby et al. 2011; Bains et al. 2011;
El-Labany et al. 2012; Javidan and Pakzad 2012; Tribeche
and Sabry 2012). Furthermore, since EA waves being high
frequency density waves, they are trapped and modulated
leading to modulation and generation of electron-acoustic
envelope solitons. In high time resolution of the FAST ob-
servations, these kinds of nonlinear structures are observed
(Pottelette et al. 1999).

Therefore, we shall investigate the amplitude modulation
of the EA solitary wave packets in non-planar geometries
as well as the role of the non-extensive parameter q beside
the temperature ratio of the hot-to-cold electron species in an
unmagnetized plasma consisting of cold electrons, immobile
ions, and hot electrons featuring Tsallis statistics.

The present manuscript is organized as follows: The ba-
sic equations governing the nonlinear dynamics of the EA
envelope solitary waves are presented and a modified non-
linear Schrödinger equation (NLSE) containing the geomet-
rical effect is derived in Sect. 2. In Sect. 3, we discuss the
stability/instability analysis and the propagation of the EA
wave packets in planar as well as non-planar (cylindrical and
spherical) geometries. Finally, the results are summarized in
Sect. 4.

2 Derivation of the modified NLSE

The dynamics of the nonlinear electron-acoustic (EA) waves
(with phase speed much larger than the cold electron thermal
speed but much smaller than the hot electron thermal speed)
is governed by (Shalaby et al. 2011; El-Labany et al. 2012;
Tribeche and Sabry 2012)
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where ν = 0, for one-dimensional geometry and ν = 1, 2 for
cylindrical and spherical geometries, respectively. nc (nh)
is the cold (hot) electron number density normalized by its
equilibrium value nco(nho). Here ϕ is the electrostatic wave
potential normalized by kBTh/e, uc is the electron fluid ve-
locity normalized by Ce = (kBTh/α m)1/2, α = nho/nco,
m is the mass of the electron, θ = Th/Tc, e is the electron
charge and kB is Boltzmann constant, Th is the temperature
of hot electrons. The space and time variables are in units of
hot electron Debye length λDh = (kBTh/4πnhoe

2)1/2 and
cold electron plasma period ω−1

pc = (m/4 π ncoe
2)1/2, re-

spectively. The hot electrons are assumed to follow the q-
nonextensive electron distribution (Sahu and Tribeche 2012;
Tribeche and Sabry 2012), hence, the non-extensive hot
electron density is given as

nh = [
1 + (q − 1) ϕ

] q+1
2(q−1) , (4)

where the non-extensive parameter q > 1. In the extensive
limiting case (q → 1), the non-extensive distribution func-
tion reduces to the well-known Maxwell-Boltzmann distri-
bution.

In order to investigate the amplitude modulation of EA
envelope solitary waves in the current plasma system, we
employ a multiple scales perturbation technique (Taniuti and
Yajima 1969). The independent variables are stretched as
ξ = ε(r −vg t) and τ = ε2t , where ε is a small (real) param-
eter and vg is the envelope group velocity to be determined
later. The dependent variables are expanded as
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k and ω are real variables representing the fundamental (car-
rier) wavenumber and frequency, respectively. All elements
of �

(m)
L satisfy the reality condition �
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L , where the

asterisk denotes the complex conjugate. Substituting (5) into
Eqs. (1)–(4) and collecting terms of the same powers of ε,
the first-order (m = 1) equations with L = 1, give
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Solving the second-order (m = 2 with L = 1) using the

first-order quantities, we can express the second order quan-

tities with L = 1 as;

n(2)
c1

= kα

(k2� − ω2)2

[
k
(
k2� − ω2)ϕ(2)

1

+ 2iω(ω − kvg)
∂ϕ

(1)
1

∂ξ

]
,

u(2)
c1

= 1

(k2� − ω2)2

[
kαω

(
k2� − ω2)ϕ(2)

1

+ iα
(
k2� + ω2)(ω − kvg)

∂ϕ
(1)
1

∂ξ

]
,

with the compatibility condition
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Recall that the compatibility condition (7) is the group ve-
locity of the envelope soliton.

The second harmonic modes (m = L = 2) arising from
the nonlinear self-interaction of the carrier waves are ob-
tained in terms [ϕ(1)

1 ]2 as
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The nonlinear self-interaction of the carrier wave also
leads to the creation of a zeroth order harmonic. Its strength
is analytically determined by taking L = 0 component of the
third-order reduced equations which can be expressed as
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Finally, the third harmonic modes (m = 3 and L = 1),
with the aid of (9), give a system of equations, which can be
reduced to the following modified NLSE:

i
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φ = 0, (10)

where φ ≡ ϕ
(1)
1 for simplicity. The dispersion coefficient P

is expressed as
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and the nonlinear coefficient Q is given as

Q = −
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3 Stability analysis and discussion

To investigate the stability/instability of the non-planar ex-
citations, we investigate the development of the small mod-
ulation δφ according to

φ = (
φ0 + δφ(ξ, τ )

)
exp

[
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where φ0 is the constant (real) amplitude of the pump carrier
wave and � is a nonlinear frequency shift, and taking the
perturbation δφ as

δφ = δφ0 exp
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where Kξ − ∫ τ

τ0
Ωdτ ′ is the modulation phase with K and

Ω are the perturbation wave number and frequency of the
modulation, respectively [see details in Jukui (2004)]. Us-
ing (13) and (14) into Eq. (10), one obtains the nonlinear
dispersion relation (Jukui and Lang 2003; Sabry et al. 2008)
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which exactly reduces to the dispersion relation for planar
geometry when ν = 0. We immediately see that the modu-
lation instability condition will be satisfied if PQ > 0 and

K2 ≤ K2
c (τ ) = 2Q

P

|φ0|2
τν .

Experimental measurements demonstrated that small-
scale coherent electrostatic structures are common in space
plasma. Such structures were detected in the auroral zone
on board FAST and POLAR satellites (Mozer and Kletzing

1998; Ergun et al. 1998). We choose a set of available pa-
rameters corresponding to the dayside auroral zone where an
electric field amplitude E0 � 100 mV/m has been observed
(Singh and Lakhina 2001; Dubouloz et al. 1993): Tc � 5 eV,
Th � 250 eV, nc0 � 0.5 cm−3, nh0 � 2.5 cm−3. For the
case ν = 0 (planar geometry), it is found that we have two
stable regions (PQ < 0, dark regions) beside unstable one
(PQ > 0, bright region), such that stable regions are found
for small and high wavenumbers, as illustrated in Fig. 1.

To estimate the role of the non-extensivity parameter
q on the dispersion (i.e., P ) and nonlinearity coefficients
(i.e., Q), both of P and Q are plotted against k for different
values of q , as shown in Figs. 1a and 1b. Where, it shown
that increasing q increases the critical wave number at which
P = 0, as depicted in Fig. 1a. The same qualitative behavior
is obtained for Q, as shown in Fig. 1b, but the critical wave
numbers for P are shown to be higher than those for Q.
In general, increasing the non-extensivity parameter q in-
creases the critical wavenumber (Kc(τ) with ν = 0) at which
the instability sets in. When investigating the role of the den-
sity ratio of the hot-to-cold electron species α(= nho/nco),
on the stability/instability domains, it is found that increas-
ing α increases stability of EA wave packets. However, for
α > 5, it is found that stability/instability domains remains
almost without variation, as illustrated by contour lines de-
picted in Fig. 1c. It should be noticed that we have two con-
tour lines at which PQ = 0 (where the instability sets in),
where the contour line corresponding to small critical wave
numbers results from the criticality arising from the non-
linearity, while the line corresponding to large critical wave
numbers is due to the criticality of the plasma arising from
the dispersion.
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Fig. 1 (a) Variation of P against k, for different q , at α = 5 and
θ = 50, (b) Variation of Q against k, for different q , at α = 5 and
θ = 50, and (c) Variation of PQ in the parameter space (q , k), where
bright regions correspond to PQ > 0 (instability regions) and dark
regions corresponds to PQ < 0 (stability regions), for α = 5 and
θ = 50. The solid line corresponds to, the critical wave numbers Kc

(i.e., PQ = 0) at which the instability sets in for α = 2 and θ = 50,
while the dashed line is for α = 5 and θ = 50

Fig. 2 Variation of PQ in the parameter space (θ , k), where bright
regions correspond to PQ > 0 (instability regions) and dark regions
corresponds to PQ < 0 (stability regions), for q = 2 and α = 5. The
solid line corresponds to, the critical wave numbers Kc (i.e., PQ = 0)
at which the instability sets in for q = 2 and α = 5

The effect of increasing the temperature ratio of the hot-
to-cold electron species θ(= Th/Tc) was found that it does
not change the critical wavenumbers (i.e., Kc = 0) (i.e.,
varying θ for those values of wavenumbers satisfying the
criteria PQ < 0, does not affect at all on the stability of the
EA envelope solitary waves) at which the instability sets in,
as shown in Fig. 2. It should be noticed that the lower con-
tour line at which PQ = 0 (where the instability sets in) re-
sults from the criticality arising from the nonlinearity, while
the line corresponding to large critical wave number is due
to the criticality of the plasma arising from the dispersion.

For the non-planar geometry (ν 	= 0), the local instability
growth rate of the nonlinear dispersion relation (15) is given
by (Jukui and Lang 2003; Jukui 2004; Sabry et al. 2008),

ImΩ = PK2
(

2Q

P K2

|φ0|2
τ ν

− 1

)1/2

. (16)

The instability growth will cease for cylindrical geometry
(ν = 1) when

τ ≥ τmax = 2|φ0|2
K2

Q

P
, (17)

and for spherical geometry (ν = 2) when

τ ≥ τmax = |φ0|
K

√
2Q

P
. (18)

It is clear that there is a modulation instability period (τ )
for the cylindrical and spherical wave modulation, which
does not exist in the one-dimensional case. The total growth
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(Γ ) of the modulation during the unstable period (Jukui and
Lang 2003; Jukui 2004; Sabry et al. 2008) is

Γ = exp

(∫ τmax
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ImΩdτ ′
)

= exp

(
Q|φ0|2
τ ν−1

f (R)

)
, (19)

where R = [2Q|φ0|2/(PK2τ ν
0 )] ≥ 1. For the cylindrical ge-

ometry, we have

f (R) ≡ fcyl. = arctan
√

R − 1 −
√
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R
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while for the spherical geometry
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− 2
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We note that fcyl. is an increasing function in R, and fcyl. →
π/2 as R → ∞. This means that during the modulation in-
stability period, the total growth increase as R does for the
cylindrical case. But, for fsph. there is a maximum value

maxfsph. = 2
√

Rc − 1

Rc

, (22)

where Rc is determined by

4
√

Rc − 1 = √
Rc ln

(√
Rc + √

Rc − 1√
Rc − √

Rc − 1

)
. (23)

For spherical geometry, the modulation instability growth
rate will achieve its maximum at R = Rc and then decreases
as R increases further. It should be noted that the modula-
tion instability period given by (17) for cylindrical geometry
is longer than that determined by (18) for spherical geome-
try, meanwhile, during the unstable period, the modulation
instability growth rate is always an increasing function of R

in the cylindrical geometry, but not in the spherical geom-
etry, as depicted in Fig. 3. This suggests that the spherical
waves are more structurally stable to perturbations than the
cylindrical waves.

To examine the cylindrical and spherical geometry effects
on the propagation of EA envelope solitary waves, Eq. (12)
may be simplified to

i
∂φ

∂τ
+ ∂2φ

∂ξ2
+ 2|φ|2φ + i

ν

2τ
φ = 0, (24)

where we have set φ → √
2/Qφ and ξ → √

Pξ , with the
conditions that P > 0 and Q > 0. The stationary propaga-
tion of the envelope soliton governed by Eq. (24) with ν = 0
(i.e. the one-dimensional geometry), has the following gen-
eral form

φ(ξ, τ ) = A ψ1(ξ, τ ) exp
[
iψ2(ξ, τ )

]
, (25)

Fig. 3 Variation in f (R) against R for cylindrical and spherical ge-
ometries given by Eqs. (20) and (21), respectively

Fig. 4 Cylindrical and spherical waves amplitude |φ| against τ for
ξ = 0, represented by the numerical solution of the modified NLSE
(24)

where ψ1(ξ, τ ) = sech(Aξ − 2ABτ + c0) and ψ2(ξ, τ ) =
Bξ + (A2 −B2)τ + c1. While, A, B , c0, and c1 are arbitrary
real constants. Solution (25) describes the motion of a soli-
ton in a rapidly decaying case. Solving Eq. (24) numerically
for the cylindrical and spherical geometries; where the ini-
tial solution were taken to be of the form (25) with A = 0.01
and B = 0, it is found that the amplitude of the EA solitary
wave packets in the spherical geometry is larger than that in
the cylindrical geometry for fixed time, as shown in Fig. 4.
Figures 5 and 6 display the envelope electrostatic potential
excitations in three-dimensional plots versus the radial and
time coordinates, represented by the numerical solution of
the modified NLSE (24). It is seen that the envelope soliton
pulse for the cylindrical geometry is smaller than the spher-
ical geometry.

4 Summary

We have investigated nonlinear wave modulation of electron-
acoustic solitary wave packets in planar as well as non-planar
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Fig. 5 Variation of the cylindrical wave amplitude |φ| against τ and ξ

Fig. 6 Variation of the spherical wave amplitude |φ| against τ and ξ

geometry (assuming cylindrical and spherical symmetry)
in an unmagnetized two temperature plasma composed of
cold and hot (featuring q-nonextensive distribution) elec-
trons with stationary ions. It is shown that in such plasma,
propagation of EA wave packets is governed by a modified
NLSE which accounts for the geometrical effect. It is found
that the nature of the modulational instabilities would be
significantly modified due to the geometrical effects. Also,
there exists a modulation instability period for the cylindri-
cal and spherical envelope excitations, which does not exist
in the one-dimensional case. The instability period depends
on the q-nonextensive parameter, density ratio α of the hot-
to-cold electrons species as well as their temperature ratio
θ . Numerical and analytical investigations reveal that the
amplitude of the spherical envelope is larger than that of
the cylindrical envelope for fixed time, and the growing am-
plitude of the spherical envelope is larger than that of the
cylindrical envelope.
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