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Abstract The averaging theory of first order is applied to
study a generalization of the Friedmann—Robertson—Walker
Hamiltonian systems with three parameters. We provide suf-
ficient conditions on the three parameters of the generalized
system to guarantee the existence of continuous families of
periodic orbits parameterized by the energy, and these fam-
ilies are given up to first order in a small parameter.

Keywords Periodic orbit - Averaging theory -
Friedmann—Robertson—Walker Hamiltonian system

1 Introduction

The dynamics of the universe is an area of the astrophysics
where the application of modern results coming from dy-
namical systems has been revealed very fruitful, specially
in galactic dynamics see for instance the articles (Belmonte
et al. 2007; Merritt and Valluri 1996; Papaphilippou and
Laskar 1996, 1998; Zhao et al. 1999) and the references
quoted there.

Calzeta and Hasi (1993) present analytical and numerical
evidence of the existence of chaotic motion for the simpli-
fied Friedmann—Robertson—Walker Hamiltonian
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which modelates a universe, filled with a conformally cou-
pled but massive real scalar field. Although this model is
too simplified to be considered realistic, its simplicity itself
makes it an interesting testing ground for the implications of
chaos in cosmology, either classical, semiclassical or quan-
tum, see for more details (Calzeta and Hasi 1993). Simi-
lar models have been used by Hawking (1985) and Page
(1991) to discuss the relationship between the cosmologi-
cal and thermodynamic arrow of time, in the framework of
quantum cosmology.

In problems of galactic dynamics it is usual to consider
potentials of the form V(x2, y2), i.e. potentials exhibiting a
reflection symmetry with respect to both axes, see Pucacco
et al. (2008) and the previous articles mentioned on galactic
dynamics. For this reason here we generalize the Calzeta—
Hasi’s model as follows
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A general result of the qualitative theory of differential
systems states that any orbit or trajectory of a differential
system is homeomorphic either to a point, or to a circle, or
to a straight line. The orbits homeomorphic to a point are the
equilibrium points, and the ones homeomorphic to circles
are the periodic orbits. It is well known that these two types
of orbits play a relevant role in the dynamics of a differen-
tial system, and in general they are easier to study than the
orbits homeomorphic to straight lines which sometimes can
exhibit a very complicate dynamics. In short, the first analy-
sis for understanding the dynamics of a differential system is
to start studying its equilibrium points, its periodic solutions
and their kind of stability.
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In this work we study the periodic orbits and their kind
of stability of the simplified Friedmann—Robertson—Walker
Hamiltonian (2) in every non-zero energy level, showing
that in each of such levels there is at least one, two or three
periodic orbits depending on the parameters of the system.
So the modeled galaxy for this Hamiltonian system can ex-
hibit periodic motion.

We shall provide sufficient conditions on the three param-
eters a, b and c of the Hamiltonian system with Hamiltonian
(2) to guarantee the existence of continuous families of pe-
riodic orbits parameterized by the energy, and these families
are given explicitly up to first order in a small parameter.

Our objective is to study analytically the periodic orbits
of the two degree of freedom Hamiltonian system defined by
Hamiltonian (2). We shall use the averaging theory for com-
puting an explicit analytic approximation of four families
of periodic orbits parameterized by the energy level H = h.
The Hamiltonian system associated to Hamiltonian (2) is

X =—px,

Y = py,

) 3 5 3)
px =X — (aX’ +bXY?),

py ==Y — (bX?Y +c7?).

Doing the rescaling of the variables

X = ex, Y = ey,
py = epy,

Px = \/pr,

the Hamiltonian system (3) becomes the new Hamiltonian
system

X =—px,
Y =Py, @
Py =Xx— 8(ax3 + bxyz),
py=—y— s(bxzy +cy3),
with Hamiltonian

15 2 1 o 5
H=>(py=p2) +5(7" =)

+s(gx4+ l—)x2y2+ £y4>. 5)

4 2 4

Periodic orbits are the most simple non-trivial solutions
of a differential system. Their study is of special interest be-
cause the motion in their neighborhood can be determined
by their kind of stability. We shall use the averaging theory
of first order as it is stated in Sect. 2 for studying the pe-
riodic orbits of the Hamiltonian system (4) in every energy
level H = h. Our main result on the periodic orbits is the
next one.
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Theorem 1 At every energy level H = h with h # O the gen-
eralized Friedmann—Robertson—Walker Hamiltonian system
(4) has at least one, two or three periodic solutions if one,
two or three of the following conditions hold:

(1) h(b+c)(a+2b+c) <0,h(a+b)(a+2b+c) > 0and
b # 0, the corresponding periodic solution is unstable if
b(a+2b+c) > 0, and linear stable if b(a+2b+c) < 0;

2) h(b+3¢c)(Ba+2b+3c) <0,h(B3a+b)(Ba+2b+3c) >
0 and b # 0, the corresponding periodic solution is
unstable if b(3a + 2b 4 3c¢) < 0, and linear stable if
b(Ba +2b+ 3c) > 0;

3) h<0,b#0and (a+b)(3a+b) # 0, the corresponding
periodic solution is unstable if (a +b)(3a + b) <0, and
linear stable if (a + b)(3a + b) > 0; and

4) h>0,b#0and (b+c)(b+3c) # 0, the corresponding
periodic solution is unstable if (b+ c)(b+3c) <0, and
linear stable if (b + c)(b + 3¢) > 0.

For the Hamiltonian (1) studied by Calzeta and Hasi
(1993) we have the following result, which follows directly
from Theorem 1.

Corollary 2 At every energy level H = h with bh # 0 the
Friedmann—Robertson—Walker Hamiltonian system (4) with
a =c =0 has at least one periodic solution.

We can be more precise than in the statement of Theo-
rem 1. Thus we consider the following seven hyperplanes

h =0,
b+3c=0,

a+b=0, 3a+b=0, b+c¢=0,
a+2b+c=0, 3a+2b+c¢c=0,

in the 4-dimensional space of parameters (h,a, b, c) € R4,
These seven hyperplanes separate the parameter space R*
into 27 = 128 open regions. Every one of these open regions
will be denoted by the seven signs of the seven hyperplanes.
Thus when we write + + + + + + +, 4 this means that in
the region

h>0,
b+3c>0,

a+b>0, 3a+b>0, b+c>0,
a+2b+c>0, 3a +2b+3c >0,

there is only one periodic orbit provided by the fourth condi-

tion of Theorem 1. On the other hand, ++ + + — + 4+, 2,4

this means that in the region

h>0,

b+ 3c <0,

a+b>0, 3a+b>0, b+c>0,
a—+2b+c>0, 3a+2b+ 3¢ >0,

there are two periodic orbits provided by the second and
fourth conditions of Theorem 1.

Note that either condition (3) or (4) of Theorem 1 always
occurs in every one of the 128 open regions.

Now we summarize the number of periodic orbits in ev-
ery one of the 128 open regions:
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+++++++ 4 @ ——————— 3 -—++++++ 3 +—-+++++ 4
++—-++++ 4 +++—-+++ 1,4 ++++—-++ 2,4 +++++—-+ 4
++++++—- 4 -——+++++ 1,3 +—-——++++ 4 ++-=+++ 1,4
+++-——++ 1,24 ++4++-—-—+ 2,4 +++++—-—— 4 —+—-++++ 2,3
+—-—+—-+++ 4 ++—-+—-++ 4 +++—-+—-+ 4 ++++-+—- 4
—++—-—+++ 3 +—-++—-++ 2,4 ++—-++—-+ 4 +++—-++- 1,4
-+++—-++ 1,3 +-+++-+ 1,4 ++—-+++—- 2,4 -—++++—-+ 3
+—-++++—- 4 -—+++++- 3 ++—-———- 4 —++—-———- 1,23
——++-—== 23 ———++-- 3 -——4+4+-3 ————— +4+ 3
+—-4+-—=—— 4 -+-+-—-- 3 -——+—-+-- 3 -———+—-+- 13
————+—-4+ 2,3 +—-——4+-—=- 1,4 -+-—+-- 13 ——+—-—4+- 2,3
-———+—-—+4+ 3 +—-——=—4+-- 2,4 -+-——+- 3 -——+-——+4+ 3
+-————+- 4 —+————+ 1,3 +-———- + 4 ———++++ 12,3
——+—-+++ 3 - —++-++ 1,3 ——+++—-+ 2,3 -——++++- 13
—+—-——=+++ 2,3 - +—-+—-++ 3 —+—-++-+ 2,3 -—+—+++- 3
-—++-—++ 3 -—++—-+-+ 1,3 -—++-—++- 3 -—+++-—+ 3
-—+++-+- 2,3 - ++++-- 3 +-———+++ 4 +—-——+—-++ 4
+-——++—-+ 1,4 +-—+++- 2,4 +—-+-—=++ 2,4 +-—+—-+-+ 4
+—-+—-++—- 4 +—-—++-—4+ 1,24 +—4++—-—+— 4 +-+++—-——- 1.4
++-———++ 1,4 ++-——+—-+ 4 ++-—++- 1,24 ++—-—+——+4+ 4
++—-+—-+- 4 ++-++-- 2,4 +++-——+ 2,4 +++-—+- 1,4
+++-+-— 4 ++++—-—- 4 +++—-——- 4 ++—-+—-—- 4
++—-——=+-- 2,4 ++—-—=—+- 4 ++—-————+ 4 +—-++-—-- 1,4
+—-+—-+-— 4 e e +—-+-——+4+ 2,4 +—-—++-- 1,4
+—-——+—-+—- 4 +-—+-—-+ 1,4 +-———++- 2,4 +-———+-+ 4
+-————++ 4 -—+++-——- 2,3 -—++-+-- 1,3 -—++-—=+- 2,3
-++--—+ 1,3 -—+—-++-- 3 -—+—-+-+- 3 -—+—-+-—=+ 3
-—+—-=++- 3 - 4+—-—4+-4+ 1,23 —4+———++ 3 -——+++-— 3
- —4++-+- 1,2,3 ——+4+-——+ 3 -——+—-++- 3 ——+—-+—-+ 3
——+—-——++ 3 - ——+++- 13 ———++—-+ 2,3 -———+—-++ 1,3
-————+++ 2,3 +—-————- 4 -+ —-———= 1,3 -——+—-——-- 23
-———+-—-3 -4+ 3 === +-3 - + 3
Theorem 1 is proved in Sect. 3. where

2 The averaging theory

1 T
fl(Y):?/ Fi(t,y)dt.
0

Now we shall present the basic results from averaging theory
that we need for proving the results of this paper.

The next theorem provides a first order approximation for
the periodic solutions of a periodic differential system, for
the proof see Theorems 11.5 and 11.6 of Verhulst (1996).

Consider the differential equation

x=eF1(1,X) +& R, x,6),  x(0)=xo (6)
with x € D, where D is an open subset of R”, r > 0. More-
over we assume that both Fj(¢,x) and F(t,x,¢) are T-
periodic in . We also consider in D the averaged differential
equation

N

y=¢fi(y), y(0) =xo,

Under certain conditions, equilibrium solutions of the aver-
aged equation turn out to correspond with 7 -periodic solu-
tions of (6).

Theorem 3 Consider the two initial value problems (6)
and (7). Suppose:

() Fi, its Jacobian dF)/dx, its Hessian 9*F;/dx%, F»
and its Jacobian 0F,/0x are defined, continuous and
bounded by a constant independent of ¢ in [0, 00) x D
and ¢ € (0, g9].

(i) F1 and F> are T -periodic in t (T independent of ¢).

Then the following statements hold.
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(a) If p is an equilibrium point of the averaged (7) and

det(%>

dy
then there exists a T-periodic solution ¢(t,¢c) of (6)
such that ¢(0,¢8) — p as ¢ — 0.

(b) The stability or instability of the limit cycle ¢(t,¢) is
given by the stability or instability of the equilibrium
point p of the averaged system (7). In fact the singular

point p has the stability behavior of the Poincaré map
associated to the limit cycle ¢(t, €).

# 0,

y=p

We point out the main facts in order to prove Theo-
rem 3(b), for more details see Sects. 6.3 and 11.8 in Verhulst
(1996).

3 Proof of Theorem 1

Periodic orbits of a Hamiltonian system of more than one
degree of freedom are generically on cylinders filled with
periodic orbits in the phase space (for more details see Abra-
ham and Marsden 1978), then we will not be able to apply
directly the Averaging Theorem of Sect. 2 to a Hamiltonian
system because the Jacobian of the corresponding function
Jf1 at the fixed point a will be always zero. This problem
will be solved by fixing an energy level, where the periodic
orbits generically are isolated.

In the variables (x, y, px, py) we consider the Hamilto-
nian system (3).

Let RT = [0, 00) and S! the circle. We do the change of
variables (x, y, px, py) = (r,0,5,0) € RT x S! x RT x S!
defined by

X =rcosb, Px =rsiné, y=scos(a —0),
py =ssin(a —6).

Note that it is not canonical, so we loss the Hamiltonian
structure of the differential equations. The differential sys-
tem in the new variables become

7 = —ersind cos @ (ar? cos® 6 + bs? cos® (o — 9)),

6 =1— ecos? Q(ar2 0820 + bs? cos* (o — 9)),

1
§ = —g—s(br’ + cs? + cs?cos(2(a — )
o (@) N
+ br? cos(20)) sin(2(a — 6)),
@ =e¢(—cs?cost (@ — 0) — b(r* +s?)
x cos” cosz(a —0) — ar? 00549),

having the first integral

H = (s =) + 5 (es* cos* (e = 0)

@ Springer

+2br%s? cos? (@ — 6) cos? @ + ar’ cos* 6). )

In order that the right hand side of the differential sys-
tem (8) be periodic with respect to the independent variable,
we change the old independent variable ¢ by the new inde-
pendent variable 6, for obtaining the periodicity necessary
for applying the averaging theory. Dividing system (8) by 6
omitting the 6 equation, system (8) goes over to

r' = —ersind cos@(ar? cos’ 6 + bs* cos® (o — 0))
+0(?),

s = —fs(br2 + cs% + es? cos(2(a — 0))
4 (10)
+ br? cos(20)) sin(2(a — 6)) + O(?),

o = 8(—C52 cos*(a —6) — b(r2 + s2)
x cos” cos2(ot —0)— ar? cos* 9) + 0(82),

where the prime denotes the derivative with respect to the
new independent variable 6. System (10) is 2m-periodic
in the variable 6. However as the differential system (10)
comes from a Hamiltonian system, as we mentioned be-
fore, its periodic orbits are not isolated in the set of all pe-
riodic orbits of system (10). Consequently, in order to use
the averaging theory for studying its periodic orbits, we re-
strict the differential system (10) to every fixed energy level
H(r,0,s,a) = h. Then in such energy levels, we can put s
in function of 4, 6, r and « and substitute s in (10), and we
will be able to apply Theorem 3. For s we get

s=vV2h+r*+ 0(e).

As we will apply averaging of first order, we do not need
more information on s. Substituting s in (10), this becomes

r’ = —ersin6 cosf(ar’ cos® 0 + b(2h + r?) cos* (a — 0))
+0(e%),

of =&(—c(2h +r?)cos* (@ — 0)
—2b(h + r2) cos?(a — 6) cos® @ — ar? cos* 9)
+0(?).

If we write the previous system as a Taylor series of first
order in ¢ we get

r'=eF110,r, )+ 0(82),
(1)
o =eFp(0,r,0) + 0(?).

We see that system (11) has the canonical form (6) for
applying the averaging theory and satisfies the assumptions
of Theorem 3 for |¢| > O sufficiently small, with T =27
and F| = (F1, F12) which are analytical functions.
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Averaging the function F; with respect to the variable 6
we obtain

filr,e) = (fu(r, @), fia(r, @)

1

27
=—f (Fi@.r.0). Fn@.r.a))ds,  (12)
27‘[ 0

where

1 ”n .
fu(r,o) = —gbr(Zh + r7) sin(2w),

Sl a) = é(—6ch — 3@+ c)r* —4b(h+r?) (13)

— 2b(h + 1) cos(2a)).

We have to find the zeros (r*,a*) of the function
f1(r, ), and to check that the Jacobian determinant at these
points is not zero, i.e.

) 0. (14)
(r,a)=(*,a*)

From f11(r, «) = 0 we obtain that either

det<3(f11,f12)
a(r,a)

a=0, =+£m/2, @ or

(15)
r=+—2h whenh <0.

We look for the solutions of fi2(r, ) = 0 at these solu-
tions of (15). We obtain seven possible solutions (a*, r*, s*)
with r* > 0 and s* > 0, namely

0\/—2h(b+c)
N a+2b+c’
:I:T[ \/—2(b+3c)h \/2(3a+b)h
2°V3a+2b+3c’V3a+2b+3c)’
1 —3a —2b
<:I:Earccos<aT>,\/—2h,0>,

1 —3a —2b
<i§ arccos(%) ,0, vzh).

But the solutions with &+ provide two different initial condi-
tions of the same periodic orbit. So we only have four dif-

ferent periodic orbits.
Finally we calculate the determinant (14) of the Jacobian
matrix

2h(a + b)
a+2b+c)’

(16)

( —L1b@h +3r%) sin(2a)

—4br 2h +r?) cos(2a)
— 37 (3a +4b + 3¢ + 2b cos(2a))

%b(h + r2) sin2a
(7

at the four solutions (r*, a*, s*) given in (16). The determi-
nants are respectively given by

3ba+b)b+oh®  b(Ba+b)(b+30)h?
4(a+2b+c) 4(3a 4+ 2b +3c¢) (18)
Z(a +b)(3a +b)h?, %(b+c)(b+3c)h2.

To have the solutions (16) defined and the above determi-
nants different from zero, we must have one of the following
four conditions

1) h(b+c)(a+2b+c) <0,h(a+b)(a+2b+c) >0and
b #0;

2) h(b+3¢)(Ba+2b+3c¢) <0,h(Ba+b)(Ba+2b+3c) >
Oand b #0;

(3) h<0,b#0and (a +b)(3a+b) #0; and

@) h>0,b#0and (b+c)(b+3c)#0.

We conclude that under each of the four cases, the solutions
(r*,a*,s*) of (16) provide a periodic solution of system
(11), and consequently of system (4).

According to Theorem 3(b), for completing the proof of
Theorem 1 we need to study the kind of stability of the found
periodic orbits. For this we only need to study the eigen-
values of the Jacobian matrix (17) at the different solutions
(r*, a*, s*) of (16), which are respectively

(1) £V3h/=B(A+B)(B+O)/(A+2B+ 0)/2;
(2) +h/BBA+B)(B+3C)/BA+2B+30)/2;
(3) £+/3h/—(A+ B)(3A + B)/2; and

4) £v3h/=(B+ C)(B+3C)/4.

according with the previous four conditions. Then, from
statement (b) of Theorem 3, it follows the stability of the
periodic orbits described in Theorem 1.

4 Conclusions

We have used one important tools of the area of dynami-
cal systems, the averaging theory for studying analytically
the existence of periodic orbits and their stability adapted to
Hamiltonian systems. The main results on the periodic or-
bits of the Hamiltonian system (4) are summarized in Theo-
rem 1.

Acknowledgements The second author is partially supported by the
grants MICINN/FEDER MTM 2008-03437, AGAUR 2009SGR410,
ICREA Academia and FP7-PEOPLE-2012-IRSES-316338.

References

Abraham, R., Marsden, J.E.: Foundations of Mechanics. Benjamin,
Reading (1978)

@ Springer



50 Astrophys Space Sci (2013) 344:45-50

Belmonte, C., Boccaletti, D., Pucacco, G.: On the orbit structure of the Papaphilippou, Y., Laskar, J.: Global dynamics of triaxial galactic

logarithm potential. Astrophys. J. 669, 202-217 (2007) models though frequency analysis. Astron. Astrophys. 329, 451—
Calzeta, E., Hasi, C.E.: Chaotic Friedmann—Robertson—Walker cos- 481 (1998)
mology. Class. Quantum Gravity 10, 1825-1841 (1993) Pucacco, G., Boccaletti, D., Belmonte, C.: Quantitative predictions
Hawking, S.W.: Arrow of time in cosmology. Phys. Rev. D 32, 2489— with detuned normal forms. Celest. Mech. Dyn. Astron. 102, 163—
2495 (1985) 176 (2008)
Merritt, D., Valluri, M.: Chaos and mixing in triaxial stellar systems. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems.
Astrophys. J. 471, 82-105 (1996) Universitext. Springer, Berlin (1996)
Page, D.: Will entropy decrease if the universe recollapses? Phys. Rev. Zhao, H.S., Carollo, C.M., De Zeeuw, T.: Can galactic nuclei be non-
D 32, 2496-2499 (1991) axisymmetric? The parameter space of power-law discs. Mon.
Papaphilippou, Y., Laskar, J.: Frequency map analysis and global dy- Not. R. Astron. Soc. 304, 457-464 (1999)

namics in a galactic potential with two degrees of freedom. As-
tron. Astrophys. 307, 427-449 (1996)

@ Springer



	Periodic orbits of the generalized Friedmann-Robertson-Walker Hamiltonian systems
	Abstract
	Introduction
	The averaging theory
	Proof of Theorem 1
	Conclusions
	Acknowledgements
	References


