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Abstract A new class of well behaved anisotropic super-
dense stars has been derived with the help of a given class of
charged fluid distributions. The anisotropy parameter (or the
electric intensity) is zero at the centre and monotonically in-
creasing towards the pressure free interface. All the physical
parameter such as energy density, radial pressure, tangential
pressure and velocity of sound are monotonically decreasing
towards the surface. The maximum mass measures 3.8593
solar mass and the corresponding radius is 21.2573 km for
n=11.e. N tends to infinity.

Keywords Einstein’s field equations - Super-dense star -
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Physical quantities used in the article are
Solar mass (Mg) = 1.475 km

P, = (8nG/ch) pra®

P = (8;1G/c4)pta2

D = 8nG/c*)pa?

A = anisotropy parameter

Z = red-shift

G =6.673 x 1078 cm?/gs?

¢ =2.997 x 10'9 cm/s
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1 Introduction

In the general theory of relativity, Einstein asserted that
the governing space-time gets curved in presence of mat-
ter i.e. fluid, charge, gravitational field etc. It means for
a given material distribution the corresponding space-time
metric can be derived using relevant Einstein’s equations.
On the other hand a curved space-time metric cannot pre-
dict a unique material distribution and the same metric can
describe more than one physical situation. The preceding
statement has already been supported. By the work of Tup-
per (1981, 1983a, 1983b) and then by Maurya and Gupta
(2012a, 2012b), where they have shown that the same space-
time metric can represent (i) electromagnetic field and vis-
cous fluid (ii) perfect fluid and magnetohydrodynamic fluid
(iii) perfect fluid and viscous magnetohydrodynamic fluid
and (iv) anisotropic fluid and charged fluid. (Last one by
Maurya-Gupta). Certainly no astronomical object has a per-
fect fluid distribution. Therefore it seems worthwhile to
study the behaviour of the anisotropic fluid sphere in gen-
eral relativity. Anisotropy in the pressure could be intro-
duced by the existence of a solid core, by the presence of
type-3A super-fluid (Kippenhahm and Weigert 1990), dif-
ferent kinds of phase transitions (Sokolov 1980) or by other
physical phenomena. On the scale of galaxies, Binney and
Tremaine (1987) have considered anisotropies in spherical
galaxies, from a purely Newtonian point of view. The mix-
ture of two gases (e.g. monatomic hydrogen or ionized hy-
drogen and electrons) can also formally be described as an
anisotropic fluid (Letelier 1980 and Bayin 1982). Bowers
and Liang (1974) have investigated the possible importance
of locally anisotropic equations of state for relativistic fluid
spheres by generalizing the equations of hydrostatic equilib-
rium to include the effects of local anisotropy. Their study
shows that anisotropy may have non-negligible effects on
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such parameter as maximum equilibrium mass and surface
red-shift. Heintzmann and Hillebrandt (1975) studied fully
relativistic, anisotropic neutron star models at high densities
by means of several simple assumptions and showed that for
arbitrary large anisotropy there is no limiting mass for neu-
tron stars, but that the maximum mass of a neutron star still
lies beyond 3—4 Mg. Our aim is constructing models for rel-
ativistic anisotropic fluid spheres with physically reasonable
behaviour.

In the present paper, we have studied exact solutions to
Einstein’s gravitational field equations for anisotropic fluid
spheres, by using a static spherically symmetric space-time
that is already capable of describing a series of charged
perfect fluid spheres and concluded that maximum mass of
charged fluid and anisotropic fluid are very close to each
other. In this process the present article also yield a new class
of well behaved anisotropic fluids which are very important
in the description stellar structures.

2 Field equations

Let us consider the static, spherically symmetric line ele-
ment in curvature coordinates

ds? = —e*dr? — r2do* — r¥sin20d¢> + €' di?, 1)

where A = A(r) and v = v(r).
The Einstein’s field equations for charged perfect fluid
distribution and anisotropic fluid distribution are given by

1 o )
Gij=Rij — ERgu = —8rn [(p + Pvivj — pgij

L u 1 Kl
+ E<g FirFj — ZgiijlF
2
and
1
Hij = Rij — S Rgij
= —8x[(p+ prvivj — pigij + (pr — pxix;],  (3)

where v’ is the fluid four-velocity vector for both the energy
momentum tensor, and x’ is unit space-like vector orthogo-
nal to v'.

In the co-moving system we choose

v'=(',0,0,0, x'=(0,x%0,0). 4)

From v'v; = x'x; = 1, we obtain

vl = e /2, 22 )

The non-vanishing components of T]? are
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T! =p, T? = —py, T =T)=—P. (6)

If the same space-time represents both the distributions then
we should have

G,‘jZHij.

Further more if the distributions have the same fluid four-
velocity vector v*, then we get the following set of equations

A 1—e* 2
P A i Gl N S S
r r2 r4
v/ l—e* 2
—/{Tl1 =—¢* ( 3 ) =Kpr=Kp— q4’ ®)
r r r

=Kkpi=Kp+— . ©

where the prime denotes differential with respect to . While
pr(r), p:(r) and p(r) are radial pressure (in the direction
of x;), tangential pressure (orthogonal to x;) and energy
density respectively for the anisotropic fluid. On the other
hand for p(r), p(r) and E(= r_Z) denote pressure, energy
density and electric intensity respectively for the charged
perfect fluid distribution. Also the ¢ is given by ¢(r) =
47 for or2e*?dr = r?\/—Fi4F% = P2 FHeO)/2 repre-
sents the total charge contained within the sphere of radius r.
Also Fi4 is the only non- vanishing component of the skew-
symmetric electromagnetic tensor Fj;.

We are assuming p, # p;. The case in which p, = p,
corresponds to the isotropic fluid sphere. A = p; — p, is a
measure of the anisotropy and is called the anisotropy factor
(Herrera and Ponce de Leon 1985). A term 2(p; — p;)/r ap-
pears in the conservation equations Tk";l. = 0 (where a semi-
colon denotes the covariant derivative with respect to the
metric), representing a force that is due to the anisotropic
nature of the fluid. This force is directed outward when
p: > pr and inward when p, > p;. The existence of a re-
pulsive force (in the case in which p; > p,) allows the con-
struction of more compact objects when using anisotropic
fluid than when using isotropic fluid (Gokhroo and Mehra
1994).

Subtracting Eq. (8) from the Eq. (9) we get

" 12 /

1 2 v v v 1
k(T) —T;) =e [7+7—5——2}

/
g Y 1
— V) — 4+ —
¢ [4 * 2ri|
= «(p: — py) =2E>. (10)

Equation (10) reveals the equivalence of the anisotropy pa-
rameter A =« (p; — p,) =2E2.
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Also the solution of Eq. (10) with the given expression
of A may provide the anisotropic fluid distribution. There-
fore if the charged distribution is already is in hand i.e. E is
known, the A can easily be computed. The Egs. (7)-(9) pro-
vide the expressions for energy density p, radial pressure p,
and tangential pressure p; of the anisotropic fluid in terms of
the energy density p, pressure p and the electric intensity E
of the charged perfect fluid. However the region of physical
validity for the above physical quantities may not be same
for both the fluid distributions.

For example the radial pressure p, and pressure p can
not vanish for the same radius as the electric intensity is not
zero on the boundary. Also the monotonic increasing and
decreasing character of various physical quantities for either
fluid may not be similar in the same region. The set of val-
ues of arbitrary constants appearing in the space time given
by (10) will be different for anisotropic and charged perfect
fluid distributions as the former joins with the Schwarzschild
exterior solution while the later joins with the Reissner—
Nordstrom metric at the pressure free boundary.

Using the transformations ¢ = cor? (co is a positive con-
stant), e * =Y and ¢ = yz, (7)—-(10) assumes the forms

(1-Y) 2dY kcZp

e = s 11
$ ¢~ (in
4Y<d_y>l_(1_y):"l’r’ a2
do )y 0] o
ap. L Py 0 dy dY Y dy dY _ap
y d¢> "y d¢ d¢ 'y dp dp <o
(13)
and
d’y dy dY
2 —_— 2—._
4¢ Yd¢2+2 7o do
dYy A-¢ _
+[¢%—Y—T+l}y_0. (14)

Now let us consider the anisotropic and charged fluid model
obtained by Maurya and Gupta (2012a, 2012b) (which in-
fact is charged analogue of Durgapal’s 1984 neutral solu-
tion) which has ¢’ = y? = B(1 — ¢) " and

coAogp

2_A— .
A A ey

(15)

On inserting y and A = 2E? from (15) into (14) we get

dy [(n2+2n — D2 +2¢ — 1]
d¢o p(1—@)[(n—1)¢ + 1]

C 2
[t =y — 110 — )
= : (16)
lin— D+ 1]

A set of new exact solution can be obtained for all those val-
ues of n for which (1 4+n)/(1 — n) is a positive integer. The
class of polynomial anisotropic solutions is derived by Mau-
rya and Gupta (2012a, 2012b) for negative integral values of
n and cg < 0. However the present polynomial solutions are
obtained for positive fractional values of n.

Let (1 +n)/(1 —n) = N, where N is a positive inte-
ger >1.

Then (16) gives the solution

(1—¢)?
(1 —ag)P+h

A¢(l _¢)(3N+1)/(N+l)
Y= [ (1 —ag)N+D

(=DN(N + Do (1 — ¢)?
 (—ag)@HD

f(®)

(N +1) Agp(1 — ¢)?
N —1) (I —agp)V ! } a7
where,
2
a= ’
(N+1
o (N+1)(N—=3—1i)-A;
AIH_al+l+N2—(i+2)-N—(i+l)’
N-2
_ k N!aNik
Av-a=Y (=) oo
k=0
_ AN-2 = Ai~(l—¢)-¢N*3*i
f(¢)_(N—1)+l§N2—(i+2)-N—(i+1)’
i+1 N
. NlgN—J
L= _1\J _ _ N
a,+1—§o( Vo Av=w=d,

Anv_r=an_;=0 forall N <kandi=0to N —4.

The above solution is the same as obtained for charged
perfect fluid distribution. Therefore we have come across a
space-time metric defined by the known metric potentials
e’(=y?) and e *(=7Y). Itis interesting to see that the same
time is capable of representing two physical situations viz.
charged perfect fluid distribution as well as anisotropic fluid
distribution. Various physical quantities for the said distri-
butions can be furnished as below:

(a) Charged fluid distribution: The expressions for pres-
sure, energy density and electric intensity are already
available in the article Maurya and Gupta (2012a,
2012b) subject to the defining space-time joining
smoothly with the Reissiner-Nordstrom metric at the
pressure free interface.

(b) Anisotropic fluid distribution: The expressions for en-
ergy density, radial pressure and tangential pressure are
given as:
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[ AU =¢)*V/ NtV H(g)
(N +1D(1 —ag)V+2

(=DNI (@) f(¢)
(1 —ap)N+2

J(@) =N+ D[4p(1 —9)* + 1 — )1 —ap)(3 —T¢)],
N+l )
_ i (N+Dla'e'™>
Pl(¢)—i§( D NT1-hh

kKep _ _ 2(=DY(N + Do (1 — $)?G ()
0 (1 —ap)N+! Pa(¢) =[(1 —ap)(5¢ — 1) —2a(N + ¢ (1 — ¢)],
dP1(P) 4N —Do(1—9¢)
+(l—a¢)N+1 (N+1)(1—Cl¢)N+2 P3(¢)=(1_¢)(1+3¢)7
(N+DAg (1—-¢) _ .
- oD ) T —ag)V 72 - Pr(¢) | G((p):NXf A; - pN 3
(18) —~ N2—(i+2)-N—(@G+1
_ _ (N=3—0DA; (1 —¢)p"N "
MP@) AU —¢)PN VIR TR G1D NG I
(1—ag)V+1 "~ (N 4 1)(1 —ag)N+! =0
pr_| | S@) (199 R@=N¢—3¢+N+1,
o (N+ 1)1 —ag)N+!
N S@=2(N-1D1A—-¢)—¢-Pi(p)(N +1).
=DV A —¢) - R(@)[f(P)
L (1 —ap)N+1 | Consequently the expressions for pressure and density gra-
dients read as
and
Kc2 dp [A d,01 n @ _ d,03
“pr_ Bod “pr 00 < d¢ dp g " dg
co [1—1{2/(N+D}e1V
dp4 dps dps}
+—=—2. =22 Q1)
where deo d¢  do
H(¢)=(1—@)(N +1+2¢ +4Np) where
+2(1 —ag)(N +1—2¢ —4Ng),
dpi _ (N+ 1D [(A—ad)pi(p) + (1 —¢)p2(d) + p3(¢)]
dp — (N—-1) (1 —ag)N+3
dpr _ (1 —aP)[Pi1(§) +¢q1(P)]+2¢P1 (¢)
d¢ (1 —ag)N+2
dps _ [(1 —a@){(1 —¢)(N + Dh(p) —2NH(¢)} +2(N +2)[d — ¢)H(¢)]
d¢ (N + D(1 = ag)N+3(1 = ¢)1=M/THN)
dpy4 — W (I —ap)[f ()M (¢) — J(P)G(P)] + a(N +2)J(¢>)f(¢>) -
d¢ (1 —ag)N+3 (22)
dps (= DN (N + DI — ag){p(1 — $)>N($) + (1 — 4¢ + 3¢*)G($)} + G1(¢)]
dp (1 —ap)N+2
dps _ 40 = N) (1 —ag)(1 —2¢) +a(N +2)¢(1 — ¢)
dp ~ (1+N) (1 —ag)N+3
K dpy [ dpi dp2 dp3 Ndpq
_ = | A _
Cdo ~2ap T ag tag TV g
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where
@_(N+1>.[(1—a¢>(2 6¢)+a<N+1><1+3¢>(1—¢>}
d¢p  (N—1) (1 —ap)N+2

dpy _ [(1 —ad){(1 = $)(N> —2N —3) —2NR(¢)} + 2(N + DR(p)(1 — ¢)](1 — )V~ D/(V+D
dp (N + D2(1 — ag)N+2 ’

dpy _ (1 —ag)t(¢) +25(¢)
dp ~ (N+ DA —ap)N+2"’

dps _ (1 —ag)[(1 —¢)f(@)(N —3) — (1 —P)R(@)G (@) — R(®) f(#)] +2(1 —$)R(9) [ ()

do (1 —ag)V+2

and m(g) = 4a(N +2)¢(1 — ¢)* + (1 — ag)(10 — 36¢
Kdpi _ Moll+20((N =D/ + DY  cdpr +26¢7%),

codp  [1—{2/(N + D)}V co dp’

with h(@) = —(N + 1)(1 +2a) — 2+ 4N)(1 +2¢ — 4ag),

p1(9) =2a(N + Dol —¢) — (1 —ap)(5¢ — 1), )
J(@)=(N+D[4p(1 = ¢)" + (1 —9)(1 —ag)(3 - 79)],

52(#) = (5 +a) — 10a¢p — 2a(N + 1)(1 — 29),
2@) =0 +a) -~ 10a¢ —2a(N + 1)(1 - 2¢) H(@) = (1 — $)(N + 1+ 26 +4Ng)

73(@) =[(1-ap)(5¢ = 1) = 2a(N + D(1 - $)] PR T
N +2
x a(N +2), M(¢) = (N + 1[4 — 16¢ + 129> — (1 — ¢)

N3 A - gN=3—i x Ba+7—14a¢) — (3 —7¢)(1 —ag)],

G(¢)=§Nz_(,-+2)~N—(i+1)

Gi(p) =201 — 9)*G(9).

- Nf (N =3=D)A; (1 — )N 4

NG+ N—G+D) In order to be physically meaningful, the interior solution

for static fluid spheres of Einstein’s gravitational-field equa-
tions must satisfy some more general physical requirements.

Nt 5 The following conditions have been generally recognized to
l
Pi(¢) = Z( 1)1 (N +Dla! ¢ be crucial for anisotropic fluid spheres Herrera and Santos
(N+1-=10)!- i (1997).

(i) The solution should be free from physical and geo-
N+1 VN 4 Digii=3 metric singularities and non zero positive values of ¢*
q1(¢) = Z(_l)" (—2)(N + Did'¢ , and e’ i.e. (¢*),—o=1and ¢’ > 0.

i=3 (N+ 1=t (i1) The radial pressure p, must be vanishing but the tan-
gential pressure p;, may not vanish at the boundary
r = a of the sphere. However the radial pressure equal
N@) =2 Z (N—3—0)A; "N+ to the tangential pressure at the centre of the fluid
—(@+2)-N—(@G+1 sphere.
(iii) The density p and pressures p,, p; should be positive
N2(NZ3—i)(N—4—D)A; - (1 — g)pN—5— inside the star.
o N2—(i+2)-N—(i+1) ’ (iv) (dpy/dr),—o = 0 and (d*p,/dr?),—o < 0 so that
i=0 pressure gradient dp, /dr is negative for 0 <r <a.
(V) (dp;/dr)r—o = 0and (d*p;/dr*),—o < 0 so that pres-
t(@)=—-2(N—-1)—(N+ 1DPi(¢) —d(N + 1)q1(9), sure gradient dp; /dr is negative for 0 < r <a.
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(vi) (dp/dr),—o =0 and (d*p/dr*),—o < 0 so that den-
sity gradient dp/dr is negative for 0 <r <a.
The condition (iv), (v) and (vi) imply that pressure and
density should be maximum at the centre and mono-
tonically decreasing towards the surface.

(vii) Inside the static configuration the speed of sound
should be less than the speed of light, i.e.

dp;
cZdp

dpy
c2dp

0< <1 and 0<

In addition to the above the velocity of sound should
be decreasing towards the surface. i.e. 7 r(dp L) <

or (d p’) > 0 and (dp’) <0 or (d p’) > 0 for
0<r 5 a i.e. the Velomty of sound is 1ncreasing with
the increase of density.

(viii) A physically reasonable energy-momentum tensor
has to obey the conditions p > p, +2p; and p + p, +
2p; > 0.

(ix) The central red shift Zy and surface red shift Z,
should be positive and finite i.e. Zg = [(e7V/? —
1)y—o] > 0 and Z, = [¢*®/2 — 1] > 0 and both
should be bounded.

3 Properties of new class of solutions

In order to meet out the above conditions (i)—(ix), we need
to supply the following data:

|:/cc2,0] — A [(N+1)]
co J1,—g (N-1

+3(-1) <N+1)[AN j+A§3]<24a>
KDy (N+1) 2N = 1)
= Ao Aqp—Y
[co l—o [(N—l)]+ NS
N An—2 | AN-3
(—1) <N+1>[N_1+ d ] (24b)
KDt . N+1 2(N —-1)
[ELO_AO[N—I]+“ N+ D)
— (-1 (N+1>[ N- j#”;*], (24¢)
[KC dp} =2¢0 [id—p} =0, (24d)
co dr 0 codo
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_5‘1’”} :2cor[£dp’] =0, (24¢)
Lco dr J,—g co do
[« dp; _ Kk dp; .
e ZW[%%L 0 40
)
L o dr? r=0
r Ao(N +1) T
W[2G(N+ D—(G+a)]
1
+5(N -1 +A
=2¢ ( ){(N+1) } . (249)
An_3 AN_4
— 1 —
N+ ){ 2 (p+3)}
x {3+2(-=D"} _
K d*pr
co dr?
AO(N—H) L N-DA  (d-N)
(N—-1) (N+1) (1+N)
—2|  —(-1 )N W =3 (24h)
- 0 (N—l) N-2 s
N+1
—2AN_3+ EN+3§AN—4}
Kk dzpt
co dr?
ZAON (N—DA (1—=N)
(N—1) (N+1)  (1+N)
=2 . V=3) , (24)
- 0 (N—l) N-2
N+1
—2AN_3+ ENi_3;AN—4}

In order to have (p)r—0 = 0. (p)r=0 = 0, (d*p,/dr?),—o <
0, and (d*p/dr?),—o < 0, we ought to satisfy the following
inequalities

—DHVN +1 N -3
Sl ; - )‘{EN_I;AN—Z_ZAN—S
(N+1) (1-N) S5(N+DK
+(N_3)AN4}+ > + y
(—1) (N+1){ N= i+A1‘;‘3}
<A< (25)
_ K(IN +5)
6

Further the velocity of sound at the centre reads as
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AgN+1) (N-DA N{(N—3) - (N+1) } (I—N)]
[dp,} B [ (N—1) Wiy TV o AN TN T AN Y 26a)
cdp |,_y [ Ag B (N { 1 }_{AN_3_ AN_4} _ N]
N+ D] o260V + D = G+l +5 i oy +A > iy B2
and
20 _(N-DA__y [N (N+1) (1—N)
[dpz} _ [(N—l) vy Y {<N—1)AN2 2AN3+<N—3)AN‘4}+(1+N>} (26b)
c2dp 1~ (N—I—l)[ 20 1N+ 1) = 5+a) 45N { ! +A}—{AN*3— AN*4}{3+2(—1)N}]
(N-1) (N+D [(N+ 1) 2 (N +3)
<[ de pr(a) =0. (33)

for all values of Ao > 0 and A The expression for grav1ta—
tional red-shift Z is given by

_ \n/2
7= 4= Q27

VB

For the central gravitational red-shift to be non zero positive
finite, we must have

1>+B>0. (28)

Differentiating equation (27) w.r.t. r, we get,

[dz_z} _ " g 29)
dr? N \/E< '

As the right hand side of (29) is negative we conclude that
the gravitational red shift is maximum at the centre and
monotonically decreasing towards the surface.

4 Boundary conditions
Besides the above, the fluid balls is expected to join

smoothly with the Schwarzschild exterior solution at the
pressure free boundary r =a

oM\ !
ds? = _(1 - _) dr? — r*(d6* + sin® 0d¢?)
r
2M
+(1—=—)dr*, (30)
r

which requires the continuity of e* and e” across the bound-
ary

2M
Yam’s(a)zl_jv 3D

2M
yia)y=1- o (32)

and the radial pressure vanishes at the boundary i.e.

The condition (33) can be utilized to compute the value of
the arbitrary constants A as follows:

On setting ¢r—; = ¢ = coa? (a being the radius of the
fluid balls).

The radial pressure at p,(a) = 0 gives

_ (N+1)
(1= )N/ (NEDR(gy,)

X [(—I)N(l = ®a) - R(¢a) f(Pa)

S(¢a)
—A ) — 34
oP3(¢a) (N~|—1)} 34
where
R(¢pa) =Ny — 3¢, + N + 1,
S(pa) =2(N — (A = ¢a) — ¢pa P1(da)(N + 1),
P3(¢a) = (1 — ¢a)(1 + 3¢a),
N+1 i pi—2
v, (N4 Dlaigi?
P1(¢a>—gj( o TR
B AN 2 (=) - g
F(9a) = +ZN2 (i+2)-N—(@G+1)
The expression for mass can be written as
r A¢a(1 _¢a)(3N+l)/(N+l) 7
T a0
(1 — ¢a)?
_ (p+1)
M :1 (1 —agpy) Pt 3%
a 2 (=DN(N + D (1 — ¢0)*
- (l _Cl¢a)(‘N+l) f(¢a)
(N +1) Noda(1 — ¢a)?
L (N=1) (1 —agp,)N+1 _
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Fig. 1 Behaviour of maximum 42¢
mass for charged fluid and 4
anisotropic fluid distribution 381
versus N = 3BF
= 34¢F
o 32F
s 3[
£ 28}
2 26}
£ gg L
= 5 s
18F
16}

1.4

- g e e e e b 4 =

— & — Graph of maximum mass for charged star models verus N
—— Graph of maximum mass for anisotropic star models versus N

2Ll
0510 2

such that Y,,;s(a) =1 —
11— ZTM gives

a

r A¢a(1 _ ¢a)(3N+1)/(N+l)
(I —apy)N+D
(1—¢a)*
(1 —agy) P+

1

M, where M = m(a) and yz(a) =

~ =DYNV A+ Dga(l = da)?

0 30 40 50 GO 70 80 90 100 110 120 130 140 150 160 170 180 190 20
N—

J(¢a) = (N + D[4¢.(1 — ¢0)*
+ (1 — ¢a)(1 — aga)3 —744)].

N+1

(N H ipi—2
Pi(¢) = Z(_I)ZM_
i=2

(N+1-=0)!-i!

’

B——
(1—=¢a)™" (1 — apy)N+D

X f(¢a)

(N + 1) Agga (1 — ¢)?

Py (¢a) = [(1 = aga)(5ha — 1) = 2a(N + D¢a(1 = ¢a)],

P3(¢a) = (1 - ¢a)(1 + 3¢u):

Also, if the surface density p, is prescribed as

2 x 10" gem™3 (super dense star case) then

stant co can be calculated for a given ¢, (= coa?), using the

following expression

[ A= ¢)*N VD H (g,)
(N + D1 — agy)V+2

(N—=1 (I-ag)N+!

N-3

Ai-gy
G(¢a):§Nz_(i+2).N—(i+1)

(36)

(N =3 —0)A; - (1 — )N 4

N—-4
_g N2—(i4+2)-N—(+1

value of con-

5 Physical analysis and conclusion

M In the present article we have obtained the anisotropic super-

(1 —ag)N+! dense star models with metric potential g44 = B(1 — cor?)™"

2(-DN(N + Do (1 — q)a)zG(qba) for positive fractional values of n such that N = (1 + n)/

K¢ pg N (1 — agy)N+1 (1 —n) is a positive integer and analysed with subject to the

c 4N — Dpa(1 — o) relevant physical conditions. The maximum mass is seen in-

(N + D —apy)N+2 creasing with the increasing values of N > 2. The maximum

(N +1)Ag (1= ¢a) mass is found to be 3.8593 Mg atn =1 i.e. N — oo with

- N=D . T —ap V72 - Pr(¢py) the corresponding radius 21.2573 km. Moreover the condi-

“ tion p — p —2p; > 0 is true for all the anisotropic star mod-

(=DNJ(¢a) f ($a) els. The radial velocity of sound (/dp,/dp ) and tangential

L (1 —apy)N+2 . velocity of sound (v/dp;/dp ) are found to be monotonically

(37)  decreasing towards the pressure free interface for N > 2.

0 Red-shift for whole family of super-dense star is computed.
wit

H(¢a) = (1 = ¢pa)(N + 14 2¢s +4N o)

+2(1 —agy)(N +1—2¢, —4Ng,),

@ Springer

For all the models the anisotropy parameter A = p; — p, is
positive throughout the range and hence helps the outward
pressure to avert the gravitational collapse of the super dense
star models so obtained.
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Table 1 Maximum mass
(M /Mg ) and Radius (a) for N

Charged fluid distribution

Anisotropic fluid distribution

different n, Ay and coaz for Ao coa2 a M /Mg Ao coa2 a M /Mg
Charged fluid distribution and

Anisotropic fluid distribution 5 0.1845 0.3199 18.3272 1.7238 0.1905  0.2967 16.1346 1.5284

15 0.1500 0.3487 19.8938  3.0249 0.1635  0.3235 18.9823 27182

30 0.1256 03587  20.6980  3.4249 0.1467  0.3347 19.1645  3.2128

100 0.0967 03623  21.1996  3.6788 0.1123 03494  19.9978  3.4637

200 0.09668 03679  21.3135  3.6898 0.1054 03587 202564  3.6033

n=1 009647 03697 229698  3.9578 0.1049 03617 212573  3.8593

Owing to the above Fig. 1, the dash line and solid
line represent the variations of masses for charged and
anisotropic fluids spheres respectively for various values of
N and we conclude that mass for well behaved charged stars
models is always greater than the mass of anisotropic star
models (subject to the conditions (i)—(ix)). The Table 1 de-
scribes the variations of mass and radius of charged and
anisotropic fluid spheres corresponding to various integral
values of N. Also we conclude that the masses tends to cer-
tain limit as N increases infinitely or (n = 1).
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