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Abstract The paper presents a Neuro-Fuzzy model to pre-
dict the features of the forthcoming sunspot cycles 24
and 25. The sunspot time series were analyzed with the
proposed model. It is optimized based on Backpropaga-
tion scheme and applied to the yearly smoothed sunspot
numbers. The appropriate number of network inputs for
the sunspots data series is obtained based on sequential
forward search for the Neuro-Fuzzy model. According to
the model prediction the maximum amplitudes of the cy-
cles 24 and 25 will occur in the year 2013 and year 2022
with peaks of 101 ± 8 and 90.7 ± 8, respectively. The corre-
lation and error analysis are discussed to ensure the perfor-
mance of the proposed Neuro-Fuzzy approach as a predictor
for sunspot time series. The correlation coefficient between
Neuro-Fuzzy model forecasted sunspot number values with
the actual ones is 0.96.
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1 Introduction

It is quite well known that the sunspot numbers (Rmax) has
a good relation with solar activities such as flares, so Rmax

can be used as an indicator for this kind of sudden eruption
and for prediction the forthcoming solar activity. The so-
lar activity has a strong influence on the space weather, that
makes the sun is an exciting target to observing and record-
ing the evolution of sunspots as a good global tracer of solar
activities. Either the sunspot numbers or the geomagnetic in-
dices of the solar activity cycle can be providing the features
of the forthcoming solar cycles. The methods used any of
these parameters are classified as precursor methods. Vitin-
sky (1965) presented the prediction techniques available at
that time. Hathaway et al. (1999) discussed different solar
cycle prediction techniques and divided them into two cate-
gories, regression techniques and precursor techniques. The
regression techniques include regressions, curve fitting and
neural network. They predict the feature activity as a func-
tion of time. The precursor techniques give an estimate of
the amplitude of the forthcoming cycle.

Historical records of yearly sunspot numbers in the time
period (1800–2009) published in SIDC website (http://sidc.
oma.be/sunspot-data) were used. It is well-known that the
solar activity controls the disturbance in the space weather
and the variation in the climatic parameters and most of
activities on Earth. The collection of sunspot number data
in Sunspot Index Data Center (SIDC) motivates the as-
tronomers and solar physicists not only to predict the fu-
ture of the solar activities, but also to reveal the nature of
sunspot activity, the mechanisms of solar-terrestrial relation-
ships, climate and weather change and so on (e.g. Zimbardo
et al. 2009).

The strength of these events based on the intensity of so-
lar cycle activity. Therefore, the earlier prediction of the so-
lar activities will prevent us from disturbances, which can
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Table 1 The recent predicted
maximum sunspot numbers
(Rmax) and Peak time of solar
cycle 24 by several authors

Rmax Peak Time References

52.5 ± 13.1 Du (2012)

84 ± 33 Du and Wang (2012)

84 June 2013 Passos (2012)

74 ± 10 September 2013 Kakad (2011)

90 ± 20 Kane (2011)

113.3 Nov 2013 Rigozo et al. (2011)

65 ± 13 2013 Ajabshirizadeh et al. (2011)

95 ± 20 2012.5 ± 0.5 Chumak and Matveychuk (2010)

131 ± 20 July 2012 Dabas and Sharma (2010)

58.0 ± 25.0 Kane (2010)

72 ± 27 Komitov et al. (2011)

110.2 ± 33.4 April–June 2012 Pishkalo (2010)

84.5 ± 23.9 Yoshida and Yamagishi (2010)

111 ± 21 Bhatt et al. (2009)

87 2012 Kilcik et al. (2009)

117.5 ± 8.5 June 2012 Uwamahoro et al. (2009)

124 ± 23 Dabas et al. (2008)

110 ± 11 Hiremath (2008)

103 ± 10 Javaraiah (2008)

101 ± 8 2013 This work

be due to the energetic particles released during the solar
activities.

Different approaches were used to achieve a good fore-
casting for solar activity, in which the features of the pre-
ceded cycles were used to predict the behavior of the fu-
ture cycles (e.g. Kane 2011; Ajabshirizadeh et al. 2011;
Du 2012).

Recently, Petrovay (2012) reviewed and discussed in de-
tail main three-prediction method groups and listed their
prediction results for the cycle 24. He defined these groups
as precursor, extrapolation and model based methods. The
last method group uses the dynamo models in the predic-
tion analysis. The precursor method is based on a specific
solar activity parameter either sunspot number or geomag-
netic index at a certain time in the prediction of maximum
amplitude of the following solar cycle. In the extrapolation
prediction method, the time series of solar activity indicators
(e.g. sunspot numbers, aa index) are used. It based on more
than one previous data points to predict the future time se-
ries of this indicator. The method group includes regression
procedures, curve-fitting and neural networks.

Table 1 gives the newly published articles used the above
methods for prediction of cycle 24. Kane (2010), Yoshida
and Yamagishi (2010) used precursor method, while Du
(2012), Du and Wang (2012), Rigozo et al. (2011) and
Ajabshirizadeh et al. (2011) have applied the extrapolation

method. Passos (2012) used the truncated dynamo model.
According to the prediction data given in Table 1, the maxi-
mum peak of the cycle 24 has a wide range of values, it lies
between 52.5 from Du (2012) and 124 (Dabas et al. 2008).

In the nineties of the twentieth century came new meth-
ods based on Artificial Intelligence (AI) to predict the solar
activity. The AI methods are hybrid of Fuzzy logic, neural
networks and genetic algorithms. Calvo et al. (1995) used
Neural Networks for prediction of solar activity. Attia et al.
(2005) used Fuzzy Logic Neural Network (FLNN) model to
predict solar cycle 23. Quassim et al. (2007) applied FLNN
to predict solar cycles 24 and 25 based on genetic algorithm.
In this work we introduce a Neuro-Fuzzy model based on se-
quential forward search technique to predict cycles 24 and
25. Reconstructing Neuro-Fuzzy model is determined by se-
lecting the appropriate number of inputs based on smallest
Root Mean Square Error (RMSE). The simulation results,
correlation analysis and conclusions are presented.

2 The Neuro-Fuzzy model

Figure 1 shows the basic structure of a Neuro-Fuzzy net-
work, introduced by Lin and Lee (1991). This structure
has been used by many authors and modified by Horáček
(1995).The gradient search scheme was used to optimize the
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Fig. 1 Basic structure of Neuro-Fuzzy topology

original structure. First let us describe the structure of the
Neuro-Fuzzy model that we use in this work. The following
notation is used to describe the function of the nodes in each
of the five layers.

netLi the net input value to the ith node in layer L.

OL
i the output value to the ith node in layer L.

wij the link that connects the output of the j th node in
layer 3 with the input to the ith node in layer 4.

2.1 The model structure

The Neuro-Fuzzy model is consists of five layers, as follows:

Layer (1): Each node of this layer transmits the input values
(x1, x2, . . . , xm) to the next layer.

O1
1 = x1, . . . ,O

1
m = xm. (1)

Layer (2): This layer is known as Fuzzy layer, because each
node has a Fuzzy set. For a bell-shaped membership func-
tion, the activation input and output of this layer are:

net2i =
{

O1
1 for i = 1,2, . . . , n1

O2
2 for i = n1 + 1, . . . , n1 + n2,

O2
i = exp

(
−

(
(net2

i −c2
i )

σ 2
i

)2)
for i = 1, . . . , n1 + n2,

(2)

where the parameters c and σ are the center and width of the
bell-shaped function.

Layer (3): Rule layer
A T-norm operation is used to specify the precondition

matching of the Fuzzy rules. The output of the rule in this
layer is determined by an AND-operation.

net3i = min
(
O2

j ,O2
k

)
, i = n2(j − 1) + (k − n1)

for j = 1,2, . . . , n1; k = n1 + 1, n1 + 2, . . . , n1 + n2,

O3
i = net3i , i = 1,2, . . . , n1 × n2.

(3)

Layer (4): Rule weight layer
This node performs a Fuzzy OR–operation to integrate

the fired rules, which have the same consequent modified by
rule weights. The output of this layer is represented by:

net4i =
n1×n2∑
j=1

wijO
3
i

O4
i = min

(
1, net4

i

)
, for i = 1,2, . . . , n3.

(4)

The rule weight has w values either one or zero.

Layer (5): This layer computes the output of a Fuzzy model
based on the defuzzification method. The most widely used
method is center of area defuzzification.

net5i =
n3∑

j=1

c4
j σ

4
j O4

j , then O4
i = net5i∑n3

j=1 c4
j σ

4
j

, (5)

where the j th link weight in this layer is c4
j σ

4
j .

2.2 Appropriate inputs for the Neuro-Fuzzy model

It was much more difficult to choose the appropriate number
of network inputs for the sunspots data series. In this sec-
tion, reconstructing the Neuro-Fuzzy model is determined
by selecting minimum numbers of variables based on the
smallest Root Mean Square Error (RMSE) as described in
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Fig. 2 Appropriate input
variables to the Neuro-Fuzzy
model. Training (circles) and
checking (asterisks) errors

Jang’s method (1997). For simplicity, we suppose that there
are 12 inputs sunspot numbers at their timing given as fol-
lowing: (x(t − 1), x(t − 2), x(t − 3), x(t − 4), x(t − 5),
x(t −6), x(t −7), x(t −8), x(t −9), x(t −10), x(t −11) and
x(t − 12)) and the output to be predicted is x(t). A heuris-
tic approach to input selection is called sequential forward
search, in which each input is selected sequentially to opti-
mize the total squared error. In sunspots data series, x(t −1)

and x(t − 3) are selected, because their Neuro-Fuzzy model
has the smallest RMSE. Seven Gaussian fuzzy sets are cho-
sen for each input variable.

2.3 IF THEN-rules

The antecedent part of the Fuzzy rules has Gaussian Fuzzy
sets and crisp values in consequent part. The Mamdani infer-
ence algorithm is used to form the rules according to Wang
and Mendel (1992):

Rj : If x(t − 1) is Aj1, . . . , and x(t − 3) is Ajm,

then x(t) is bj × wj (6)

where Aj1, . . . ,Ajm are the fuzzy sets constructing the an-
tecedent part of rules, w is the rule weight and bj is a
crisp value. A set of fuzzy rules represents the Neuro-Fuzzy
mechanism for adjusting the effect of certain system. Thus,
the aim of Neuro-Fuzzy model is to replace a skilled human
operator with a fuzzy rules-based system.

The Neuro-Fuzzy model works in the following manner.
In the forward run, the input values (crisp values, fuzzy sets)
are first compared with all premises of the rules (input refer-
ence fuzzy sets). The outputs of the AND-neuron are then
combined with rule-weight (preference between rules) to
obtain the degree of rule activation. In the last layer, these
degrees are aggregated with the corresponding consequents
of the rules (output reference fuzzy sets) according to the
inference algorithm. The output of the Neuro-Fuzzy model
can be a fuzzy set or a crisp value (after defuzzification). The

Fig. 3 Neuro-Fuzzy model with appropriate input variables

optimized Neuro-Fuzzy structure is based on Backpropaga-
tion algorithm. It optimized the parameters of inputs refer-
ence fuzzy sets, rule weights and output singletons.

3 Simulation results and discussions

The preliminary results show the proposed Neuro-Fuzzy
produce good results in modeling sunspot cycles. The struc-
ture of Neuro-Fuzzy model has optimized using Backprop-
agation algorithm. Selecting appropriate input variables to
the Neuro-Fuzzy model are x(t − 1) and x(t − 3) based on
the smallest RMSE for one epoch as shown in Fig. 2.

Figure 3 shows the Neuro-Fuzzy model discussed in
Sect. 2 with the appropriate input variables; x(t − 1),
x(t − 3) and predicted sunspot number; x(t). Due to in-
put variables, the Neuro-Fuzzy model complexity is de-
creased because decreasing number of rules. The data set
of the sunspot benchmark have been divided into three sets,
a training set, a testing set and a prediction set. The train-
ing set is used to fit the parameters of Neuro-Fuzzy model
during the training phase based on the Backpropagation al-
gorithm, while the testing set is to make sure the goodness
of the prediction procedure. The training data set is repre-
senting the whole record (1800–1988) which represent 188
sample points, and the testing data set is the rest of the pe-
riod (1988–2009) as shown in Fig. 4.

After training phase, the optimized Neuro-Fuzzy model
prediction is tested for cycles 22 and 23 and compared with
actual yearly sunspot data. Figure 4 shows the comparison
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Fig. 4 The annual mean
sunspot numbers based on
Neuro-Fuzzy model (solid line),
the dashed line represents the
observed sunspot numbers

Fig. 5 Prediction error between
observed sunspot numbers and
Neuro-Fuzzy model output

Fig. 6 Training error for Neuro-Fuzzy model

between observed sunspots and Neuro-Fuzzy model pre-
diction. In the comparison, the Neuro-Fuzzy model predic-
tion can well follow the pattern of the sunspot data. So, the
Neuro-Fuzzy model can be used to forecast the sunspot data
for the coming years.

The deviation between the predicted sunspot numbers
and the actual ones is given as function of time in Fig. 5,
while RMSE of Neuro-Fuzzy model set is presented in
Fig. 6. The trend of RMSE as a function of iteration num-
bers, it starts large and reaches to minimum and stabilized
value at the end of training part. In order to estimate the er-
ror in the maximum peaks, we compared the predicted max-
imum peak values for the previous cycles 22 and 23 with
their corresponding actual peak values. We selected cycles
22 and 23 only, because they lie in the testing set. The differ-
ence between the predicted and actual maximum peak val-
ues gave in percentage. We found the deviations are 7.5 %
and 8 % for the cycles 22 and 23 respectively. Therefore,
the prediction error of the forthcoming peak maximum is
the average of the above error values (8 %).

Fig. 7 Peaks of solar cycles 24 and 25

The maximum amplitude of cycles 24 and 25 will oc-
cur in the year 2013 and 2022 with peaks of 101 ± 8 and
90.7 ± 8, respectively as shown in Fig. 7.

The prediction of Neuro-Fuzzy model for the maximum
peak of cycle 24 is compared to recent prediction for dif-
ferent methods as shown in Table 1. The maximum peak of
the cycle 24 has a wide range of values, it lies between 52.5
from Du (2012) and 124 (Dabas et al. 2008). Therefore we
calculated the weighted mean of Rmax for the three method
groups from data given in Petrovay (2012) to get a reliable
sense to compare the predication goodness of these method
groups. These weighted means of Rmax are 92, 118 and 167
for precursor, extrapolation and model based methods re-
spectively. It seems that the last method gives overestimated
Rmax values according to the trained of long cycle, the peak
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Fig. 8 Autocorrelation and
cross-correlation coefficients for
prediction error and
inputs/output of Neuro-Fuzzy
model

of sunspot numbers of the cycle 24 might lower than that of
the cycle 23 by amount of 23 % (Rigozo et al. 2011).

In this work we find out that the maximum of cycle 24
and cycle 25 will occur in the year 2013 and 2022 with max-
imum amplitudes of 101±8 and 90.7±8 respectively. Thus,
the peak of solar cycles 24 and 25 would be 16 % and 24 %
lower than that of 23, our expected decay for the maximum
sunspot numbers for the forthcoming cycles agrees with the
finding given by Rigozo et al. 2011. They found that the
peaks of cycles 24 and 25 would be decreased than that of
cycle 23 by amount of 23 % and 5 % respectively.

4 Correlation analysis

Correlation is a measure of the relation between two or
more variables. In this case, it is the relation between the
Neuro-Fuzzy model forecasted sunspot numbers value with
the actual value of the sunspot numbers. Correlation coeffi-
cients can range from −1.00 to +1.00. The value of −1.00
represents a perfect negative correlation while a value of
+1.00 represents a perfect positive correlation as in Hill and
Lewicki (2007). A value of 0.00 represents a lack of cor-
relation. The correlation coefficient between Neuro-Fuzzy
model forecasted sunspot numbers value and the actual
value of the sunspot numbers is 0.96. One of the most com-
mon ways of validating Neuro-Fuzzy model is to display the
autocorrelation function of the residuals and the cross corre-
lation function between inputs and residuals. The autocorre-
lation coefficients between Neuro-Fuzzy model and predic-

tion error is shown in Fig. 8a and the cross-correlation coef-
ficients between the prediction error and the input variables
x(t −1) and x(t −3) are shown in Fig. 8b and Fig. 8c. Sam-
ple autocorrelation with 96 % confidence intervals (CI) for
sunspot data, 1988–2009. Dashed lines are simple approx-
imate confidence interval at 2/

√
N , where N is the sam-

ple size. The correlation coefficients almost stay within their
standard deviations.

5 Conclusion

The simulation results carried out in this paper shows the
effectiveness of the proposed Neuro-Fuzzy model as a pre-
dictor for the forthcoming cycles 24 and 25. In this work,
new method for selecting appropriate inputs for the Neuro-
Fuzzy predictor based on the smallest RMSE is presented.
The complexity of the proposed model is decreased due to
decreasing appropriate inputs leads to decrease number of
rules. Reconstructing the structure of the proposed model
and prediction of sunspot number series were performed.
The predicted sunspot numbers values are correlated with
the actual value of the sunspot numbers with the accurate
autocorrelation coefficients between prediction errors of the
model output. We predicted the maximum sunspot numbers
for the cycles 24 and 25 are 101 ± 8 and 90.7 ± 8 and it will
occur at 2013 and 2022 respectively.
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