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Abstract We present a well behaved class of charged ana-
logue of M.C. Durgapal (J. Phys. A, Math. Gen. 15:2637,
1982) solution. This solution describes charged fluid balls
with positively finite central pressure, positively finite cen-
tral density; their ratio is less than one and causality con-
dition is obeyed at the centre. The outmarch of pressure,
density, pressure-density ratio and the adiabatic speed of
sound is monotonically decreasing, however, the electric in-
tensity is monotonically increasing in nature. This solution
gives us wide range of parameter for every positive value
of n for which the solution is well behaved hence, suitable
for modeling of super dense stars. Keeping in view of well
behaved nature of this solution, one new class of solution
is being studied extensively. Moreover, this class of solu-
tion gives us wide range of constant K (0 ≤ K ≤ 2.2) for
which the solution is well behaved hence, suitable for mod-
eling of super dense stars like strange quark stars, neutron
stars and pulsars. For this class of solution the mass of a
star is maximized with all degree of suitability, compati-
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ble with quark stars, neutron stars and pulsars. By assum-
ing the surface density ρb = 2 × 1014 g/cm3 (like, Brecher
and Capocaso, Nature 259:377, 1976), corresponding to
K = 0 with X = 0..235, the resulting well behaved model
has the mass M = 4.03MΘ , radius rb = 19.53 km and mo-
ment of inertia I = 1.213 × 1046 g cm2; for K = 1.5 with
X = 0.235, the resulting well behaved model has the mass
M = 4.43MΘ , radius rb = 18.04 km and moment of inertia
I = 1.136 × 1046 g cm2; for K = 2.2 with X = 0.235, the
resulting well behaved model has the mass M = 4.56MΘ ,
radius rb = 17.30 km and moment of inertia I = 1.076 ×
1046 g cm2. These values of masses and moment of inertia
are found to be consistent with the crab pulsars.

Keywords Charge fluid · Reissner–Nordstrom · General
relativity · Exact solution

1 Introduction

There cannot be any general solution of general relativistic
(GR) gravitational collapse equations due to complexity of
the ten coupled nonlinear partial differential equations, an
unknown evolution of the equation of state of the collapsing
fluid and the associated complex radiation transport proper-
ties. At best, there could be particular solutions depending
on various simplifications and assumptions made for partic-
ular cases. In fact, in view of such difficulties, there cannot
be any general solution of the gravitational collapse prob-
lem even in the much simpler Newtonian gravity. This is
true even if one assumes spherical symmetry. Given such
difficulties, to make a significant headway, it is natural to
assume the collapsing fluid to be “dust” having no pressure
at all: p = 0. Further, if the dust is assumed to be homoge-
neous, one obtains an exact solution for GR collapse (Op-
penheimer and Snyder 1939) and apparently this solution
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corresponds to formation of a finite-mass black hole (BH).
However, the no-pressure assumption is obviously most un-
realistic, and therefore we may say that the final state of GR
collapse is still unknown.

It is, however, known that when non-geodesic body
forces are considered, GR collapse need not be monotonic.
For example, even for a non radiative adiabatic collapse,
Bondi (1969) found a gravitational bounce due to pressure
gradient forces and in general, a pressure gradient indeed
opposes the collapse (Mitra 2010). In reality, a gravitational
collapse is always nonadiabatic (Mitra 2006a) and effects
of dissipation and radiation pressure may lead to forma-
tion of radiation pressure supported hot stars (Mitra 2006b;
Mitra and Glendenning 2010). In fact, one of us has shown
earlier that radiative GR collapse may lead to formation of
modestly compact non-singular massive hot objects (Pant
et al. 2010; Pant and Tewari 2010). These objects are simi-
lar to radiation pressure supported hot super-massive stars,
first conceived by Hoyle and Fowler (1963). Once the col-
lapsing object dips below its photon sphere, both matter and
radiation quanta tend to move in closed orbits in a fash-
ion (Mitra and Glendenning 2010) somewhat like an Ein-
stein cluster (Einstein 1939), and this would create huge
tangential stresses. Such a tangential pressure could be an
additional source of support against gravitational contrac-
tion (Pinheiro and Chan 2008, 2011). In an interesting study
involving the role of tangential pressure (Pinheiro and Chan
2008) mentioned that “As we have shown the black hole is
never formed because the apparent horizon formation con-
dition is never satisfied. This could be interpreted as the for-
mation of a naked singularity. However, this is not the case
because the star radiates all its mass before it reaches the
singularity at r = 0 and t = 0. Not even a marginally naked
singularity is formed for the same reason, since in this case
the apparent horizon should coincide with the singularity at
r = 0 and t = 0. The pressure of the star, at the beginning of
the collapse, is isotropic, but due to the presence of shear, the
pressure becomes more and more anisotropic. The star ra-
diates all its mass during the collapse and this explains why
the apparent horizon never forms”. Further most of the as-
trophysical plasma is endowed with a frozen magnetic field
whose strength increases as 1/r2 during the gravitational
contraction. And non-geodesic effects due to the magnetic
field could play a very important role in the continued grav-
itational collapse. In fact, long back, it was claimed that
(Ardavan and Partovi 1977). “It is shown that gravitation-
ally collapsed bounded systems which are too massive to be
supported by their pressure may be held in equilibrium by
self induced magnetic stresses. Some physical implications
of the derived solutions—none of which contain a singular-
ity or an event horizon—have also been discussed.”

We may also recall a recent work on this line by Tsagas
(2006): “We also show that the relativistic coupling between

magnetism and geometry, together with the tension proper-
ties of the field, lead to a magneto curvature stress that op-
poses the collapse. This tension stress grows stronger with
increasing curvature distortion, which means that it could
potentially dominate over the gravitational pull of the matter.
If this happens, a converging family of non-geodesic world
lines can be prevented from focusing without violating the
standard energy conditions.” For a charged fluid, even if
one would ignore magnetic and radiation pressure, the elec-
trostatic repulsion itself may halt collapse (Pinheiro 2011).
Thus, after formulation of the Einstein-Maxwell field equa-
tions, the relativists have been proposing different models of
GR compact charged objects. The presence of a charge as a
component of counterbalancing the gravitational force is the
subject matter of the present paper. However, here we shall
consider only non-singular static solutions which will indi-
cate the formation of such compact objects following GR
collapse.

2 Static charged relativistic fluid spheres

It is well known that the presence of some charge may
avert the gravitational collapse by counterbalancing the
gravitational attraction by electric repulsion in addition to
the presence of a pressure gradient (Felice et al. 1995;
Ivanov 2002). Felice et al. (1995) proposed a model of a
charged perfect fluid and concluded that the inclusion of
charge hinders the growth of space-time curvature which has
a great role in avoiding a catastrophic collapse. In this con-
text Bonnor (1965) also pointed out that a dust distribution
of arbitrarily large mass and small radius can remain in equi-
librium against the pull of gravity by a repulsive force pro-
duced by a small amount of charge. Thus it is desirable to
study the implications of Einstein-Maxwell field equations
with reference to a prediction of gravitational collapse. For
this purpose, charged fluid ball models are required. The ex-
ternal field of such a ball must be the Reissner–Nordstrom
solution.

3 Einstein-Maxwell equation for charged fluid
distribution

Let us consider a spherical symmetric metric in curvature
coordinates

ds2 = −eλdr2 − r2(dθ2 + sin2 θdφ2) + eνdt2 (1)

where the functions λ(r) and ν(r) satisfy the Einstein-
Maxwell equations

−8πG

c4
T i

j = Ri
j − 1

2
Rδi

j
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= −8πG
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[(
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4π
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jFmnF

mn
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where ρ, p, ν′, Fij denote energy density, fluid pressure, ve-
locity vector and skew-symmetric electromagnetic field ten-
sor respectively.

In view of the metric (1), the field equation (2) gives
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r
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= 8πG
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c2
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where prime (′) denotes the differentiation with respect to
r and q(r) represents the total charge contained within the
sphere of radius r .

4 Conditions for well-behaved solutions

For a well-behaved nature of the solution in curvature coor-
dinates, the following conditions should be satisfied, in aug-
mentation of the Delgaty and Lake (1998) and Pant (2010)
conditions:

(i) The solution should be free from physical and geo-
metric singularities, i.e., should yield finite and posi-
tive values of the central pressure, central density and
nonzero positive values of eλ and eν .

(ii) The solution should have positive and monotoni-
cally decreasing expressions for pressure and density
(p and ρ) as r increases. There should be a positive
value pressure-density ratio, smaller than 1 (the weak
energy condition) and smaller than 1/3 (the strong en-
ergy condition) throughout the star, which should be
monotonically decreasing as well.

(iii) The casualty condition (dp/dρ)1/2 < 1 i.e., the veloc-
ity of sound should be less then that of light throughout
the model. In addition, the velocity of sound should de-
crease towards the surface, i.e., (d/dr)(dp/dρ) < 0, or
d2p/dρ2 > 0 for 0 ≤ r ≤ rb , i.e., the velocity of sound
increases with increasing density. In this context it is
worth mentioning that the equation of state in an ultra-
high distribution (Pant et al. 2011) has the property that
the speed of sound decreases outwards.

(iv) p/ρ ≤ dp/dρ everywhere within the ball as

γ = d lnp

d lnρ
= ρdp

pdρ
⇒ dp

dρ
= γ

p

ρ

and for realistic matter γ ≥ 1.

(v) The red shift z should be positive, finite and monotoni-
cally decreasing with increasing r .

(vi) The electric intensity E is positive and monotonically
increases from the center to the boundary, and at the
center the electric intensity is zero. Under these con-
ditions, one has to assume the gravitational potential
and electric field intensity in such a way that the field
equation can be integrated and the solution should be
well-behaved. Keeping that in mind, several authors
have obtained a parametric class of exact solutions:
Pant et al. (2011), Maurya and Gupta (2011) and Pant
(2011). These solutions are well-behaved with some
positive values of the charge parameter K and com-
pletely describe the interior of a super dense astro-
physical object with charged matter. Further, its mass
can be maximized by assuming the surface density
ρb = 2 × 1014 g/cm3.

5 New class of solution

Now let us assume

ev = B
(
1 + c1r

2)4 (6)

which is the same as that of the metric obtained by Durgapal
(1982).

Putting (6) into (3)–(5), we have

8Y

1 + x
− (1 − Y)

x
+ c1q

2

x2
= 1

c1

8πG

c4
p (7)

(1 − Y)

x
− 2

dY

dx
− c1q

2

x2
= 1

c1

8πG

c2
ρ (8)

and Y satisfying the equation

dY

dx
+ 7x2 − 2x − 1

x(x + 1)(5x + 1)
Y = x + 1

x(5x + 1)

(
2c1q

2

x
− 1

)
(9)

where x = c1r
2, e−λ = Y .

In order to solve the differential equation (9) we consider
the electric intensity E of the following form:

E2

c1
= c1q

2

x2
= K

2
x(x + 1)(5x + 1)3/5 (10)

where K is a positive constant. The electric intensity is so
assumed that the model is physically significant and well
behaved, i.e. E remains regular and positive throughout the
sphere. In addition, E vanishes at the centre of the star. Thus
we have

K ≥ 0, c1 ≥ 0 (11)
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In view of (10), the differential equation (9) yields the fol-
lowing solution

Y = e−λ = Kx(x + 1)3

5(x + 1)2/5
+ Ax

(x + 1)2(5x + 1)2/5

+ (−x2 − 10x + 7)

7(x + 1)2
(12)

where A is an arbitrary constant of integration.
Substituting (6), (9) and (12) into (7) and (8) we get the

following expressions for pressure and energy density

8πG

c1c4
p = K(x + 1)(43x2 + 25x + 2)

10(5x + 1)2/5

+ A(9x + 1)

(x + 1)3(5x + 1)2/5

+ 16(−x2 − 7x + 2)

7(x + 1)3
(13)

8πG

c1c2
ρ = −K(x + 1)(207x3 + 172x2 + 51x + 6)

10(5x + 1)7/5

+ A(9x2 − 10x − 3)

(x + 1)3(5x + 1)7/5
+ 8(x2 + 2x + 9)

7(x + 1)3
(14)

6 Properties of the new class of solution

8πG

c1c4
p0 = K

5
+ A + 32

7
(15)

8πG

c1c2
ρ0 = −3k

5
− 3A + 72

7
(16)

For p0 and ρ0 must be positive and p0
ρ0

≤ 1, we have

−k

5
− 32

7
< A ≤ −k

5
+ 10

7
, k ≥ 0, A < 0 (17)

Differentiating (13) and (14) w.r.t. to x, we get

8πG

c1c4

dp

dx
= Ka

10(5x + 1)7/5
− 4Ab

(x + 1)4(5x + 1)7/5

+ 16(x2 + 12x − 13)

7(x + 1)4
(18)

8πG
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10(5x + 1)12/5
− 4Ab1

(x + 1)4(5x + 1)12/5

− 8(x2 + 2x + 25)

7(x + 1)4
(19)

Dividing the above two equations we get,

1

c2

dρ

dρ
= −(5x + 1)

[
Ka(x + 1)4 − 280bA

+ 160(x − 1)(x + 13)(5x + 1)7/5][7Kb2(x + 1)4

+ 280b1A + 80(5x + 1)12/5(x2 + 2x + 25
)]−1

(20)

where

a = 559x3 + 673x2 + 217x + 23

b = 27x2 + 2x − 1

b1 = 27x3 − 47x2 − 31x − 5

b2 = 2691x4 + 3860x3 + 1806x2 + 332x + 15

(
8πG

c1c4
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)

x=0
= 23K
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(
8πG

c1c2

dρ
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)

x=0
= −3K

2
+ 20A − 200

7
(22)

(
1

c2

dρ

dρ

)

x=0
= −23k − 280A + 2080

5(21k − 280A + 400)
≤ 1

for all values of k and A satisfied by (17).
The expression for gravitational red shift (z) is given by

z = (1 + x)−2

√
B

− 1 (23)

The central value of gravitational red shift to be non zero
positive finite, we have

0 <
√

B < 1

Differentiating (23) w.r.t. x, we get
(

dz

dx

)

x=0
= −2√

B
< 0 (24)

The expression of the right side of (24) is negative, thus
the gravitational red shift is maximum at the centre and
monotonically decreasing.

Differentiating equation (10) w.r.t. x, we get

d

dx

(
E2

c1

)
= k

2
· (13x2 + 10x + 1)

(5x + 1)3/5
(25)

[
d

dx

(
E2

c1

)]

x=0
= k

2
(+ve) (26)

The expression of right hand side of (26) is positive, the
electric intensity is minimum at the centre and monotoni-
cally increasing for all values of k > 0. Also at the centre it
is zero.
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Fig. 1 K vice-versa rb

7 Boundary conditions

The solutions so obtained are to be matched over the bound-
ary with the Reissner-Nordstrom metric:

ds2 = −
(

1 − 2GM

c2r
+ e2

r2

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2GM

c2r
+ e2

r2

)
dt2 (27)

which requires the continuity of eλ, eυ and q across the
boundary r = rb .

e−λ(rb) = 1 − 2GM

c2rb
+ e2

r2
b

(28)

eυ(rb) = 1 − 2GM

c2rb
+ e2

r2
b

(29)

q(rb) = e (30)

p(rb) = 0 (31)

The condition (31) can be utilized to compute the value
of the arbitrary constant A as follows.

On setting xr=rb = X = c1r
2
b (rb being the radius of the

charged sphere), pressure at p(r = rb) = 0 gives

A = −K(X + 1)4(43X2 + 25X + 2)

10(9X + 1)

+ 16(5X + 1)2/5(X2 + 7x − 2)

7(9x + 1)
(32)

GM

c2
= rb

2
.
X[KX(X + 1)(5X + 1)8/5 + 8]

(9X + 1)
(33)

In view of (6), (28) and (29) we also get

B = −KX2(X + 1)(5X + 1)3/5 + 2

2(X + 1)3(9X + 1)
(34)

The surface density is given by

8πG

c2
ρbr

2
b = X

[−K(X + 1)b3

10(5X + 1)7/5
+ A(9X2 − 10X − 3)

(X + 1)3(5X + 1)7/5

+ 8(X2 + 2X + 9)

7(X + 1)3

]
(35)

where b3 = 207X3 + 172X2 + 51X + 6. Here,

e2

r2
b

= KX2(X + 1)(5X + 1)3/5

2
(36)

The central red shift zx=0 is given by

zx=0 = 1√
B

− 1 (37)

and the red shift at the surface is given by

zx=X = (1 + X)−2

√
B

− 1 (38)

The graphs of K vice-versa rb and K vice-versa mass of
star are given in Figs. 1 and 2.

In view of Tables 1, 2 and 3, it has been observed that
all the physical parameters (p,ρ,

p

ρc2 ,
dp
dρ

and E) are posi-
tive at the centre and within the limit of realistic equation of
state (EOS) and well behaved conditions and p

ρ
<

dp
dρ

every-
where within the star, therefore, adiabatic constant is always
greater than 1. For all values of K satisfying the inequal-
ities 0 ≤ K ≤ 2.2 with X = 0.235. However, correspond-
ing to any values of K > 2.2 be nature of adiabatic sound
speed is imaginary in the vicinity of the boundary. We now
present here a model of super dense star based on the par-
ticular solution discussed above by assuming surface den-
sity; ρb = 2 × 1014 g/cm3. Corresponding to K = 0 with
X = 0.235, the resulting well behaved model has the mass
M = 4.04MΘ with radius 19.53 km. It has been observed
that under well behaved conditions, this solution gives us
the mass and radius of super dense object within the range of
neutron star. Corresponding to K = 1.5 with X = 0.235, the
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Fig. 2 K vice-versa mass

Table 1 The march of pressure,
density, pressure–density ratio,
square of adiabatic sound speed
and electric field intensity
within the ball corresponding to
K = 0 with X = 0.235

y = r
rb

( 8πG
c1c4 p)x=y2xX ( 8πG

c1c2 ρ)x=y2xX
p

c2ρ
( 1

c2 )
dp
dρ

E2r2
b

dp/dρ
p/ρ

0 1.003749707 2.628750878 0.381835 0.894153 0 2.341725608

0.1 0.986781506 2.60976726 0.378111 0.893504 0 2.363073871

0.2 0.937107924 2.554105404 0.366903 0.891241 0 2.429092936

0.3 0.858252062 2.465403419 0.348118 0.886529 0 2.546631309

0.4 0.755559388 2.349051587 0.321644 0.87829 0 2.73062302

0.5 0.635533074 2.211433115 0.287385 0.865485 0 3.011584437

0.6 0.505106598 2.059200251 0.245293 0.847305 0 3.454263114

0.7 0.370974887 1.898699546 0.195384 0.823231 0 4.213406939

0.8 0.23906962 1.735578046 0.137746 0.792997 0 5.756937421

0.9 0.114219979 1.574556443 0.072541 0.756526 0 10.4289352

1 0 1.419339127 0 0.713854 0 Infinity

Table 2 The march of pressure,
density, pressure–density ratio,
square of adiabatic sound speed
and electric field intensity
within the ball corresponding to
K = 1.5 with X = 0.235

y = r
rb

( 8πG

c1c4 p)x=y2xX ( 8πG

c1c2 ρ)x=y2xX
p

c2ρ
( 1

c2 )
dp
dρ

E2r2
b

dp/dρ
p/ρ

0 0.804426689 3.226719932 0.24930 0.53618 0 2.15075568

0.1 0.786871278 3.193941781 0.24636 0.53495 0.00041 2.17141842

0.2 0.735947159 3.098382985 0.23752 0.53068 0.00171 2.23421199

0.3 0.656604231 2.947666177 0.22275 0.52172 0.00404 2.34214645

0.4 0.556255358 2.752493067 0.20209 0.50571 0.00762 2.50241025

0.5 0.443772966 2.524577218 0.17578 0.47999 0.01279 2.73066523

0.6 0.328465993 2.274941612 0.14438 0.44197 0.01998 3.06107064

0.7 0.219222965 2.012857217 0.10891 0.38936 0.02973 3.57510430

0.8 0.123920474 1.745369267 0.071 0.32050 0.04269 4.51415526

0.9 0.049117249 1.477224591 0.03325 0.2345 0.05965 7.05270743

1 0 1.211021734 0 0.13164 0.08153 Infinity

resulting well behaved model has the mass M = 4.43MΘ

with radius 18.04 km and corresponding to K = 2.2 with
X = 0.235, the resulting well behaved model has the mass
M = 4.56MΘ with radius 17.30 km. It has been observed
that under well behaved conditions, this solution gives us
the mass and radius of super dense object within the range
of neutron star. From the graphs (Figs. 1 and 2), it has been
observed that with the increase of charge, the mass of the
star increases while radius of the star decreases.

8 Slowly rotating structures and their application to the
crab pulsar

For slowly rotating structures like the crab (a rotation ve-
locity about 188 rad/s) and vela pulsars (about 70 rad/s),
one can calculate the moment of inertia in the first order
approximation which appears in the Lense Thirring frame-
dragging effect. However, in the present case of an exact
solution, it is useful to apply an approximate, but very pre-
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Table 3 The march of pressure,
density, pressure–density ratio,
square of adiabatic sound speed
and electric field intensity
within the ball corresponding to
K = 2.2 with X = 0.235

y = r
rb

( 8πG
c1c4 p)x=y2xX ( 8πG

c1c2 ρ)x=y2xX
p

c2ρ
( 1

c2 )
dp
dρ

E2r2
b

dp/dρ
p/ρ

0 0.711409281 3.50577215 0.202925 0.45547 0 2.24451991

0.1 0.693579839 3.46655655 0.200077 0.453813 0.00061 2.26818486

0.2 0.642072136 3.35237919 0.191527 0.448238 0.00252 2.34033297

0.3 0.56250191 3.17272213 0.177293 0.437053 0.00593 2.46514295

0.4 0.463246811 2.94076575 0.157526 0.417803 0.01118 2.65228276

0.5 0.354284916 2.67071113 0.132656 0.38769 0.01876 2.9225312

0.6 0.24603371 2.37562091 0.103566 0.343991 0.02931 3.32146228

0.7 0.148405401 2.06613079 0.071828 0.28443 0.04360 3.95989553

0.8 0.070184206 1.74993850 0.040107 0.207539 0.06261 5.17466623

0.9 0.018735974 1.43180306 0.013086 0.11304 0.08748 8.63855404

1 0 1.11380695 0 0.002273 0.11958 Infinity

Table 4 By assuming the
surface density
ρb = 2 × 1014 g/cm3, the
variation of maximum neutron
star mass, radius rb , central red
shift zx=0, surface red shift
zx=X and moment of inertia
with different values of K at
X = 0.235

K y = r
rb

( 8πG

c1c2 ρ)x=y2xX rb (km) M
MΘ

zx=0 zx=X I (g cm2)

0 1 1.4193391 19.5263 4.0359 1.42230 0.588165 1.2126 × 1046

0.5 1 1.3499 19.0427 4.1834 1.45591 0.610196 1.1954 × 1046

1 1 1.2804608 18.5465 4.3155 1.49095 0.633171 1.1697 × 1046

1.5 1 1.2110217 18.0366 4.4313 1.52754 0.657158 1.136 × 1046

2 1 1.1415826 17.5118 4.5299 1.56578 0.682235 1.0947 × 1046

2.2 1 1.1138069 17.2975 4.5644 1.58157 0.692589 1.0762 × 1046

cise, empirical formula based on numerical results obtained
for a large number of theoretical equations of state (EOSs)
of dense nuclear matter. For the type of solution considered
in the present study, the formula yields in the following form
(Bejger and Haensel 2002; Pant and Faruqi 2012).

I = (2/5)(1 + y)MR2 (39)

where y is defined as

y = (M/R)/MΘ (40)

With the help of (39), we can calculate the moment of in-
ertia, for various super dense objects as shown in Table 4.
These values of masses and moment of inertia agree quite
well with those of the masses and the moment of inertia cal-
culated for the crab pulsars.

9 Conclusion

After the depletion of nuclear fuel the cores of massive stars
must start contracting, the pressure and internal energy do
persist, and because of negative specific heat associated with
bulk gravity, a star may actually become hotter during col-
lapse. In general, there are always various agents like pres-
sure gradient, heat flow, radiation pressure, tangential pres-
sure and magnetic stresses which tend to resist the continued

gravitation collapse. Further, in a charged fluid, the electro-
static repulsion alone may resist the collapse. Accordingly,
here we studied a model of a charged massive relativistic
star which is not only non singular but is endowed with all
physically appealing features. By setting the charge to zero,
we applied it to uncharged and discreetly relativistic com-
pact objects. A good matching of our results for crab pulsars
shows the sturdiness of our model. Moreover, convincingly
we can say that the more massive star can have stability due
to presence of charge as obvious from the graphs.
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