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Abstract We model a compact relativistic body with aniso-
tropic pressures in the presence of an electric field. The
equation of state is barotropic, with a linear relationship be-
tween the radial pressure and the energy density. Simple
exact models of the Einstein–Maxwell equations are gen-
erated. A graphical analysis indicates that the matter and
electromagnetic variables are well behaved. In particular, the
proper charge density is regular for certain parameter values
at the stellar center unlike earlier anisotropic models in the
presence of charge. We show that the electric field affects the
mass of stellar objects and the observed mass for a particu-
lar binary pulsar is regained. Our models contain previous
results of anisotropic charged matter with a linear equation
of state for special parameter values.

Keywords Compact bodies · Relativistic stars ·
Einstein–Maxwell equations

1 Introduction

Solutions of the Einstein–Maxwell system of equations for
static spherically symmetric interior spacetimes are impor-
tant in describing charged compact objects in relativistic as-
trophysics where the gravitational field is strong, as in the
case of neutron stars. The detailed analyses of Ivanov (2002)
and Sharma et al. (2001) show that the presence of an elec-
tromagnetic field affects the values of redshifts, luminosi-
ties and maximum mass of compact objects. The role of
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the electromagnetic field in describing the gravitational be-
havior of stars composed of quark matter has been recently
highlighted by Mak and Harko (2004) and Komathiraj and
Maharaj (2007a, 2007b). In recent years, many researchers
have attempted to introduce different approaches of finding
solutions to the field equations. Hansraj and Maharaj (2006)
found solutions to the Einstein–Maxwell system with a
specified form of the electrical field with isotropic pressures.
These solutions satisfy a barotropic equation of state and re-
gain the model due to Finch and Skea (1989). Thirukkanesh
and Maharaj (2008) found new exact classes of solutions to
the Einstein–Maxwell system. They considered anisotropic
pressures in the presence of the electromagnetic field with
the linear equation of state of strange stars with quark mat-
ter. Other recent investigations involving charged relativis-
tic stars include the results of Karmakar et al. (2007), Ma-
haraj and Komathiraj (2007) and Maharaj and Thirukkanesh
(2009). The approach of Esculpi and Aloma (2010) is inter-
esting in that it utilizes the existence of a conformal symme-
try in the spacetime manifold to find a solution. These exact
solutions are relevant in the description of dense relativis-
tic astrophysical objects. Applications of charged relativistic
models include studies in cold compact objects by Sharma
et al. (2006), analyses of strange matter and binary pulsars
by Sharma and Mukherjee (2001), and analyses of quark–
diquark mixtures in equilibrium by Sharma and Mukher-
jee (2002). Thomas et al. (2005), Tikekar and Thomas
(1998) and Paul and Tikekar (2005) modeled charged core-
envelope stellar structures in which the core of the sphere is
an isotropic fluid surrounded by a layer of anisotropic fluid.
To get more flexibility in solving the Einstein–Maxwell sys-
tem, Varela et al. (2010) considered a general approach of
dealing with anisotropic charged matter with linear or non-
linear equations of state. Their approach offers a fresh view
of relationships between the equation of state, charge dis-
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tributions and pressure anisotropy. A detailed physical anal-
ysis showed the desirability of models with an equation of
state. However, there are few models in the literature with
an equation of state which satisfy the physical criteria.

It is desirable that the criteria for physical acceptability,
as given in Delgaty and Lake (1998), be satisfied in a real-
istic charged stellar model. In particular, the proper charge
density should be regular at the center of the sphere. This
is an essential requirement for a well behaved electromag-
netic field, and this important feature has been highlighted
in the treatment of Varela et al. (2010). In many models
found in the past, including the charged anisotropic solution
with a linear equation of state of Thirukkanesh and Maharaj
(2008), the proper charge density is singular at the center
of the star. For a realistic description this is a limiting fea-
ture for the applicability of the model. It is desirable to avoid
this singularity if possible. Our object in this paper is to gen-
erate new solutions to the Einstein–Maxwell system which
satisfy the physical properties: the gravitational potentials,
electric field intensity, charge distribution and matter distri-
bution should be well behaved and regular throughout the
star, in particular at the stellar center. We find new exact
solutions for a charged relativistic sphere with anisotropic
pressures and a linear equation of state. Previous models are
shown to be special cases of our general result. In Sect. 2,
we rewrite the Einstein–Maxwell field equation for a static
spherically symmetric line element as an equivalent set of
differential equations using a transformation due to Durga-
pal and Bannerji (1983). In Sect. 3, we motivate the choice
of the gravitational potential and the electric field intensity
that enables us to integrate the field equations. In Sect. 4, we
present new exact solutions to the Einstein–Maxwell sys-
tem, which contain earlier results. The singularity in the
charge density may be avoided. In Sect. 5, a physical anal-
ysis of the new solutions is performed; the matter variables
and the electromagnetic quantities are plotted. Values for the
stellar mass are generated for charged and uncharged mat-
ter for particular parameter values. The values are consistent
with the conclusions of Dey et al. (1998, 1999a, 1999b) for
strange stars. The variation of density for different charged
compact structures is discussed in Sect. 6. We summarize
the results obtained in this paper in Sect. 7.

2 Basic equations

In standard coordinates the line element for a static spheri-
cally symmetric fluid has the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

The Einstein–Maxwell equations take the form
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where dots represent differentiation with respect to r . It is
convenient to introduce a new independent variable x and
introduce new functions y and Z:

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (6)

where A and C are constants. We assume a barotropic equa-
tion of state,

pr = αρ − β, (7)

relating the radial pressure pr to the energy density ρ.
The quantity pt is the tangential pressure, E represents the
electric field intensity, and σ is the proper charge density.
Then the equations governing the gravitational behavior of
a charge anisotropic sphere, with a linear equation of state,
are given by

ρ
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where 
 = pt − pr is called the measure of anisotropy. The
nonlinear system as given in (8)–(13) consists of six inde-
pendent equations in the eight variables ρ,pr,pt ,
,E,σ ,
y and Z. To solve (8)–(13) we need to specify two of the
quantities involved in the integration process.

3 Choice of potentials

We need to solve the Einstein–Maxwell field equations (8)–
(13) by choosing specific forms for the gravitational poten-
tial Z and the electric field intensity E which are physically
reasonable. Then Eq. (12) becomes a first order equation in
the potential y which is integrable.
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We make the choice

Z = 1 + (a − b)x

1 + ax
, (14)

where a and b are real constants. The quantity Z is regular
at the stellar center and continuous in the interior because
of freedom provided by parameters a and b. It is impor-
tant to realize that this choice for Z is physically reason-
able and contains special cases which contain neutron star
models. When a = b = 1 we regain the form of Z for the
charged Hansraj and Maharaj (2006) charged stars. For the
value a = 1 the potential corresponds to the Maharaj and
Komathiraj (2007) compact spheres in electric fields. The
choice (14) was made by Finch and Skea (1989) to gener-
ate stellar models that satisfy all physical criteria for a stel-
lar source. If we set a = 1, b = −3/2 then we generate the
Durgapal and Bannerji (1983) neutron star model. If a = 7,
b = 8 then we generate the gravitational potential of the su-
perdense stars of Tikekar (1990). Thus the form for Z cho-
sen is likely to produce physically reasonable models for
charged anisotropic spheres with an equation of state.

For the electric field we make the choice

E2

C
= k(3 + ax) + sa2x2

(1 + ax)2
, (15)

which has desirable physical features in the stellar interior.
It is finite at the center of the star and remains bounded and
continuous in the interior; for large values of x it approaches
a constant value. When s = 0 then we regain E studied by
Thirukkanesh and Maharaj (2008). However, their choice is
not suitable as the proper charge density becomes singular
at the origin as pointed out by Varela et al. (2010). Conse-
quently we have adapted the form of E so that the proper
charge density remains regular throughout the stellar inte-
rior with an equation of state. These features become clear
in the analysis that follows.

4 New models

On substituting (14) and (15) into (12) we get the first order
equation

ẏ

y
= (1 + α)b
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For the integration of Eq. (16) it is convenient to consider
three cases: b = 0, a = b and a �= b.

4.1 The case b = 0

When b = 0, (16) gives the solution
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where D is the constant of integration. The potential y in

(17) generates a negative density ρ = −E2

2 which is physi-
cally undesirable.

4.2 The case b = a

When a = b, (16) yields the solution
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and D is the constant of integration. Then we can generate
an exact model for the system (8)–(13) in the form
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− aβ
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The new exact solution (20)–(27) of the Einstein–Maxwell
system is presented in terms of elementary functions. When
s = 0 we regain the first class of charged anisotropic models
of Thirukkanesh and Maharaj (2008). For our models the
mass function is given by
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The gravitational potentials and matter variables are well be-
haved in the interior of sphere. However, as in earlier treat-
ments, the singularity in the charge distribution at the center
is still present in general. In our new solution the singularity
can be eliminated when k = 0. Then Eq. (27) becomes

σ 2

C
= 4Csa2x(2 + ax)2

(1 + ax)5
. (29)

At the stellar center x = 0 and the charge density vanishes.

4.3 The case b �= a

On integrating (16), with b �= a we obtain
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The exact solution (31)–(38) of the Einstein–Maxwell sys-
tem is written in terms of elementary functions. For this case
the mass function is given by

M(x) = 1

8C3/2

[
(4ab − 2ak)x3/2

a(1 + ax)

+ s(15 + 10ax − 2a2x2)x1/2
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√

ax)

a3/2

]
. (39)

This solution is a generalization of the second class of
charged anisotropic models of Thirukkanesh and Maharaj
(2008): When s = 0 we obtain their expressions for the grav-
itational potentials and matter variables. These quantities are
well behaved and regular in the interior of the sphere. How-
ever, in general there is a singularity in the charge density at
the center. This singularity is eliminated when k = 0 so that

σ 2

C
= 4Csa2x[1 + (a − b)x](2 + ax)2

(1 + ax)5
. (40)

At the center of the star x = 0 and the charge density van-
ishes.

5 Physical features

In this section we show that the exact solutions found in
Sect. 4, for particular choices of the parameters a, b and s,
are physically reasonable. A detailed physical analysis for
general values of the parameters will be dealt with in future
investigations. We used the programming language Python
to generate these plots for the case that a > b (a = 2.5,
b = 2.0), α = 0.33, β = αρ̃ = 0.198, C = 1 and s = 2.5,
k = 0 where ρ̃ is the density at the boundary. The solid
lines correspond to s = 0 and the dashed lines correspond
to s �= 0 in the graphs. We generated the following plots:
energy density (Fig. 1), radial pressure (Fig. 2), tangential
pressure (Fig. 3), anisotropy measure (Fig. 4), electric field
intensity (Fig. 5), charge density (Fig. 6) and mass (Fig. 7).
The energy density ρ is positive, finite and monotonically
decreasing. The radial pressure pr is similar to ρ since pr

and ρ are related by a linear equation of state. The values
of ρ and pr are lower in the presence of the electric field
E �= 0. The tangential pressure is well behaved, increas-
ing away from the center, reaches a maximum and becomes
a decreasing function. This is reasonable since the conser-
vation of angular momentum during the quasi-equilibrium
contraction of a massive body should lead to high values of
pt in central regions of the star, as pointed out by Karmakar
et al. (2007). The anisotropy 
 is increasing in the neigh-
borhood of the center, reaches a maximum value, and then

Fig. 1 Energy density (ρ) versus radius

Fig. 2 Radial pressure (pr ) versus radius

Fig. 3 Tangential pressure (pt ) versus radius

subsequently decreases. The profile of 
 is similar to the
profile studied by Sharma and Maharaj (2007) and Tikekar
and Jotania (2009) for strange stars with quark matter.

The form chosen for E is physically reasonable and de-
scribes a function which is initially small and then increases
as we approach the boundary. The charge density in gen-
eral is continuous, initially increases and then decreases.
Note that the singularity at the stellar center is eliminated
since k = 0. The mass function is strictly increasing function
which is continuous and finite. We observe that the mass, in
the presence of charge, has lower values that the correspond-
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Fig. 4 Anisotropy (
) versus radius

Fig. 5 Electric field (E2) versus radius

Fig. 6 Charge density (σ 2) versus radius

ing uncharged case. This is consistent as E �= 0 generates
lower densities which produces a weaker total field since
the electromagnetic field is repulsive. Thus all matter vari-
ables, electromagnetic quantities and gravitational potentials
are nonsingular and well behaved in a region away from the
stellar center. We emphasize that the electromagnetic quan-
tities are all well behaved close to the stellar center, since
there are finite values for the charge density. This is differ-
ent from other treatments with an equation of state.

The solutions found in this paper can be used to model
realistic stellar bodies. We introduce the transformations:

Fig. 7 Mass (M) versus radius

ã = aR2, b̃ = bR2, β̃ = βR2, k̃ = kR2, s̃ = sR2. Using
these transformations the energy density becomes

ρ = (2b̃ − k̃)(3 + ãy) − s̃ã2y2

2R2(1 + ãy)2
. (41)

The mass contained within a radius r is given by

M = r3(6b̃ − 3k̃ + 5s̃)

12R2(1 + ãy)
+ s̃r(15 − 2ãy2)

24ã(1 + ãy)

− 5s̃R arctan[√ãy]
8ã3/2

, (42)

where we have set C = 1 and y = r2

R2 . If k̃ = 0, s̃ = 0 (E =
0) then we have

ρ = b̃(3 + ãy)

R2(1 + ãy)2
, (43)

M = b̃r3

2R2(1 + ãy)
. (44)

In this case there is no charge and we obtain the expressions
Sharma and Maharaj (2007). For the astrophysical impor-
tance of our solutions, we try to compare the masses cor-
responding to the models of this paper to those found by
Sharma and Maharaj (2007) and Thirukkanesh and Maharaj
(2008).

We calculate the masses for the various cases with and
without charge. We set r = 7.07 km, R = 43.245 km, k̃ =
37.403 and s̃ = 0.137. We tabulate the information in Ta-
ble 1. Note that when k = 0, s = 0 we have an uncharged
stellar body and we regain masses generated by Sharma and
Maharaj (2007). When k �= 0 and s = 0 we find masses for
a charged relativistic star in the Thirukkanesh and Maharaj
(2008) models. We have included those two sets of values
for consistency and to demonstrate that our general results
contain the special cases considered previously. When k = 0
and s �= 0 the masses found correspond to new charged solu-
tions, with nonsingular charge densities at the origin. When
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Table 1 Central density and mass for different anisotropic stellar models for neutral and charged bodies

b̃ ã α ρc

(×1015 gcm−3)

E = 0

M

M�
E = 0

ρc

(×1015 gcm−3)

E �= 0

M

M�
E �= 0




30 23.681 0.401 2.579 1.175 0.971 0.433 0.039

40 36.346 0.400 3.439 1.298 1.831 0.691 0.054

50 48.307 0.424 4.298 1.396 2.691 0.874 0.072

54.34 53.340 0.437 4.671 1.433 3.064 0.940 0.081

60 59.788 0.457 5.158 1.477 3.550 1.017 0.094

70 70.920 0.495 6.017 1.546 4.410 1.133 0.119

80 81.786 0.537 6.877 1.606 5.269 1.231 0.146

90 92.442 0.581 7.737 1.659 6.129 1.314 0.177

100 102.929 0.627 8.596 1.705 6.989 1.386 0.207

183 186.163 1.083 15.730 1.959 14.124 1.759 0.593

k �= 0 and s �= 0 then we have the most general case. In
all cases we obtain stellar masses which are physically rea-
sonable. We observe that the presence of charge generates
a lower mass M because of the repulsive electromagnetic
field which corresponds to a weaker field. Observe that our
masses are consistent with the results of Dey et al. (1998,
1999a, 1999b) with an equation of state for strange mat-
ter. When the charge is absent the mass M = 1.434M�;
the presence of charge in the different solutions affects this
value. Dey et al. (1998, 1999a, 1999b) have shown that these
values are consistent with observations for the X-ray bi-
nary pulsar SAX J1808.4-3658. Consequently these charged
general relativistic models have astrophysical significance.
A trend in the masses is observable in Table 1. It is inter-
esting to observe that the smallest masses are attained when
k �= 0, s = 0 in the presence of the electromagnetic field.
When k �= 0, s = 0 then the electric field intensity is stronger
by (15) which negates the attraction of the gravitational field
leading to a weaker field. Note that we have also included
the value of anisotropy 
 in Table 1. We note that larger
stellar masses correspond to increasing values of anisotropy.

6 Density variation

From (41) we observe that

ρc = (2b̃ − k̃)(3 + ã c2

R2 ) − s̃ã2 c4

R4

2R2(1 + ã c2

R2 )2
, (45)

is the density at the stellar surface. The density at the center
of the star is

ρ0 = 3(2b̃ − k̃)

2R2
. (46)

Then we can generate the ratio

ε = (2b̃ − k̃)(3 + ã c2

R2 ) − s̃ã2 c4

R4

3(2b̃ − k̃)(1 + ã c2

R2 )2
, (47)

called the density contrast. With the help of (47) we can find
c2

R2 in terms of ε:

c2

R2
= −(2b̃ − k̃)(6ε − 1)

2a(3ε(2b̃ − k̃) + s̃)

+
√

(24ε + 1)(2b̃ − k̃)2 + 12s̃2b̃ − k̃)(1 − ε)

2a(3ε(2b̃ − k̃) + s̃)
. (48)

Then (42) and (48) yield the quantity

M

c
= c2(6b̃ − 3k̃ + 5s̃)

12R2(1 + ã c2

R2 )
+ s̃(15 − 2ã c4

R4 )

24ã(1 + ã c2

R2 )

−
5s̃R arctan[

√
ã c2

R2 ]
8cã3/2

, (49)

which is the compactification factor. Consequently our
model is characterized by the surface density ρc, the density
contrast ε and the compactification factor M

c
in presence of

charge. These two parameters produce information of astro-
physical significance for specific choice of the parameters.
The compactification factor classifies stellar objects in var-
ious categories depending on the range of M

c
: for normal

stars M
c

∼ 10−5, for white dwarfs M
c

∼ 10−3, for neutron
stars M

c
∼ 10−1 to 1

4 , for ultra-compact stars M
c

∼ 1
4 to 1

2 ,
and for black holes M

c
∼ 1

2 . The parameter M
c

in the case
of strange stars is in the range of ultra-compact stars with
matter densities greater than the nuclear density.

For particular choices of the parameters ã, b̃, k̃, s̃ and
specifying the density contrast ε we can find the boundary c
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Table 2 Variation of density

ã b̃ ε c M
c

M
M�

1.6 2 0.3 8.30 0.073 0.60

(1.6) (0.6) (0.3) (10.18) (0.100) (1.02)

2.4 2.8 0.5 10.67 0.093 0.99

(2.4) (1.4) (0.5) (11.20) (0.102) (1.14)

6.0 6.4 0.1 13.59 0.277 3.76

(6.0) (5.0) (0.1) (15.83) (0.329) (5.20)

from (48). Note that the parameter R is specified if we take
the central density to be ρ0 = 2 × 1014 gm cm−3 in (46).
The compactification factor M

c
then follows from (49). For

charged matter we take the values k = 2.8 and s = 2 and for
uncharged matter k = 0 and s = 0. Table 2 represents typical
values for ε and M

c
for charged matter and uncharged matter;

the first set of values are for charged matter and the brack-
eted values are the corresponding values for neutral matter
when k̃ = s̃ = 0. For uncharged matter we regain the val-
ues of ε and M

c
generated by Tikekar and Jotania (2005)

for superdense star models with neutral matter. We observe
that the presence of charge has the effect of reducing both
c and the compactification M

c
to produce the same value of

the density contrast ε. This is consistent since the presence
of the electric field intensity has the effect of leading to a
weaker field. The values that we have generated in Table 2
for neutral and charged matter permit configurations typical
of neutron stars and strange stars. Note that the changing the
various parameters will allow for smaller or larger compact-
ification factors. Thus the class models found in this paper
allow for stellar configurations which provide physically vi-
able models of superdense structures.

7 Conclusion

The recent results contained in the investigations of Gupta
and Maurya (2011a, 2011b, 2011c), Maurya and Gupta
(2011a, 2011b, 2011c) and Kiess (2012) have highlighted
the importance of including the electric field in gravitational
compact objects. This serves as a motivation for our study
with equation of state. The models of Thirukkanesh and Ma-
haraj (2008), which contain several earlier solutions are re-
gained from our solutions in this paper for particular val-
ues of the parameters k and s. Our aim in this paper was
to find new exact solutions to the Einstein–Maxwell sys-
tems with a barotropic equation of state for static spheri-
cally symmetric gravitational fields. In particular we chose
a linear equation of state relating the energy density to the
radial pressure. Such models may be used to model rela-
tivistic stars in astrophysical situations. The charged rela-
tivistic solutions to the Einstein–Maxwell systems presented

are physically reasonable. A graphical analysis has shown
that the matter and electromagnetic variables are physically
reasonable. In particular our solutions contain models, cor-
responding to k = 0, for which the proper charge density
is nonsingular. This is an improvement on earlier models
which possessed a singularity in σ at the stellar origin. Our
models yield stellar masses and densities consistent with
Thirukkanesh and Maharaj (2008) in the presence of charge,
and Dey et al. (1998, 1999a, 1999b) and Sharma and Ma-
haraj (2007) in the limit of vanishing charge. Our solu-
tions may be helpful in the study of stellar objects such
as SAX J1804.4-3658. We have regained the correspond-
ing mass M = 1.434M� when k = 0, s = 0 of earlier treat-
ments. These models may be useful in the description of
charged anisotropic bodies, quark stars and configurations
with strange matter.
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