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Abstract The propagation of nonlinear waves in a quan-
tum plasma is studied. A quantum magnetohydrodynamic
(QHD) model is used to take into account the effects of
quantum force associated with the Bohm potential. Us-
ing the standard reductive perturbation technique, nonlinear
Kadomtsev-Petviashvili (KP) equation is obtained to study
the properties of ion acoustic waves (IAWs). For such waves
the amplitude of the solitary waves is independent of the
quantum parameter H (the ratio of the electron plasmon to
electron Fermi energy), whereas the width and energy of the
soliton increases with H .
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1 Introduction

The subject of nonlinear waves in plasma have received con-
siderable interest in plasma physics because of their impor-
tance in the environment of space and in laboratory. Among
the nonlinear wave structures, solitons are of particular in-
terest for researchers as the solitons offer a rich physical in-
sight underlying the nonlinear phenomena. During the last
several decades, the propagation of ion acoustic solitary
waves (IASWs) in plasma has been extensively studied the-
oretically and also in laboratory (Ikeji et al. 1970; Cairns
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et al. 1996; Yoshimura and Watanabe 1991; Konotop 1996;
Hashimoto and Ono 1972; Duan et al. 1997; Mahmood
and Saleem 2002). Solitary wave propagation in unmag-
netized plasmas without the dissipation can be described
by the Korteweg-de Vries (KdV) equation or Kadomtsev-
Petviashvili (KP) equation. In recent years quantum plas-
mas have received a great attention in investigating vari-
ous aspects of plasma like quantum plasma echo (Manfredi
and Feix 1996), dense plasma particularly in astrophysical
and cosmological studies (Kremp et al. 1999; Opher et al.
2001; Jung 2001; Chabrier et al. 2002), quantum plasma in-
stabilities in Fermi gases (Manfredi and Hass 2001), quan-
tum landau damping (Suh et al. 1991). Among the prevalent
models to study quantum effects in plasma, quantum hydro-
dynamic (QHD) (Acona and Iafrate 1989; Gardner 1994;
Gasser and Markowich 1997; Gardner and Ringhofer 2000;
Gasser et al. 2000) model has become popular because it ex-
tends the usual fluid model to one incorporating the quantum
effect. The QHD model is closed to the classical fluid model
as it is comprised of a set of equations describing transporta-
tion of charge momentum and energy. The derivation from
the classical model occurs mainly due to the presence of a
term which is called Bohm potential (Gardner 1994). This
term contains the Planck’s constant � indicating the quan-
tum effect. In ultra-small electronic devices, the QHD model
describes negative differential resistance in resonant tunnel-
ing diodes and ultra-small high electron mobility transis-
tors (Zhou and Ferry 1993; Chen et al. 1995). Another sig-
nificant quantum plasma theory which must be mentioned
here is the Wigner Poisson system (Gardner et al. 1989;
Markowich et al. 1990; Gardner 1991) which involves the
integro differential system. Haas et al. (2003) used the QHD
model to study quantum ion acoustic waves in the weakly
nonlinearized theory and obtained a deformed Korteweg-
de Vries (dKdV) equation which involves the parameter H ,
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proportional to the Planck’s constant �. They observed sev-
eral characteristic features of pure quantum origin for the
linear, weakly nonlinear and fully nonlinear waves. Malik
et al. (1994) have derived modified KP equation to study
two dimensional soliton propagation in an inhomogeneous
plasma with finite temperature drifting ions. El-Shewy et al.
(2011) have studied solitary solution and energy for the KP
equation in two temperatures charged dusty grains. Lin and
Duan (2005) have investigated the solitary waves in a two
temperature dusty plasma by deriving KP equation. Gill
et al. (2006) have derived KP equation for dusty plasma
with variable dust charge and two temperature ions. Pakzad
(2009, 2010) have studied solitary waves of the KP equa-
tion in warm dusty plasma with variable dust charge, two
temperature ion and nonthermal electron. In the present pa-
per, we studied the propagation of IASWs in an unmagne-
tized quantum plasma. By using the reductive perturbation
method (RPM) on two dimensional unmagnetized case of
this system, one can obtain the KP equation. Balancing be-
tween nonlinear and dispersion effects can result in the for-
mation of symmetrically solitary waves. The organization
of the paper is as follows. In Sect. 2 the basic set of equa-
tions are given and KP equation has been derived. In Sect. 3
results and discussions are given, while Sect. 4 is kept for
conclusion.

2 Basic equations and derivation of the KP equation

We consider an unmagnetized quantum plasma system com-
prising electrons and ions and investigated the nonlinear
propagation IASWs. The following set of normalized two-
dimensional equations of continuity, motion and Poisson de-
scribe the nonlinear dynamics of IAWs in quantum plasma:
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where ∇ = ( ∂
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, ∂
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) and ne, ue, ve, me, (ni , ui , vi , mi ) are
the electron (ion) number density, velocity field in the x di-
rection, y direction and mass respectively and H = �ωpe
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is the nondimensional quantum parameter, � is the Planck
constant divided by 2π , kB is the Boltzmann’s constant,
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φ is the electrostatic wave potential. ne and ni are nor-
malized to unperturbed plasma density n0, ue , ve(ui, vi) is
the electron (ion) fluid speed normalized to the ion acous-

tic velocity Cs = (2kBTFe/mi)
1
2 , and φ is normalized to
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We assume that the electrons obey the equation of state
in two-dimension (Manfredi and Hass 2001)
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where the electron Fermi velocity vFe connected to the
Fermi temperature TFe by mev

2
Fe/2 = kBTFe.

To derive the KP equations we use the stretched coordi-
nates

ξ = ε(x − v0t), η = ε2y and τ = ε3t (9)

The dependent variables are expanded as follows:
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Substituting (10)–(16) into (1)–(7), we obtain from the low-
est order in ε,
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where m = mi

me
and
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And for the higher orders of ε, we obtain the following
set of equations,
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Combining above equations, we get the KP-equation as
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3 Solitonic solution and discussion

Introducing a new variable ζ = ξ + η − Uτ , where U is a
constant velocity, the soliton solution of (27) can be written
in the following form

φ(1)(ζ ) = φ0Sech2(ζ/W) (31)

where the soliton amplitude φ0 and the soliton width W are

φ0 = 3(U − C)

A
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The study of the amplitude and width of solitons is a com-
mon way to recognize waves in plasmas. The other way is
the study of the soliton’s energy. The soliton solution (31)
can give the soliton energy

E =
∫ ∞

−∞
φ(1)2

(ζ )dζ (34)

From Eq. (32) and (33) it is seen that the soliton width
is significantly affected by the quantum diffraction parame-
ter H , but the quantum correction does not affect the soli-
ton amplitude. Also, from Eq. (34) it is found that the soli-
ton energy is modified by the quantum parameter. The two
fluid quantum magnetohydrodynamic model is used which
includes the quantum diffraction effects which are propor-
tional to �

2 and due to the density fluctuations. The quantum
parameter H is a measure of quantum diffraction effects and
only modifies the dispersive coefficient. Quantum effects are
very important in astrophysical objects like white dwarfs,
neutron stars where densities are enormous. In Fig. 1 we
plot the solution (31) for different values of H . It is evident
from the figure that the amplitude of the nonlinear potential
structures remain constant with the increase in the quantum
diffraction parameter H associated with the quantum Bohm
potential. However, only the width of the solitary structure
is broadened with the increase in the value of H . The quan-
tum mechanical effects due to quantum correlation of elec-
tron number density fluctuation on the energy of soliton is
shown in Fig. 2. This indicates that the energy of soliton
increases by increasing the quantum Bohm potential. The
quantum statistic effect enhances the energy of soliton.
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Fig. 1 Plot of φ(1) against ζ for different values of H = 2.2 (solid
line), H = 1.8 (dotted line), H = 1.5 (dashed line), for the solution
(31), where U = 1.2 and m = 1836

Fig. 2 Plot of soliton energy (34) against H , where the other parame-
ters are same as given in Fig. 1

4 Conclusion

In the present study we have investigated the nature of non-
linear propagation of IASWs in an unmagnetized collision-
less quantum plasma. We have derived the KP equation us-
ing the standard reductive perturbation technique. It is seen
that the quantum diffraction parameter H has a significant
effect on the formation of the propagation of IASWs. It is

found that with the increase of H , the width of the soliton
increases, but the amplitude remains constant. It is found
that an increase in the quantum Bohm potential increases
the energy of solitons.
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