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Abstract The propagation of Gardner solitons (GSs) in a
nonplanar (cylindrical and spherical) geometry associated
with a dusty plasma whose constituents are non-inertial neg-
ative static dust, inertial ions, and two population of Boltz-
mann electrons with two distinctive temperatures, are inves-
tigated by deriving the modified Gardner (mG) equation us-
ing the reductive perturbation method. The basic features of
nonplanar dust-ion-acoustic GSs are analyzed by numerical
solutions of mG equation. It has been found that the basic
characteristics of GSs, which are shown to exist for the val-
ues of μc = ne10/ni0 around 0.319 for ne20/ni0 = 0.04 and
Te1/Te2 = 0.2 [where ne10 (ne20) is the cold (hot) electron
number density at equilibrium, Te1 (Te2) is the temperature
of the cold (hot) electron species] are different from those
of K-dV (Korteweg-de Vries) solitons, which do not exist
around μc � 0.319. The implications of our results in under-
standing the nonlinear electrostatic perturbations observed
in many laboratory and astrophysical situations (viz. double-
plasma machines, rf discharge plasma, noctilucent cloud re-
gion in Earth’s atmosphere, source regions of Auroral Kilo-
metric Radiation, Saturn’s E-ring, etc.) where electrons with
different temperatures can significantly modify the wave dy-
namics, are also briefly discussed.
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1 Introduction

The nature and characteristics of dusty plasma which are
observed initially not only in astrophysical (Goertz 1989)
environment but also in space and laboratory environment,
are the subject of intense research during the last few years.
Peculiar characteristics of charged dust make a system com-
plex and are therefore expected to be substantially differ-
ent from the ordinary two component plasmas (Lonngren
1983). Because of dust charge and mass are not fixed, a new
time and space scales come into play. Therefore new types
of low frequency waves or different wave modes are estab-
lished. Among them one of the most important, well estab-
lished low frequency wave is dust ion- acoustic (DIA) waves
where the dust grains do not participate in the wave motion.
Recently, considerable attention has been paid to study the
DIA waves (Shukla and Silin 1992; Nakamura et al. 1999;
D’Angelo 1995) due to its wide applications in laboratory
and space plasma. Experimental observations (Nakamura
et al. 1999; Barkan et al. 1996) in several low-temperature
dusty plasma devices make more enthusiastic about its re-
exploration.

Most of the authors have studied DIA SWs (Rahman and
Mamun 2011; Mamun 2007; Mamun et al. 2009; Alinejad
2010, 2011a; Rahman et al. 2011; El-Labany et al. 2012;
Kundu et al. 2012) by using the dusty plasma model con-
sisting of ions, electrons, and negatively charged stationary
dust. The consideration of negatively charged dust is due
to the fact that in low-temperature laboratory plasmas, col-
lection of plasma particles (viz. electrons and ions) is the
only important charging process, and the thermal speeds of
electrons far exceeds that of ions. The authors have stud-
ied different phenomena of plasma limiting themselves to
a simple model consisting of one pieces of ions and elec-
trons, and ignored completely the interactions of multiple
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ions or electrons. For example, Rahman and Mamun (2011)
have studied the DIA SWs consisting of cold mobile ions,
electrons following vortex-like distribution, and arbitrarily
charged static dust by employing the reductive perturbation
technique. Using pseudo-potential approach Mamun (2007)
investigated arbitrary amplitude SWs, and inferred that neg-
ative SWs [which are found to exist in a dusty plasma for
Zdnd0/ni0 > 2/3, where Zd is the number of electrons re-
siding on the dust grain surface, ni0 (nd0) is the density of
unperturbed ion (dust)] can not be formed due to the effects
of adiabaticity of electrons. The combined effects of adia-
batic electrons and negatively charged stationary dust were
explicitly examined by Mamun. Moreover, a large number
of authors have also studied the SWs (Das and Tagare 1975;
Xie et al. 1999; Tagare 1997) in plasmas including the mul-
tiple ion species of different kinds. Tagare (1997) studied the
basic features of SWs with cold dust particles and isothermal
two-temperature ions by taking into account the sufficient
depletion of electron number density but limited himself to
the investigation performing with multiple ions and com-
pletely ignored the soliton behaviour of two-temperature
electron plasma. To some extent all the above mentioned
plasma models are simplified since the interaction of multi-
ple electrons (i.e. two-temperature electron) which describes
more generalized plasma, were not considered by them. The
interaction of such multiple electrons, i.e. two types of elec-
tron populations, namely, cold and hot (Lakhina et al. 2008),
and hot ions are present in many space (Geiss et al. 1978)
observations, such as in the cusp and the auroral field lines.
The Viking satellite frequently observed cold and hot elec-
trons at the times of bursts of electrostatic SWs in the auroral
region (Lakhina et al. 2008; Dubouloz et al. 1993). Electrons
at two different temperatures have also been encountered in
double-plasma machines (Spileman et al. 1976), hot turbu-
lent strong plasmas of thermonuclear (Morals and Lee 1974;
Estabrook and Krueer 1978), noctilucent cloud region in
Earth’s atmosphere, where the energetic particle precipi-
tation affects the mesosphere charge balance (Shah et al.
2009), hot cathode discharges (Oleson and Found 1946), etc.
Jones et al. (1975) were the first to investigate the effects of
double temperature electrons in linear approximation for the
ion-acoustic waves. They investigated the wave dynamics in
a three component plasma consisting of cold ions, and two
types of electrons including different thermal effects. Mo-
tivated by the observation of Jones et al. (1975), Nishida
and Nagasawa (1986) produced two temperature electron
species using rf heating and investigated for the first time
the rarefactive soliton in such plasma. It was observed that
the interactions between the hot and the cold electron com-
ponents in the presence of a finite ion temperature produced
rarefaction of the localized density.

All of this previous studies (Jones et al. 1975; Lakhina
et al. 2008; Geiss et al. 1978; Dubouloz et al. 1993; Spile-
man et al. 1976; Morals and Lee 1974; Estabrook and

Krueer 1978; Shah et al. 2009; Oleson and Found 1946;
Asaduzzaman and Mamun 2012a; Alinejad 2011b; Masud
et al. 2012) regarding double temperature plasma, are lim-
ited to a planar (one-dimensional) geometry which may not
be a realistic situation in space and laboratory devices, since
the waves observed in space (laboratory devices) are cer-
tainly not infinite (unbounded) in one dimension. Therefore
further investigation would necessary to delimit the study in
such a planar geometry. We focus on cylindrical and spher-
ical DIA SWs in an unmagnetized two-electron tempera-
ture dusty plasma, and show how the DIA SWs in cylindri-
cal and spherical geometries differ qualitatively from that in
one-dimensional planar geometry. It is important to mention
that we have taken higher order nonlinear equation which
is quite valid around critical value of dust density ratio of
typical dusty plasma parameters, since at critical value the
K-dV soliton can not be formed due to infinite large am-
plitude solitary structures. To overcome this we have fol-
lowed a higher order nonlinear equation (known as modified
Gardner (mG) equation (Asaduzzaman and Mamun 2012b;
Mannan and Mamun 2011; Hossain et al. 2011)) which de-
scribes the nonlinear features of the finite amplitude cylin-
drical and spherical DIA SWs in a two-electron temperature
dusty plasma.

The manuscript is organized as follows. The govern-
ing equations are provided in Sect. 2. The mG equation
is derived by using the reductive perturbation method in
Sect. 3. The analytical and numerical solutions are presented
in Sect. 4. A brief discussion is finally given in Sect. 5.

2 Governing equations

We consider a nonplanar geometry, and nonlinear propaga-
tion of the DIA waves in an unmagnetized dusty plasma
system consisting of negatively charged stationary dust, in-
ertial ions and Boltzmann distributed two populations of
electrons having different thermal effects. Thus, at equi-
librium we have nio = ne10 + ne20 + Zdnd0, where ne10

(ne20) is the density of unperturbed lower (higher) temper-
ature electron. The nonlinear dynamics of the DIA (Rah-
man and Mamun 2011; Mamun 2007; Mamun et al. 2009;
Alinejad 2011a) waves, whose phase speed is much smaller
than electron thermal speed but larger than ion thermal speed
in a nonplanar geometry, is governed by
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where ν = 0 for 1D planar geometry, and ν = 1 (2) for
a nonplanar cylindrical (spherical) geometry, ni is the
ion particle number density normalized by its equilibrium
value ni0, ui is the ion fluid speed normalized by Ci =
(kBTe1/mi)

1/2, φ is the electrostatic wave potential nor-
malized by kBTe1/e, ρ is the normalized surface charge
density, σ = Te1/Te2, μe1 = ne10/ni0, μe2 = ne20/ni0,
μ=Zdnd0/ni0 = 1 − μe1 − μe2. It should be noted that
Te1(Te2) is the lower (higher) electron temperature, Ti is the
ion temperature, kB is the Boltzmann constant, and e is the
magnitude of the electron charge. The time variable t is nor-
malized by ω−1

pi = (mi/4πni0e
2)1/2 and the space variable

is normalized by λDm = (kBTe1/4πni0e
2)1/2.

3 Derivation of mG equation

To study the finite amplitude DIA Gardner solitons (GSs)
by analyzing the ingoing solutions of Eqs. (1)–(4), we first
introduce the stretched coordinates:

ζ = ε(r − Vpt), (5)

τ = ε3t, (6)

where 0 < ε < 1 (ε measures the weakness of the disper-
sion), and Vp is the phase speed (ω/k) of the perturbation
mode. The variables ni , ui , φ, and ρ can be expanded in
power series of ε, viz.

ni = 1 + εn
(1)
i + ε2n

(2)
i + ε3n

(3)
i + · · ·, (7)

ui = 0 + εu
(1)
i + ε2u

(2)
i + ε3u

(3)
i + · · ·, (8)

φ = 0 + εφ(1) + ε2φ(2) + ε3φ(3) + · · ·, (9)

ρ = 0 + ερ(1) + ε2ρ(2) + ε3ρ(3) + · · ·. (10)

Now, expressing Eqs. (1)–(4) in terms of ζ and τ ,
and substituting Eqs. (7)–(10) into the resulting equations
[Eqs. (1)–(4) expressed in terms of ζ and τ ], one can easily
develop different sets of equations in various powers of ε.
To the lowest order in ε one obtains

u
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ψ, (11)

n
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i = 1

V 2
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ψ, (12)

Vp = 1√
(μe1 + μe2σ)

, (13)

where ψ = φ(1). Equation (13) represents the dispersion
properties of the DIA waves propagating in a dusty plasma
under consideration where two populations of electrons sig-
nificantly modify the basic features of the phase speed of
the DIA wave. To the next higher order in ε, we obtain a
set of equations, which, after using Eqs. (11)–(13), can be
simplified as
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0 = ρ(2), (16)

ρ(2) = −1

2
Aψ2. (17)

We note that Eqs. (16) and (17) are obtained from Eqs. (3)
and (4) by taking the co-efficients of ε2. Here ρ(2) = 0 does
not mean that the usual net surface charge density is zero. It
is obvious from Eqs. (16) and (17) that A = 0 since ψ �= 0.
We can find A = 0 for a certain (critical) value of μe1, i.e.
A = 0 for μe1 = μc � 0.319 (which is a solution of A = 0)
since 0 < μe1 < 1 is always valid. We let A = A0 when
μe1 �= μc, but μe1 ∼ μc. So, for μe1 around its critical value
(μc), A = A0 can be expressed as

A0 � s

(
∂A

∂μe1

)

μe1=μc

|μe1 − μc| = c1sε, (18)

where c1 � 0.962, |μe1 − μc| is a small and dimensionless
parameter, and can be taken as the expansion parameter ε,
i.e. |μe1 − μc| � ε, and s = 1 for μe1 > μc and s = −1 for
μe1 < μc. So, ρ(2) can be expressed as

ε2ρ(2) � −ε3 1

2
c1sψ

2, (19)

which, therefore, must be included in the third order Pois-
son’s equation. To the next higher order in ε, we obtain a set
of equations:
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Now, using Eqs. (13)–(17) and Eqs. (20)–(23), we obtain a
equation of the form:
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2
. (26)

Equation (24) is known as modified Gardner (mG) equa-
tion. The modification is due the extra term (viz. ν

2τ
ψ ),

which arises due to the effects of the nonplanar geome-
try. It is important to note that if we neglect ψ3 term, and
put c1s = A = 3/V 4

p − μe1 − μe2σ
2, the mG equation re-

duces to a lower order modified K-dV (mK-dV)equation
which can be derived by using a lower order stretching viz.
ζ = ε1/2(r −Vpt), τ = ε3/2t . However, in this mK-dV equa-
tion, the nonlinear term vanishes at μe1 = μc, and is not
valid near μe1 = μc which makes soliton amplitude large
enough to break down the validity of the reductive pertur-
bation method. But the mG equation derived here is valid
for nonplanar geometry as well as for μe1 near its critical
value (μc).

4 SW solution of MG equation

We have already mentioned that ν = 0 corresponds to a 1D

planar geometry which reduces Eq. (24) to a standard Gard-
ner equation. Before going to numerical solutions of mG
equation, we will first analyze stationary GSs solution of
Gardner equation (24) [with ν = 0]. To do so, we first in-
troduce a transformation ξ = ζ − U0τ which allows us to
write Eq. (24), under the steady state condition, as

1

2

(
dψ

dξ

)2

+ V (ψ) = 0, (27)

where the pseudo-potential V (ψ) is

V (ψ) = −U0

2β
ψ2 + c1s

6
ψ3 + α

12
ψ4 + · · · . (28)

It would be mentioned here that U0 and β are always posi-
tive. Further numerical simulation gives opportunity to any-
one to express the shock speed (in the reference frame) in
terms of β , α, and the wave amplitude, as

U0 = c1sβ

3
ψm1,2 + αβ

6
ψ2

m1,2, (29)

where ψm1,2 is the amplitude of the SWs, and the value
of ψm1,2 can be found in some other contexts (Asaduz-
zaman and Mamun 2012b; Mannan and Mamun 2011;
Hossain et al. 2011). The solitary wave solution or solitary

Fig. 1 Showing how μc [obtained from A(μe1 = μc) = 0] varies
with σ

profile of the quadrature Eq. (27), often called as an “energy
integral” of an oscillating particle of unit mass, with pseudo-
position ψ , pseudo-time ξ , and pseudo-speed dψ/dξ , and
pseudo-potential V (ψ), and the width (δ) of such DIA SWs
can be represented as

ψ =
[

1

ψm2
−

(
1

ψm2
− 1

ψm1

)
cosh2

(
ξ

δ

)]−1

, (30)

δ = 2√−γψm1ψm2
. (31)

We note that Eq. (30) represents a SW solution of
Eq. (27). It is clear from Eqs. (17) and (18) that the soli-
tary potential profile is negative (positive) if A < 0 (A > 0).
Therefore, A(μe1 = μc) = 0, where μc is the critical value
of μe1 above (below) which the solitary waves with a pos-
itive (negative) potential exists, gives the value of μc. To
find the parametric regimes for which the positive and neg-
ative solitary potential profiles exist, we have numerically
analyzed A, and obtain A(μe1 = μc) = 0 surface plots. The
A(μe1 = μc) = 0 surface plots are shown in Fig. 1. From
Fig. 1 it is obvious that if we increase (decrease) the rela-
tive concentration of electron (at higher temperature)-to-ion
number density then the critical value of other parameters
(viz. μe1 = μc) decreases (increases). Therefore, for typical
dusty plasma parameters (Ghosh et al. 2008; Shalaby et al.
2009; Moslem et al. 2005; Moslem and El-Taibany 2005;
Chatterjee and Roychoudhury 1997), σ = 0.01–0.9 and
μe2 = 0.01–0.3, we have the existence of the small ampli-
tude solitary waves with a positive potential for μe1 > μc,
and with a negative potential for μe1 < μc. Moreover,
a small percentage of cold electron concentration may pre-
dominate the DIA speed, especially if the difference be-
tween the two electron temperatures increases, then the crit-
ical value of such a parameter μc is also increased. It is clear
from the amplitude of the K-dV SWs (Rahman and Mamun
2011; Mamun et al. 2009; Alinejad 2010, 2011b) (ψm =
3U0/A) that ψm = ∞ at μe1 = μc . This means that the
small amplitude solitary waves with a negative (positive) po-
tential exist for a set of dusty plasma parameters correspond-
ing to any point which is much below (above) the A(μe1 =
μc) = 0 surfaces shown in the surface plots in Fig. 1.
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Fig. 2 Showing the effects of cylindrical (ν = 1) geometry on DIA
negative GSs for μe1 = 0.318, μe2 = 0.04, σ = 0.2, and U0 = 0.03

Fig. 3 Showing the effects of cylindrical (ν = 1) geometry on DIA
positive GSs for μe1 = 0.32, μe2 = 0.04, σ = 0.2, and U0 = 0.03

We now turn to Eq. (24) with the term (ν/2τ)ψ , which is
due to the effects of the non-planar (cylindrical or spherical)
geometry. An exact analytic solution of Eq. (24) is not pos-
sible. Therefore, we have numerically solved Eq. (24), and
have studied the effects of cylindrical and spherical geome-
tries on time-dependent DIA GSs, as well as to consider the
effects of two-electron temperature. The results are depicted
in Figs. 2–6. The initial condition, that we have used in our
numerical analysis, is in the form of the stationary solution
of Eq. (24) without the term (ν/2τ)ψ . The effect of two
populations of electrons having different thermal tempera-
tures is shown in Fig. 6, retaining the initial condition of the
stationary solution ν = 0. It has been observed that the in-
crease of the number density of lower temperature electron
can play a significant role on the amplitude of the propa-
gating DIA SWs. This means that amplitude of such SWs
is increased due to the increase of the relative number den-
sity of lower-to-higher temperature electron. Figures 2 and
3 show how the effects of a cylindrical geometry modify the
DIA negative and positive GSs and Figs. 4 and 5 show how
the effects of a spherical geometry modify the DIA nega-
tive and positive GSs. We have also observed (not shown in
figure) that the amplitude (i.e. magnitude of the amplitude)
of both the positive and negative GSs increases with the in-

Fig. 4 Showing the effects of spherical (ν = 2) geometry on DIA neg-
ative GSs for μe1 = 0.318, μe2 = 0.04, σ = 0.2, and U0 = 0.03

Fig. 5 Showing the effects of spherical (ν = 2) geometry on DIA pos-
itive GSs for μe1 = 0.32, μe2 = 0.04, σ = 0.2, and U0 = 0.03

Fig. 6 Showing the effects of electron temperature on DIA negative
GSs for σ = 0.2 (upper plot), σ = 0.6 (middle plot), and σ = 0.9
(lower plot)

crease of μe1 but the width of both the positive and negative
GSs decreases by taking into account the effects of nonpla-
nar cylindrical (ν = 1) and spherical (ν = 2) geometries.

5 Discussions

We have considered a nonplanar geometry, and have studied
the nonlinear propagation of the DIA waves in an unmagne-
tized dusty plasma containing negatively charged stationary
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dust, inertial ions, and Boltzmann distributed electrons of
two distinctive temperatures. We have derived the mG equa-
tion by using the reductive perturbation method, and numer-
ically analyzed that mG equation. The results which have
been found from this investigation can be pinpointed as fol-
lows:

1. The dusty plasma system under consideration supports
finite amplitude GSs, whose basic features (polarity, am-
plitude, width, etc.) strongly depend on different plasma
parameters, particularly, Te1, Te2, and ne1, ne2.

2. The positive (negative) GSs exist when μe1 > (<)0.319,
μe2 = 0.04, σ = 0.2.

3. The amplitude of the positive and negative GSs increases
with the increase of μe1 as well as with σ . The latter
is more essential since one can get the higher amplitude
of DIA SWs dominated by the increase of two-electron
temperatures effect.

4. The width of positive and negative GSs decreases with
the increase of μe1.

5. The numerical solutions of (24) [displayed in Figs. 2–5]
reveal that for a large value of τ (e.g. τ = −30), the
spherical and cylindrical solitary waves are similar to
1D structures. This is because of a large value of τ the
term (ν/2τ)ψ , which is due to the effects of the cylindri-
cal or spherical geometry, is no longer dominant. How-
ever, as the value of τ decreases, the term (ν/2τ)ψ be-
comes dominant, and spherical and cylindrical solitary
wave structures differ from 1D ones. It is to be pointed
out that the amplitude observed in cylindrical (ν = 1) ge-
ometry is half of the amplitude that is observed in spher-
ical geometry (ν = 2). It is found that as the value of
τ decreases, the amplitude of these localized pulses in-
creases. It is also found that the amplitude of cylindrical
DIA SWs is larger than those of 1D ones, but smaller
than that of the spherical ones.

It is important to note here that the mG equation is valid for
μe1 ∼ 0.319, and are found to be different from K-dV soli-
tons, which are not valid for μe1 = 0.319 and μe1 ∼ 0.319
i.e. it vanishes the nonlinear coefficients (A) of that (K-dV)
equation.

The ranges (σ = 0.01–0.9 and μe2 = 0.01–0.3) of the
dusty plasma parameters used in our numerical analysis are
very wide. It may be stressed here that the results of this
investigation could be useful for understanding the nonlin-
ear features of electrostatic disturbances in laboratory (Ole-
son and Found 1946) and space plasmas (Geiss et al. 1978;
Dubouloz et al. 1993), particularly in noctilucent cloud re-
gion in Earth’s atmosphere (Shah et al. 2009), at the edges
of the AKR (Auroral Kilometric Radiation) source region
(Ergun et al. 1998), Saturn’s E-ring, double-plasma ma-
chines (Spileman et al. 1976), hot turbulent thermonuclear
(Estabrook and Krueer 1978) plasma, rf discharge plasma

(Nishida and Nagasawa 1986), etc. where electrons of dif-
ferent kinds involving thermal effects are the major plasma
species. Our present investigation comprising with DIA GSs
in nonplanar dusty plasma system is limited to small but fi-
nite amplitude SWs. It may also be stressed here that the
analysis of small or large amplitude double layers, vortices,
shocks, etc. would be essential to describe the localized non-
linear perturbations of such laboratory (Oleson and Found
1946; Spileman et al. 1976; Nishida and Nagasawa 1986)
and space plasma (Geiss et al. 1978; Dubouloz et al. 1993;
Shah et al. 2009; Alinejad 2011b; Ergun et al. 1998) but be-
yond the scope of our present investigation. To conclude, we
propose to perform a new experiment to test the theory that
we have presented in this work.
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