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Abstract This investigation examines the resonant orbits in
the vicinity of asteroid 216 Kleopatra using a precise grav-
itational model, with emphasis on their crucial role in de-
termining the global orbital behaviors. Three-dimensional
Monte Carlo simulations of test particle trajectories are
launched to find the condition and probability distribution of
resonance. It is revealed the resonant orbits are rich and con-
centrated in the near-field regime, which provides a short-
term mechanism to clear the vicinal ejecta away from the
asteroid. The unstable boundary predicted in our calcula-
tions is consistent with the observed mutual orbits of satel-
lites S/2008 (216) 1 and S/2008 (216) 2. The probability
distribution of resonance is considered as an indicator of the
stability of vicinal orbits, and the results are identical to the
previous analysis by Scheeres et al. (Icarus 121:67, 1996)
for the stability of retrograde orbits around asteroid 4769
Castalia.

Keywords Celestial mechanics—methods ·
Numerical—planets and satellites · Dynamical evolution
and stability—minor planets · Asteroids · Individual · 216
Kleopatra

1 Introduction

Motion close to an asteroid usually represents high risk for
the spacecraft during in-situ exploration, both due to inade-
quate prior observations and the complexity of the dynam-
ics (Cheng 2002). Since every asteroid has a unique size,
shape, density and rotation state, careful study is required
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to precisely estimate these quantities before close-proximity
missions (e.g. the first landing of JAXA’s Hayabusa space-
craft on 25143 Itokawa) (Scheeres et al. 2006; Fujiwara
et al. 2006). Essentially, the risk of close orbital missions
comes from the complicated gravitational environment pri-
marily induced from the rotating irregularly shaped asteroid,
which might lead to unstable and chaotic orbits and make
the final fates of natural objects and spacecraft unpredictable
(Scheeres et al. 1996).

A resonance effect was found near asteroid 4769 Castalia
arising from the commensuration between the asteroid rota-
tion rate and the particle true anomaly rate at periapsis by
Scheeres et al. (1996), based on a second-degree and -order
gravitational field model. This effect is regarded as playing
an important role in the complex dynamical environment in
the vicinity of asteroids for it provides a short-term mecha-
nism (of order the spin period) to eject orbiting objects into
hyperbolic trajectories, or conversely to capture ejectas into
temporarily cycling orbits. Particularly, recent investigations
showed the resonance represents a realistic threat to NASA’s
DAWN mission (Russell et al. 2007), that is, the probe might
be locked into a resonance orbit from which its thrusters can-
not escape, during the rendezvous with Vesta. This gravity
trap bound was found near the 1:1 spin-orbit resonance and
located in a polar orbit of attitude about 520–580 km by Tri-
carico and Sykes (2010).

On the other hand, various groups have demonstrated nu-
merically that several mechanisms can lead to the disrup-
tion of asteroids consisting of loosely consolidated material
(Richardson et al. 1998; Durda et al. 2004; Walsh et al. 2008,
2012), which might create plenty of ejectas in the vicin-
ity of the primary asteroids. The trajectories of these ejec-
tas were grouped into five classes by Scheeres et al. (2002),
and their final states were shown to depend dramatically on
the initial conditions. These close orbital behaviors could
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Fig. 1 The inversion image of 216 Kleopatra based on radar observations (Neese 2004). Side view (left), face view (center) and top view (right).
The topography is highly elongated in a single direction and surprisingly bulges at both ends

have profound effects on surface geological processes and
the formation of vicinal satellites. Most observed satellites
of main-belt asteroids with primary diameters smaller than
about 20 km (Johnston 2012) possess orbital semi-major
axes of 2 ∼ 5 times the maximum dimension of the pri-
mary (Richardson and Walsh 2006; Marchis et al. 2008a,
2008b). The resonance effect might play an important role
in the elimination of vicinal ejecta during the short term,
which will help in the understanding of the regularity of bi-
nary systems’ mutual orbits.

In this study, we take a detailed look at the resonant orbits
in the vicinity of asteroid 216 Kleopatra. The detailed gravi-
tational model is used to approximate the irregular field near
the asteroid, instead of the homogenous simple geometry
or truncation of harmonics. Global orbital behaviors in the
near-field regime are examined over wide ranges of parame-
ters to clarify the universality of resonant orbits, and further,
to find the resonant conditions and determine the probabil-
ity distribution of resonance quantificationally. The instan-
taneous orbital energy is taken as the discriminator of this
resonance effect; the distribution of gravitational power is
demonstrated using the detailed gravity model. Then three-
dimensional Monte Carlo simulations of trajectories near the
equatorial plane are carried out over a wide representative
parameter space. The results show a very regular distribu-
tion of the resonance conditions and reveal significant con-
nections between the Jacobi constant and the resonance ef-
fects. It is confirmed that natural ejecting orbits exist widely
in the vicinity of Kleopatra to clear ejecta away.

2 (216) Kleopatra: detailed gravity model

Reconstruction of the actual dynamical environments about
asteroids has been enabled thanks to shape determinations
through radar observations and in some case in-situ vis-
its (Ostro et al. 2002; Robert et al. 2002). The polyhe-
dral method developed by Werner and Scheeres (1997) has
been used widely to precisely evaluate the gravitational field
around specific asteroids such as 4179 Toutatis, 433 Eros
and 25143 Itokawa (Scheeres et al. 1998, 2006; Yeomans
et al. 2000).

Main-belt asteroid 216 Kleopatra is of particular inter-
est: the mysterious dog-bone shape generates a dominant

second-degree and -order gravitational field, and a fast ro-
tation rate suggests a high probability of resonance near its
surface (Ostro et al. 2000; Hu and Scheeres 2004); more-
over, Kleopatra is a triple asteroid with two small satel-
lites (S/2008 (216) 1 and S/2008 (216) 2) observed in 2008
(Marchis et al. 2008c), which makes it a natural laboratory
to test the performance of the dynamical studies.

A detailed model of Kleopatra’s gravitational field can
be obtained from the radar-derived shape model (Ostro et al.
2000). Figure 1 illustrates the dog-bone shape of asteroid
216 Kleopatra. Supposing this polyhedral model is homo-
geneous, the mass-distribution parameter can be calculated
at ∼0.99, which is defined as a function of the body princi-
pal moments of inertia (Yu and Baoyin 2012), and indicates
large coefficients of second degree and order that contributes
to the resonance as a dominant factor.

2048 vertices and 4096 faces are included in this polyhe-
dral model (Neese 2004) with the rotation period
∼5.385 hours and total mass estimated to be 4.64 ± 0.02 ×
1018 kg (Descamps et al. 2011). Since the motion in the
near-field regime is limited to a region of 10 times the max-
imum dimension of the asteroid, we take the Hill sphere
∼2.89 × 104 km to be the limit of major perturbation from
solar gravity (Hamilton and Burns 1992), and all gravita-
tional perturbations from all the remaining celestial bodies
are neglected. Two coordinate systems are used throughout
this paper. The first is an inertial frame CXYZ with the ori-
gin located at the mass center; the second is a body-fixed
frame Cxyz with the three axes corresponding to the princi-
pal axes of the smallest, intermediate, and largest moments
of inertia, respectively.

3 General orbit dynamics and energy equations

Scheeres et al. (1998) presented the complete form of the
equations of motion (1) for a small particle in the body-fixed
frame based on the polyhedral gravitational model. By intro-
ducing the effective potential, which is the combination of
the centrifugal and gravitational potentials, the equations of
motion are formulated to Hamiltonian form (Scheeres et al.
1998).

r̈ + 2ω × ṙ + ω × (ω × r) = −∇U, (1)
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Fig. 2 The zero-velocity surfaces at the critical values of the five cat-
egories stated in the main text, demonstrated in the equatorial plane
(z = 0); unit: 10−3 km2/s2

or

r̈ + 2ω × ṙ = −∇V. (2)

Where r is the radius vector of the particle, ω is the angu-
lar velocity vector of Kleopatra (assumed to be a constant
vector parallel to the primary rotation axis), U is the gravi-
tational potential and V = −‖ω× r‖2/2+U is the effective
potential. The dissipationless form of Eq. (2) indicates the
absence of asymptotic behaviors of system, so the Hamilto-
nian function (3) is a generalized energy integral, called the
Jacobi constant.

H(r, ṙ) = 1

2
ṙ · r + V (r) = C. (3)

The Jacobi constant can be used to discriminate the allow-
able and forbidden regions around Kleopatra, which are sep-
arated by the zero-velocity surfaces, as demonstrated in Yu
and Baoyin (2012). Supposing the test particle is of unit
mass, all the energy quantities in this paper are assumed to
be specific energies. The zero-velocity surfaces are inher-
ently related with the orbital structures in the region close
to these surfaces (Szebehely 1967), and provide a natural
categorization of the vicinal orbital motion to immediately
determine if the orbit will impact or escape from the asteroid
eventually. As illustrated in Fig. 2, to take a view of the equa-
torial plane, five categories of motion are obtained based on
the topology of these curves: I. The equatorial plane is glob-
ally accessible (−1.98 × 10−3 km2/s2 < C); II. An isolated
island is forbidden on one side (−1.99 × 10−3 km2/s2 <

C < −1.98 × 10−3 km2/s2); III. Two branches are forbid-
den on both flanks (−2.54 × 10−3 km2/s2 < C < −1.99 ×
10−3 km2/s2); IV. Connected branches make a narrow neck
to permit the inside initialized orbits to escape (−2.56 ×

10−3 km2/s2 < C < −2.54 × 10−3 km2/s2); V. Closed for-
bidden region separates the orbits inside and outside (C <

−2.56 × 10−3 km2/s2).
More results on general dynamics in the vicinity of as-

teroids can be achieved from the studies of other elongated
shaped asteroids. Scheeres et al. (1996) examined the orbits
close to asteroid 4769 Castalia with a detailed polyhedral
model, revealing the existence of unstable synchronous or-
bits, mostly stable retrograde orbits and periodic orbit fam-
ilies around this asteroid. Further investigations were pub-
lished later (Scheeres et al. 2000; San-Juan et al. 2004) on
the periodic orbits and their stability around asteroid 433
Eros (Maria et al. 2000), in which the minimum stable radii
were determined both for the prograde and retrograde circu-
lar orbits according to the resonance conditions.

Generally, the dynamical features stated above are de-
rived from the complex instability of orbital structures in the
vicinity of asteroids, and are essentially reflected in the vari-
ations of mechanical energy. Scheeres et al. (1996) demon-
strated the Keplerian energy effects based on the second-
degree and -order gravitational field. Since the magnitude
of the orbital energy has been found to be a distinguishing
factor for determining the final outcomes of orbits (Scheeres
et al. 2002), we examine the energy features of orbits in the
near-field regime, including those caught in resonance and
that end with impact or escape.

Recall the definition of orbital energy (4), which is not
conserved due to exchange from Kleopatra’s rotational ki-
netic energy (any effect on the asteroid’s rotation is tiny and
ignorable).

E = U(r) + 1

2
‖ω × r + ṙ‖2. (4)

Combining with the conserved quantity Eq. (3) yields

E = C + ω · L, (5)

where L = r × (ω × r + ṙ) is the specific orbital angular
momentum, with the time derivative determined by (6). In
Eq. (5), the orbital energy and angular momentum are rel-
ative to the inertial frame and represented with quantities
of the body-fixed frame. Then the general form of gravity
power is given by Eq. (7), which is only position depen-
dent. Namely, a spatial scalar field in the body-fixed frame is
fully determined by the geometry of the gravitational field,
which retains a stationary regime that governs the energy
exchanges for arbitrary motion inside.

d

dt
L = −r × ∇U(r), (6)

p(r) = d

dt
E = −(ω × r)∇U(r). (7)

Figure 3 illustrates this power field in the equatorial plane
(z = 0), that is, the rotational axis is perpendicular to the
plane. The value of gravitational power distributes approx-
imately symmetrically in four quadrants: I. x > 0, y > 0;
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Fig. 3 The colormap of gravity power in the equatorial plane; the
shadowed area sketches the shape of Kleopatra, and the color indi-
cates the energy power magnitude at each point (unit: m2/s3)

II. x < 0, y > 0; III. x < 0, y < 0; IV. x > 0, y < 0. Gen-
erally, the power is positive in quadrants II and IV and neg-
ative in quadrants I and III, and decreases rapidly with dis-
tance from the asteroid (e.g., over 150 km away from the
origin, the power is everywhere below 10 % of the maxi-
mum value). These conclusions are largely consistent with
the analysis based on the second-degree and -order gravi-
tational model of prolate body (Scheeres et al. 1996), in-
dicating this model plays as a dominant role in the motion
around prolate asteroids. Besides, Fig. 3 indicates that the
extreme power values are reached at locations where the ter-
rain significantly rises up. It suggests more possibilities for
the surface particles in quadrants I and III to be ejected from
the asteroid than those of the quadrants II and IV, which has
implications for the evolution of regolith, which is related
both with the ejecta dynamics and the geography of asteroid
(Scheeres et al. 2002).

Equation (5) also delimits the orbital energy in the body-
fixed frame; and by using Eq. (3), we obtain

E = C + ‖ω × r‖2 + ε · ‖ω × r‖ ·
√

2
(
C − V (r)

)
. (8)

In which the last item indicates the inner product of the con-
vected velocity vector ω × r and relative velocity vector ṙ,
and ε ∈ [−1,1] indicates the cosine of included angle be-
tween these two vectors. Equation (8) shows that the magni-
tude of instantaneous orbital energy depends on the Jacobi
constant, which provides a direct criterion for orbits escap-
ing from the neighborhood of asteroids. Since the motion
close to zero-velocity surfaces is usually sensitive while the
motion distant from the asteroid is more robust, the third
term of Eq. (8) shows a basic reason: the included angle be-
tween the convected and relative velocities suffers a sharp
variation close to the zero-velocity surfaces which resulted
in the sudden energy increment. Besides, the range of or-
bital energy can be determined in the third term of Eq. (8):

it is about zero close to the zero-velocity surface and grows
quadratically with distance from the asteroid.

4 Resonance: condition and probability

The possibility of natural ejecting and capturing orbits was
first mentioned by Miller in 1993 (Scheeres et al. 1996).
Then it was defined as resonance effect in a second-degree
truncation of the gravitational field and concluded that this
effect is driven primarily by the interaction between the or-
bital motion, the C22 gravity coefficient and the asteroid
rotation rate (Scheeres et al. 1996). However, more abun-
dant resonance effects might be generated by the high-order
terms of the gravitational field, which would suggest more
possibilities to clear the surrounding ejecta away. In this
section, the resonance effect is examined using a precise
gravitational field model. An explicit criterion for resonance
likely does not exist for there is no analytical solution to
the system (2); instead, the instantaneous orbital energy is
regarded as an indicator of resonance effects due to its sig-
nificant links both to the gravitational field’s geometry and
to the orbital patterns (e.g., ellipse, hyperbola and parabola).
In most instances, obvious resonances are detected when the
orbital energy shows an abrupt change, which is primarily
caused by a reversal in relative velocity in a small region, as
the magnitude of ε varies in Eq. (8). We can delineate several
distinct types of resonance effects due to the orbital patterns
before and after this interaction. Figure 4 illustrates three
typical classes of resonance for which the orbital energy in-
creases (those for which the energy decreases exist corre-
spondingly): class I is a cycling orbit with the instantaneous
eccentricity increasing sharply; class II is an orbit converted
from cycling to escaping; class III is a hyperbolic orbit with
the escaping velocity magnitude increasing sharply during
the interaction. The adaptive step size Runge-Kutta method
(order of 7–8) was adopted for the numerical integration,
due to the consideration of the convergence and computa-
tional efficiency.

Obviously, the magnitude of orbital energy corresponds
to the final fates of the orbits: positive values indicate an es-
caping motion; negative values indicate temporary cycling
motion and insufficient energy may lead to an impact on the
asteroid. It provides the criterion for orbital pattern conver-
sion in the inertial frame, e.g., the ejected orbit, or a hy-
perbolic trajectory captured into an orbit circling around the
asteroid.

Obvious energy exchanges are primarily obtained in the
near-field regime; numerous simulations of 216 Kleopatra
reveal that two dominant mechanisms exist in these mo-
tions. The first is the 1:1 resonance induced by the unstable
manifolds of four equilibria around Kleopatra, which lead to
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Fig. 4 The typical classes of
resonance with positive energy
increments, including the three
segments of orbits in the inertial
frame and the instantaneous
orbital energy varying with
time. The dashed line, solid line
and dotted line indicate the three
segments of orbits before,
during and after the interaction.
And the dash-dotted line
indicates zero energy

the complex instability of the adjacent trajectories and deter-
mine the pattern of trajectories departing from correspond-
ing equilibria (Yu and Baoyin 2012). The second is more
pervasive among the trajectories in the vicinity of Kleopatra;
this biased temporary synchronism presents as a sharp rever-
sal in relative velocity in the neighborhood of zero-velocity
surfaces. Essentially, this temporary synchronization results
from the trajectory sticking close to the zero-velocity sur-
face, and indicates a monotonous change of the instanta-
neous energy. The final outcomes of these motions fall into
classes I–III in Fig. 4 (taking the cases with increasing en-
ergy for instance).

4.1 Conditions of resonance effects

In this section we sketch the distribution of the second type
of resonance, i.e. the temporary synchronism stated above,
through ergodic searching of the orbits close to Kleopatra in
the equatorial plane. To understand further the role of res-
onance in the proximal orbital behavior, the dependence of
resonance conditions on the Jacobi constant is investigated.
Remarkable features are identified for a wide range of Jacobi
constant value.

Due to the general symmetry of the dynamical environ-
ment in the four quadrants of Fig. 3, our numerical simula-
tions are restricted to trajectories initiated in quadrant II as a
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Fig. 5 The distribution of energy increment of the orbits located in
quadrant II from Monte Carlo simulations for six values of the Jacobi
constant; units: 10−4 km2/s2. The results are shown as a function of

the initial position away from the origin along the −x axis and the
launch angle from the −x direction. In these simulations, 300,000 test
particles were integrated

representive sample. The initial position of the test particle
is settled at the −x axis and the value of Jacobi constant is
assigned as a governing parameter, thus the initial position
from the origin and launch angle from the −x direction are
chosen as two coordinates to uniquely describe the initial or-
bits in the equatorial plane, which enables a global searching
for the resonant solutions. The test particles are generated as
follows: the initial locations are randomly on the −x axis in
the range (−7.19,−1.25) × 102 km. The magnitudes of ve-

locities are chosen in accordance with the value of the Jacobi
constant, in the range (−2.55,0.49) × 10−3 km2/s2. And
the directions of velocities are randomly chosen between 0°
and 180°, that is, the test trajectories are all located in quad-
rant II.

Figure 5 shows the distribution of orbital energy incre-
ment of these orbits located in quadrant II for 6 different Ja-
cobi constants, derived from Monte Carlo simulations that
survive a cut-off condition of colliding with the asteroid or
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departing from quadrant II. The results of Fig. 3 show all
the trajectories started in quadrant II will leave this quadrant
eventually, so no limitation of integration time was set in
these simulations. These six contour maps show representa-
tive results for the simulations at different values of Jacobi
constant for a wide range. A clear trend with the increas-
ing initial position and launch angle is found, which appears
as a bending, rising ridge with the corner near (−250 km,
120°). Two main features are apparent as the Jacobi constant
increases: one is a primary region of resonance (the high-
lighted area close to the asteroid) close to the asteroid with
a wide range of launch angle (C < −1.98 × 10−3 km2/s2),
corresponding to the dense trajectories of temporary syn-
chronization. The other is a secondary region of resonance
(the isolated highlighted area in the middle), which is sepa-
rated from the primary region (C > −1.79 × 10−3 km2/s2)

and gets further apart as C increases, which are confirmed
to be mostly hyperbolic orbits of class III.

More specifically, an invariant trend for the distribution
of resonant orbits is found for a wide range of Jacobi con-
stant, which is at about 115° launch angle when the initial
position is far from the asteroid. The same asymptotic dis-
tribution is found with a simplified gravitational model of
second degree and order employed, showing that these grav-
itational harmonics play a leading role in the resonance far
from the asteroid; as the initial position approaches the aster-
oid, this distribution shows a separation between the simpli-
fied model and detailed model, indicating that higher-order
gravitational harmonics contribute a lot to the orbital behav-
ior in the near vicinity of Kleopatra.

Taking the energy increment during one quadrant as an
appropriate criterion for the orbits suffering resonance, the
locations of resonance show quite a regular distribution: sig-
nificant increments concentrate on the bending narrow band
with two main resonant locations inside, away from which
the magnitudes rapidly decay to zero; this distribution are
markedly different in the near- and far-field regimes, which
are sensitive to the Jacobi constant in the near vicinity of
Kleopatra (above −300 km) but show less dependence on
this constant at further distances (below −300 km).

Figure 6 illustrates the extreme values of orbital energy
increments as a function of Jacobi constant, which are lo-
cated around the primary and secondary resonances shown
in Fig. 5. Detailed examinations of these orbital patterns
show the following points: most orbits at the primary res-
onance fall into class I when −2.17 × 10−3 km2/s2 < C <

0.11 × 10−3 km2/s2; the secondary resonance at −1.79 ×
10−3 km2/s2 < C < −0.19 × 10−3 km2/s2 gains larger en-
ergy increments than the primary, and most orbits in these
cases fall into class III; generally, the orbits of primary reso-
nance has complicated components of all three classes I–III.

Fig. 6 The extreme value of the primary and secondary resonances for
different Jacobi constants, from −2.55 × 10−3 to 0.51 × 10−3 km2/s2

4.2 Probability distribution of ejecting orbits

Generally, the outcomes of orbits initially circling the aster-
oid include long-term stable orbits, escape from the gravity
of the asteroid and impact on the asteroid after an extended
period of time. Special attention is paid to the second case
(natural ejecting orbits) in this study, which might be in-
duced from strong short-term resonance effects, as demon-
strated in class II of Fig. 4. Since it provides a quick mech-
anism to perturb the near-field material away from it, this
section examines its universality by simulating for longer
time and find the fates of test particles. The time variation of
instantaneous orbital energy is checked with the criterion of
crossing zero from negative to positive (class II). We exam-
ine all the orbits passing through quadrant II in wide param-
eter space to identify these characteristic orbits, and further
to determine the probability distribution of the occurrence
of ejecting orbits. The normalized probability is defined as
the proportion of the launch angles range of ejecting in the
total range of 180 degrees.

Figure 7 illustrates the normalized probability distribu-
tion of the ejected orbits from Monte Carlo simulations,
which is composed of all those suffering orbital energy
exchanges from negative to positive with a strong reso-
nance (natural ejecting orbits switched in quadrant II). The
distribution is shown as a function of the Jacobi constant
from −2.55 × 10−3 km2/s2 to 5.31 × 10−3 km2/s2 and
the initial position from −421 km to −125 km. Several
points are reflected in this figure. The natural ejecting or-
bits are numerous in the vicinity of Kleopatra, and the
extreme value of the probability is ∼0.073 at −1.92 ×
10−3 km2/s2 and −202.2 km. This could be a primary force
to clear the vicinal circling material away from this aster-
oid. As demonstrated, concentrated ejecting orbits are lo-
cated largely above −320 km, and below this value, this
interaction becomes very weak (probability ∼0.0). This is
fully consistent with the observed semi-major axis of the
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Fig. 7 The normalized probability distribution of natural ejecting or-
bits which present positive crossing over the critical energy zero in
Monte Carlo simulations. The results are shown as a function of the
initial position and Jacobi constant. 250,000 test particles were gener-
ated

two satellites, which are ∼454 km and ∼678 km (Descamps
et al. 2011). The probability of ejecting orbits also depends
on the Jacobi constant: around −1.92 × 10−3 km2/s2 and
2.81 × 10−3 km2/s2, the ejecting orbits are particularly
abundant through a wide range of initial position. It is no-
table that natural ejecting orbits will disappear when C >

3.41 × 10−3 km2/s2, in which case all initially circling or-
bits are retrograde; and when C < −1.39×10−3 km2/s2, no
circling orbits present retrograde. This result could largely
explain the special stability of retrograde orbits, that the
large relative angular motion diminishes the resonance ef-
fect (Scheeres et al. 2000).

5 Conclusions

This paper investigated the resonant orbits in the neighbor-
hood of asteroid 216 Kleopatra using a precise model of its
gravitational field, with the aim of developing a basic un-
derstanding of the effect of resonances in the vicinal orbital
motion. The increment of instantaneous orbital energy is re-
garded as the criterion for the determination of resonant or-
bits, leading to three distinct classes of these orbits. The re-
sults from Monte Carlo simulations show that resonant or-
bits are abundant in the near-field regime, and the distribu-
tion is qualitatively consistent with that under 2nd-degree
and—order model, but strongly influenced by high-order
gravitational harmonics at some locations. In particular, nat-
ural ejecting orbits are shown to be an important short-term
mechanism to clear the ejectas in the vicinity of Kleopatra
away; the boundary predicted numerically is consistent with
the observed mutual orbits of its satellites S/2008 (216) 1
and S/2008 (216) 2. Notable connections between the Jacobi
constant and the distribution of resonant orbits are consid-
ered in the global orbital behavior around Kleopatra, which
derive from temporary synchronism close to the geometry of
the zero-velocity surface. The Jacobi constant range where

these orbits are densely distributed indicates unstable vici-
nal motion set; and the special stability of retrograde orbits
close to the asteroid is confirmed due to the low probability
when Jacobi constant is very large.
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