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Abstract We study stability formulation of holographic
dark energy in Brans-Dicke theory. The model is constrained
with observations. The results verifies the cosmic accelera-
tion in near past. With the stability analysis we find that the
universe transits from quintessence to phantom state in near
future while approaching a stable state.

Keywords Holographic dark energy · Brans-Dicke theory ·
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1 Introduction

Recently independent observations such as type Ia super-
nova (Riess et al. 1998; Perlmutter et al. 1999; Tonry et
al. 2003), weak lens (Jain and Taylor 2003), cosmic mi-
crowave background anisotropy (Spergel et al. 2003), large
scale structure (Tegmark et al. 2004; Seljak et al. 2005) and
baryon oscillation (Eisenstein et al. 2005; Blake et al. 2006)
current cosmic accelerated expansion. The result conflicts
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with general relativity prediction and consequently moti-
vates researchers in cosmology and astrophysics to seek for
alternatively models to interpolate this outstanding phenom-
ena. Within the frame of general relativity, the cosmic accel-
eration may implies that the current universe is dominated
by mysterious dark energy (Nojiri and Odintsov 2005; Nojiri
and Odintsov 2006). A cosmological constant responsible
for the dark content is the simplest explanation which so far
best fits the observation data. However, the observed value
of cosmological constant is unsatisfactory smaller than any
theoretical estimation by a factor of 10120 (Carroll 2001;
Peebles and Ratra 2003). An evolving scalar field interprets
dynamical dark energy that in turn resembles the cosmo-
logical constant (Ito et al. 2011; Nojiri and Odintsov 2011;
Elizalde et al. 2004; Elizalde et al. 2008; Capozziello et al.
2006a, 2006b; Caldwell and Kamionkowski 2004). Despite
to the fact that these models provide us with initial under-
standing of the complexity of the problem none of them turn
out to be problem-free (Huang et al. 2010).

On the other hand, one may view General Relativity as
a poorly tested theory on cosmic scales and considers dark
energy as an observational artifact caused by an inappropri-
ate theory of gravity (Bean 2010). This and other issues of
theoretical and observational gravity have initiated a huge
interest in alternative theories of gravity (Esposito-Farese
2008). Among all, the scalar-tensor theories and in partic-
ular Brans-Dicke theory (BD) (Brans and Dicke 1961) as
viable alternatives to general relativity have been triggered
by many researchers to explain current universe acceleration
(Bertolami and Martins 2000; Banerjee and Pavon 2001;
Sen and Sen 2001; Kim 2005a, 2005b; Das and Banerjee
2006; Chakraborty and Debnath 2009).

In BD theory the scalar field is a fundamental element
of the theory, as opposed to other scalar tensor theories
in which the scalar field is postulated separately in an ad
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hoc way. The field plays the role of quintessence or phan-
tom matter and lead to cosmological acceleration. The BD
parameter in the range −2 < ω < −3/2 violates the en-
ergy condition on the scalar field and also is inconsistent
with a radiation-dominated epoch, unless ω varies with time
(Banerjee and Pavon 2001) and there is a scalar potential
added by hand (Sen and Sen 2001). Further models to in-
clude the so-called “chameleon fields” that allow the scalar
field to interact with to matter is also studied by many re-
searchers (Das and Banerjee 2008; Ponce de Leon 2010;
Farajollahi et al. 2011b).

In this paper we study the holographic dark energy
(HDE) of BD theory. The HDE which has been discussed
extensively in recent years is constructed by considering the
holographic principle and some features of quantum gravity
theory (Amani et al. 2012; Farajollahi et al. 2011a, 2011b).

From this principle, the number of degrees of freedom
which is finite in a bounded system has relations with the
area of its boundary. In cosmology, one can obtain the upper
bound of the entropy contained in the universe. For a sys-
tem with size L and UV cut-off Λ without decaying into
a black hole, it is required that L3ρΛ ≤ LM2

pl . With the

largest allowed L, we obtain ρΛ = 3c2M2
plL

−2, where c is
a numerical constant and Mpl is the reduced Planck Mass
M2

pl = 8πG. The value of parameter c determines the prop-
erty of holographic dark energy. For c > 1,= 1,< 1, the
holographic dark energy behaves like quintessence, cosmo-
logical constant and phantom respectively.

A duality between UV and IR cut-offs means that L in
both cases are related to the vacuum energy and the large
scale of the universe respectively. The large scale of the uni-
verse can be taken as, for example Hubble horizon, event
horizon or particle horizon (Hsu 2004; Li 2004). Here, fol-
lowing (Li 2004), we take the future event horizon (the
boundary of the volume where a fixed observer may eventu-
ally observe)

Rh = a

∫ ∞

t

dt

a
= a

∫ ∞

a

da

Ha2
, (1)

as the IR cut-off L.

2 The model

We begin with a 4-D Brans-Dicke action, given by

S =
∫

d4x
√

g

(
φ2

8ω
R − 1

2
gμν∇μφ∇νφ + LM

)
, (2)

where the dimensionless coupling constant, ω, determines
the coupling between gravity and BD scaler field, R is 4D
Ricci scaler, φ(xμ) is the BD scalar field and LM is the La-
grangian of matter field. In the following we assume a ho-
mogeneous and isotropic FRW geometry where the scalar

field is also a function of time parameter. Therefore, varia-
tion of the action (2) with respect to metric and also scalar
field yield the following field equation,

3
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φ̇2 = pΛ, (4)

φ̈ + 3Hφ̇ − 3

2ω

(
ä

a
+ H 2 + k

a2

)
φ = 0, (5)

where H = ȧ
a

. In the above equation we assume that the
matter filled the universe consists of dark matter (ρm) and
dark energy (ρΛ). The conservation equations for the dark
energy and matter field in the universe are respectively,

ρ̇Λ + 3HρΛ(1 + wΛ) = 0, (6)

ρ̇m + 3Hρm = 0, (7)

In the framework of Brans-Dicke cosmology, the holo-
graphic energy density of the quantum fluctuations in the
universe is

ρΛ = 3c2φ2

4ωL2
. (8)

The characteristic length, L, is defined by L = ar(t) where
r(t) is related to the future event horizon of the universe:

∫ r(t)

0

dr√
1 − kr2

=
∫ ∞

0

dt

a
= Rh

a
. (9)

It is important to note that in the non-flat universe the char-
acteristic length which plays the role of the IR-cutoff is the
radius L of the event horizon measured on the sphere of the
horizon and not the radial size Rh of the horizon. Solving
Eq. (9), for the general case of the non-flat FRW universe,
one yields

r(t) = 1√
k

sinx, (10)

where x = √
kRh/a. Taking derivative with respect to the

cosmic time t from characteristic length, L, and using Eqs.
(10) and (12) we obtain

L̇ = HL + aṙ(t) = c√
ΩD

− cosx. (11)

Stability analysis of the model for the best fitted model pa-
rameters will be discussed in the next section.
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3 Phase space and best fit

The stability of the model is presented via phase plane anal-
ysis, by introducing the following dimensionless variables,

Ωm = 4ωρm

3φ2H 2
, Ωk = k

H 2a2
, ΩΛ = c2

H 2L2
. (12)

The system of equations in terms of new dynamical vari-
ables become,

Ω ′
m = −Ωm

(
3 + 2α + 2

Ḣ

H 2

)
, (13)

Ω ′
Λ = −2ΩΛ

(
1 −

√
ΩΛ cosx

c
+ Ḣ

H 2

)
, (14)

Ω ′
k = −2Ωk

(
1 + Ḣ

H 2

)
, (15)

where Ḣ

H 2 in the above is

Ḣ

H 2
= −1 − 1

2(α + 1)

[
(2α + 1)2 + 2α(αω − 1)

+ Ωk + 3ΩΛ

(
−1

3
− 2α

3
− 2

√
ΩΛ cosx

3c

)]
. (16)

The prime represents derivative with respect to ln(a). With
the new form of Hamiltonian constraint:

Ωk − Ωm − ΩΛ + 2α

(
1 − αω

3

)
= 1, (17)

the (13)–(15) now reduce to,
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Λ = − 2ΩΛ

[−√
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3

− 2
√
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3c

))]
. (19)

In stability formalism, solutions of the system Ω ′
m = 0 and

Ω ′
Λ = 0, are critical points. On the other hand, we simul-

Table 1 Best-fitted model parameters and I.C

Parameters α c ω ΩΛ(0) Ωm(0) χ2

B.F. 0.4 1 1.1 0.7 0.27 542.4893891

Fig. 1 The best fitted 2-dim and 3-dim likelihood and confidence level
for c and ω

taneously best fit the system with observational data to ob-
tain physically meaningful results. So, in the following we
constraint the model parameters α, c and ω, in addition to
initial conditions ΩΛ(0) and Ωm(0) with the observational
data for distance modulus using χ2 method. For simplicity,
we put cosx = 1 which correspond to flat FRW cosmolog-
ical model. Table 1 shows the best fitted model parameters.
As an example, in Fig. 1 we show the 2-dim likelihood and
3-dim confidence level for parameters c and ω.
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Table 2 Stability of the critical points

Critical points (Ωm,ΩΛ) Stability

P1 (0,1.4) Stable

P2 (1.4,0) Unstable

P3 (0,0) Saddle

Fig. 2 The 2-dim phase plane corresponding to the critical point

From stability analysis, the critical points with their sta-
bility properties are given in Table 2. The table shows that
the point P1 is stable while points P2 and P3 are unstable.

Figure 2, illustrates phase diagram of the system. The
critical points represent the state of the universe. The graph
shows that with a small perturbation the universe moves
from unstable states P2 and P3 towards stable state P1. For
the best fitted model with the observational data, the dashed
red trajectory in the diagram indicates that the universe only
begins from unstable state P2 and approaches stable state
P1. At this stage, the best fitted trajectory does not possess
any physical privilege as the phase space diagram shows
only the state of the systems. However, in the next section
that we challenge the model against observational data, the
significance of the adopted best fitting analysis will also be
tested.

4 Cosmological examination

Among cosmological variables, the EoS parameter together
with deceleration, jerk and snap parameters represent higher
derivatives of the Hubble parameter (Harrison 1976; Cald-
well and Kamionkowski 2004; Dabrowski and Stachowiak

Fig. 3 The effective EoS parameter weff , holographic dark energy
EoS parameter wΛ and deceleration parameter q plotted as functions
of redshift

2006). From numerical calculations, the best fitted of these
parameters are obtained. Figure 3 shows the effective EoS
parameters, dark energy Eos parameter and also decelera-
tion parameter q . From effective EoS parameter graph, uni-
verse predicted to be in decelerating state in past and only
recently at about z � 0.2 it turns into accelerating state. It
also shows that the universe is currently in quintessence era
and in near future changes into phantom era. The result can
also be verified from the graph of deceleration parameter.
The EoS parameter for HDE on the other hand shows that
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Fig. 4 The graph of best fitted statefinders j − z, and k − z

the universe is always in accelerating state. This is not sur-
prising since DM effects not considered.

The higher-order characteristics or statefinders of the
model are shown in Fig. 4. The jerk and snap parameters
are respectively functions of the third and forth derivative of
Hubble parameter.

5 Summary

In this paper we have concentrated on the study of holo-
graphic dark energy in Brans-Dicke theory. Within a math-

ematical formulation, the stability and phase space of the
theory investigated. To add physics into the formalism and
support the model with observation, we also constrain the
stability and model parameters with the observational data.
We know that the conventional general relativity; as a lim-
iting case of Brans-Dicke theory where ω → ∞; leads to
a non accelerating universe. However, the holographic dark
energy in Brans-Dicke model with the best fitted BD param-
eter (ω = 1.1) predicts universe acceleration. We examined
the model by looking at cosmological parameters such as
equation of state parameter in addition to deceleration, jerk
and snap parameters are discussed. The results shows both
universe acceleration in the past and phantom crossing in
future.
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