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Abstract Using the Quantum hydrodynamic (QHD) model
Korteweg-de Vries (KdV) type solitary excitations of
electron-acoustic waves (EAWs) have been examined in
a two-electron-populated relativistically degenerate super
dense plasma. It is shown that relativistic degeneracy pa-
rameter significantly influences the conditions of formation
and properties of solitary structures.
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1 Introduction

Electron acoustic waves (EAWs) occur in plasmas contain-
ing two distinct groups of electrons. These are high fre-
quency (in comparison with ion plasma frequency) elec-
trostatic modes in which cold electrons provide the in-
ertia and the restoring force comes from the hot elec-
tron pressure. The phase speed of EAWs is much larger
than the thermal speed of cold electrons but much smaller
than the thermal speed of hot electrons. Here ions may
be regarded as forming a uniform neutralizing background.
Since plasmas with two groups of electrons are known
to occur in both space plasmas (Ang and Zhang 2007;

S. Chandra · S.N. Paul · B. Ghosh (�)
Department of Physics, Jadavpur University, Kolkata 700032,
India
e-mail: bsdvghosh@gmail.com

S. Chandra
e-mail: swarniv147@gmail.com

S.N. Paul
e-mail: drsnpaul@gmail.com

Barnes et al. 2003; Feldman et al. 1975, 1983a, 1983b) and
laboratory experiments Defler and Simonen (1969), Henry
and Trguier (1972), Kadomtsev and Pogutse (1971), Arm-
strong et al. (1979), Sheridan et al. (1991), Ditmire et al.
(1998) the EAWs play an important role in these envi-
ronments. EAWs have been used to explain the source of
broad band electrostatic noise, wave emission in different
regions of earth’s magnetosphere and also the hiss observed
in the polar cusp region. For this the study of EAWs has
become one of the important areas of research in plasma
physics. In recent years the study on the nonlinear evolu-
tion of EAWs has gained momentum (Bains et al. 2011;
Kourakis and Shukla 2004; Singh and Lakhina 2001; Sul-
tana and Kourakis 2011) with a view to explain the ob-
servation of moving EAW related structures reported by
various space-craft missions, e.g. the FAST at the auro-
ral region (Ergun et al. 1998a, 1998b; Delory et al. 1998;
Pottelette et al. 1999) as well as the GEOTAIL and POLAR
missions in the magnetosphere (Matsumoto et al. 1994;
Franz et al. 1998; Cattell et al. 1999, 2003). However most
of the works on EAWs are for classical nonrelativistic plas-
mas. The matter in some compact astrophysical objects
(e.g. white dwarfs, neutron stars, magnetars etc.) exists in
extreme conditions of density. In such situation the aver-
age inter-Fermion distance is comparable to or less than
the thermal de Broglie wavelength and hence quantum de-
generacy effects become important. At extreme high den-
sities the thermal pressure of electrons may be negligi-
ble as compared to the Fermi degeneracy pressure which
arises due to implications of Pauli’s exclusion principle.
In such extreme conditions of density the electron Fermi
energy EFe [= �

2(3π2ne)
3/2/2me] may become compara-

ble to the electron rest mass energy [mec
2] and the elec-

tron speed can approach the speed of light in vacuum. So
the plasma in the interior of such compact astrophysical
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objects is both degenerate and relativistic. Such a plasma
is also likely to be produced in the next generation laser
based plasma compression schemes. Under such conditions
quantum and relativistic effects are unavoidable. Recently a
large number of theoretical investigations have been made of
the linear and nonlinear propagation of various electrostatic
modes in degenerate quantum plasmas by using the quan-
tum hydrodynamic model (Manfredi 2005; Haas et al. 2003;
Gardner and Ringhofer 1996; Shukla and Eliasson 2006;
Khan and Mushtaq 2007; Sahu and Roychoudhury 2006,
2007; Ali and Shukla 2006; Shukla and Ali 2005). Recent
reviews of quantum plasma physics can be obtained Man-
fredi (2005), Shukla and Eliasson (2010). However regard-
ing the electron-acoustic waves in degenerate quantum plas-
mas only a few works have been reported (Misra et al. 2007;
Bhowmik et al. 2007; Sah and Manta 2009; Masood and
Mushtaq 2008). Misra et al. (2007) have investigated the
modulational instability of EAWs in a quantum plasma con-
sisting of two distinct groups of electrons and immobile
ions. Bhowmik et al. (2007) studied the oblique modula-
tional instability of EAWs in quantum plasmas. Sah and
Manta (2009) considered quantum plasma consisting of in-
ertial cold electrons, inertia less hot electrons and immo-
bile ions and studied the effect of quantum parameter on the
formation and properties of electron-acoustic KdV solitary
waves. The propagation of electron-acoustic solitary waves
in a two-electron temperature quantum magneto plasma has
also been reported by Masood and Mushtaq (2008).

All these works use quantum hydrodynamic models and
consider only the nonrelativistic cases. But in extreme con-
ditions of density such as in a typical white dwarf where
the electron density can be as high as 1028 cm−3 the degen-
eracy can be relativistic and both quantum and relativistic
effects should be taken into account. Recently the nonlinear
propagation of ion-acoustic waves in relativistically degen-
erate quantum plasma has been studied by a few authors
(Akbari-Moghanjoughi 2011; Mamun and Shukla 2010;
Masood and Eliasson 2011). But to the best of our knowl-
edge no investigation has been made of the nonlinear prop-
erties of electron-acoustic waves in degenerate quantum-
relativistic plasmas. The purpose of the present paper is to
investigate the linear and nonlinear properties of EAWs in
relativistically degenerate dense quantum plasma consisting
of two distinct groups of electrons and stationary ions. The
paper is organized in the following way: in Sect. 2 the ba-
sic set of quantum hydrodynamic equations are presented;
in Sect. 3 the linear dispersion characteristics is investigated;
in Sect. 4 the Korteweg-deVries equation is derived by using
the standard perturbation techniques; in Sect. 5 we discuss
the dependence of soliton properties on different plasma pa-
rameters. The paper ends up with some concluding remarks.

2 Basic equations

We consider the propagation of electron-acoustic waves in
an unmagnetized three component completely degenerate
dense plasma consisting of two groups of relativistic elec-
trons at different temperatures and stationary cold ions form-
ing a uniform neutralizing background. For electrons the
thermal pressure is assumed to be negligible as compared to
the degeneracy pressure which arises due to the implications
of Pauli Exclusion Principle. In degenerate plasmas the rate
of electron-ion collisions is limited due to the Pauli blocking
mechanism which allows only degenerate particles with en-
ergies limited to a narrow range around the Fermi energy to
interact, hence the plasma may be considered to be almost
collision-less. The dynamics of such a plasma is governed
by the following quantum hydrodynamic equations:

∂(nj )

∂t
+ ∂(njuj )

∂x
= 0, (1)
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∂
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∂2φ

∂x2
= 4πe(nec + neh − Zini) (3)

where the subscript j is used to denote hot (eh) and cold
(ec) electrons. uj and pj are respectively the fluid velocity
and degeneracy pressure of the j th species, � is the Planck’s
constant divided by 2π , φ is the electrostatic wave potential
and Zie is the charge of an ion. Following Chandrasekhar
(1939) the electron degeneracy pressure in fully degenerate
and relativistic configuration can be expressed in the follow-
ing form:

Pj = (
πm4

ec
5/3h3)[Rj

(
2R2
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)√

1 + R2
j

+ 3 sinh−1 R
]

(4)

in which
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/mec = [

3h3nj/8πm3
ec

3] 1
3 = Rj0n
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3
j (5)

where Rj0 = (nj0/n0)
1/3 with n0 = 8πm3

ec
3/3h3 ≈ 5.9 ×

1029 cm−3, ‘c’ being the speed of light in vacuum. pFj
is the

electron Fermi relativistic momentum. It is to be noted that
in the limits of very small and very large values of relativity
parameter Rj , we obtain:

Pj = 1

20

(
3

π

) 2
3 h2

me

n
5
3
j (for Rj → 0), (6)
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j (for Rj → ∞) (7)

Note that the degenerate electron pressure depends only on
the electron number density but not on the electron temper-

ature. Now considering the fact that 1
nj

∂Pj

∂x
= ∂

√
1+R2

j

∂x
the

basic Eqs. (1)–(5) can be written in the following normal-
ized form:
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where Fj = (χ/3)(R2
j0/

√
1 + R2

j0) is the term arising from

relativistic pressure in weakly relativistic case, whereas
for ultra relativistic case Fj = χRj0/3 where χ = mec

2/

2kBTFeh; H is the non-dimensional quantum diffraction pa-
rameter defined as H = �ωec/2kBTFeh, where TFeh is the
Fermi temperatures for hot electrons; δ = nec0/neh0 and
δ1 = Zini0/neh0, in which nec0, neh0 and ni0 are the equi-
librium number densities of cold electrons, hot electrons and
ions respectively.

The normalization has been carried out in the following
manner:

x → xωc/csh, t → tωc, φ → eφ/2kBTFh,

nj → nj/nj0, ni → ni/ni0, uj → uj/csh

in which ωec = √
4πnec0e2/me is the cold electron plasma

frequency, csh = √
2kBTFeh/me is the electron-acoustic

speed. The charge neutrality at equilibrium reads δ = δ1 −1.
It is to be noted that the parameter Rj0 is a measure of the
relativistic effects and may be called relativistic degeneracy
parameter. For ultra relativistic case Rj0 � 1 and for weakly
relativistic case Rj0 � 1. The parameter Rj0 can also be
related to mass density as ρ(gr/cm3) = 1.97 × 106 · R3

j0
(Akbari-Moghanjoughi 2011). The density of white dwarfs
can be in the range 105 < ρ < 109. So in this case the rela-
tivity parameter Rj0 can be in the range 0.37 < Rj0 < 8.

3 Dispersion characteristics

In order to investigate the nonlinear behaviour of electron-
acoustic waves we make the following perturbation expan-
sion for the field quantities neh, ueh, nec, uec and φ about

their equilibrium values:
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Substituting the expansion (11) in Eqs. (8)–(10) and then
linearizing and assuming that all the field quantities vary as
ei(kx−ωt), we get for normalized wave frequency ω and wave
number k, the following linear dispersion relation:

1 = 1/δ

ω2 − k2Feh − H 2k4/4
+ 1

ω2 − k2Fec − H 2k4/4
(12)

where Feh = (χR2
eh0/

√
1 + R2

eh0)/3 and Fec = (χδ2/3R2
eh0/√

1 + δ2/3R2
eh0)/3 in the weakly relativistic limit and Feh =

χReh0/3 and Fec = χδ1/3Reh0/3 in the ultra relativistic
case.

Equation (12) represents the dispersion relation for
EAWs in fully degenerate relativistic plasma. It is a quadratic
equation in ω2 and has the solutions:

ω2
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√
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ω2
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(13)

where

B = k2(Feh + Fec) + (
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) + (1 + 1/δ)
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)(
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)
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H 2k4/4
)
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(14)

It indicates that two stable linear modes for EAWs are pos-
sible when one considers inertial and relativistic effects of
both groups of electrons.

EAWs are high frequency electrostatic electron oscilla-
tions where the restoring force comes from the hot electron
pressure and the cold electrons provide the inertia. If we ne-
glect the inertia of hot electrons and assume that the pres-
sure is solely due to the ultra relativistic hot electrons then
the dispersion relation (12) reduces to:

ω2 = δk2(χReh0/3 + H 2k2/4)

1 + δk2(χReh0/3 + H 2k2/4)
+ H 2k4

4
(15)

In the long wavelength limit (i.e. k → 0)

ω = k
√

δχReh0/3 (16)

The long wave phase speed is:

V0 = ω/k = √
δχReh0/3 (17)
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Fig. 1a Dispersion curves for different values of the relativity param-
eter Reh0 keeping δ and H constant

Fig. 1b Dispersion curves for different values of the equilibrium cold
to hot electron density δ keeping Reh0 and H constant

It represents the long wave dispersion character of EAWs in
a quantum-relativistic plasma composed of inertia less hot
electrons, inertial cold electrons and stationary ions.

We numerically examine the behaviour of the dispersion
relation (15) with respect to the variations of Reh0, δ and H .
Figure 1a shows the variation of ω with k for different val-
ues of the relativity parameter Reh0. It shows that the wave
frequency ω increases with increase in the value of Reh0.
Figures 1b and 1c show the ω–k curves for different values
of δ and H respectively. Obviously, the wave frequency ω

also increases with increase in both δ and H .

Fig. 1c Dispersion curves for different values of the quantum diffrac-
tion parameter H keeping δ and Reh0 constant

4 Derivation of the KdV equation

In order to study the nonlinear behaviour of electron acous-
tic waves we consider inertia less hot ultra relativistic elec-
trons, inertial cold electrons and stationary ions. The pres-
sure effect is assumed to be only due to the hot electrons.
This type of consideration has been made by many previ-
ous authors (Sah and Manta 2009; Sahu and Roychoudhury
2006, 2007). Following the standard reductive perturbation
technique we use the usual stretching of the space and time
variables:

ξ = ε1/2(x − V0t) and τ = ε3/2t (18)

where V0 is the normalized linear long wave phase velocity
given by Eq. (17) and ε is the smallness parameter measur-
ing the dispersion and nonlinear effects. Now writing the
Eqs. (8)–(12) in terms of these stretched co-ordinates ξ and
τ and then applying the perturbation expansion (11) and
solving for the lowest order equation with the boundary con-
dition that n

(1)
eh , u(1)

eh , n(1)
ec , u(1)

ec and φ(1) → 0 as |ξ | → ∞, the
following solutions are obtained:

n
(1)
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V 2
0

, u
(1)
eh = δφ(1)

V0
,
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V 2
0
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V0
.

(19)

Going for the next higher order terms in ε and following
the usual method we obtain the desired Korteweg-de Vries
(KdV) equation:

∂φ

∂τ
+ Aφ

∂φ

∂ξ
+ B

∂3φ

∂ξ3
= 0 (20)
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where

A = − 3
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2
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To find the solution of Eq. (20) we transform the inde-
pendent variables ξ and τ into one variable η = ξ − Mτ

where M is the normalized constant speed of the wave
frame. Applying the boundary conditions that as η → ±∞;

φ,
∂φ
∂η

,
∂2φ

∂2η
→ 0 the possible stationary solution of Eq. (20)

is obtained as:

φ = φm sech2
(

η

Δ

)
(22)

where the amplitude φm and width Δ of the soliton are given
by:

φm = 3
M

A
(23)

and

Δ =
√

4B

M
(24)

The solitary wave structure is formed due to a delicate
balance between dispersive and nonlinear effects. Relative
strength of these two effects determines the characteristic of
such solitary wave structure. The coefficients A and B , cor-
responding to the nonlinear effect and dispersive effect play
a crucial role in determining the solitary wave structure. So
it is important to study the dependence of these coefficients
on different physical parameters. From Eqs. (17) and (21a)–
(21b) it is clear that both the nonlinear and dispersion coeffi-
cients get modified due to the inclusion of relativistic effect
whereas the quantum effect enters only into the dispersion
coefficient. Both these coefficients depend on δ, the equilib-
rium cold-to-hot electron concentration ratio. For a given H

and δ there exists a critical value of the relativity parame-
ter Reh0 at which the dispersion coefficient vanishes. This
critical value of Reh0 is given by:

(Reh0)c = (
3H

√
1 + δ

)
/2χδ (25)

No solitary structure is possible for Reh0 < (Reh0)c. Note
that the critical value of the relativity parameter depends on
both δ and H .

5 Results and discussion

Using the one-dimensional quantum hydrodynamic model
and the standard reductive perturbation technique both the

Fig. 2a Electron-acoustic solitary profiles for different values of the
relativistic degeneracy parameter Reh0 for fixed values of M , δ and H

Fig. 2b Electron-acoustic solitary profiles for different values of the
equilibrium cold-to-hot electron concentration ratio δ for fixed values
of Reh0, M and H

linear and nonlinear properties of electron-acoustic waves
have been investigated in three-component relativistically
degenerate plasma consisting of two distinct groups of elec-
trons and stationary ions. A general type dispersion relation
has been obtained including inertia and quantum relativis-
tic effects of both groups of electrons. It is shown that two
stable linear modes of propagation are possible for electron-
acoustic waves when one considers the inertia effect of both
groups of electrons. The wave frequency is shown to in-
crease with the increase in the values of relativity parameter
Reh0, the equilibrium cold-to-hot electron density ratio δ and
also the quantum diffraction parameter H .

To study the nonlinear behaviour of the wave a KdV
equation has been derived in which the coefficients of the
nonlinear and dispersive terms are found to get modified
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Fig. 2c Electron-acoustic solitary profiles for different values of the
quantum diffraction parameter H for fixed values of M , δ and Reh0

due to the inclusion of quantum relativistic effects. There
exists a critical value of the relativistic degeneracy param-
eter Reh0 such that for Reh0 < (Reh0)c no soliton solution
is possible. This critical value of the degeneracy parameter
is determined by the values of δ and H . From Eqs. (21a),
(21b)–(24) it is obvious that the degenerate plasma under
consideration supports only rarefactive solitary wave struc-
tures which are associated with negative potentials. Fig-
ure 2a shows electron-acoustic solitary profiles for different
values of the relativistic degeneracy parameter Reh0 (which
is directly proportional to the plasma number density) for
fixed values of M , δ and H . It shows that both the am-
plitude and width of the soliton increase with increase of
Reh0. Figure 2b shows solitary structures for different val-
ues of δ keeping Reh0, M and H constant. It is observed
that with increase in δ both the amplitude and width of the
soliton increase. Figure 2c shows solitary structures for dif-
ferent values of H keeping other parameters fixed. It shows
that the soliton width increases with increase in the value of
H but its amplitude is independent of H . The amplitude of
electron-acoustic solitary structure increases with increase
in Reh0 and δ, but it is independent of H . On the other hand
the width of the soliton increases with increase in Reh0, δ

or H .

6 Concluding remarks

Linear and nonlinear propagation characteristics of EAWs
are investigated in a relativistic degenerate dense plasma
consisting of two distinct groups of electrons and station-
ary ions. It is shown that the plasma under consideration
can support only rarefactive solitary waves under certain re-
stricted regions of plasma parameters. The soliton properties

are shown to depend significantly on the relativistic degen-
eracy parameter Reh0, the equilibrium cold-to-hot electron
density ratio δ and also the quantum diffraction parame-
ter H . The present investigation may be helpful in under-
standing the basic features of electron-acoustic waves in su-
per dense astrophysical objects like white dwarfs, neutron
stars as well as in the future intense laser-solid plasma ex-
periments where the relativistic electron degeneracy effects
become important.
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