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Abstract Motivated by the holographic principle, it has
been suggested that the dark energy density may be in-
versely proportional to the area A of the event horizon of
the universe. However, such a model would have a causal-
ity problem. In this work, we consider the entropy-corrected
version of the holographic dark energy model in the non-flat
FRW universe and we propose to replace the future event
horizon area with the inverse of the Ricci scalar curvature.
We obtain the equation of state (EoS) parameter ω�, the
deceleration parameter q and �′

D in the presence of inter-
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action between Dark Energy (DE) and Dark Matter (DM).
Moreover, we reconstruct the potential and the dynamics of
the tachyon, K-essence, dilaton and quintessence scalar field
models according to the evolutionary behavior of the inter-
acting entropy-corrected holographic dark energy model.
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1 Introduction

It is popularly believed among astrophysicists and cosmolo-
gists that our universe is experiencing an accelerated expan-
sion. The evidence of the accelerated expansion of the uni-
verse is proved by numerous and complementary cosmolog-
ical observations, like the Supernovae Ia (SNIa) (Perlmutter
et al. 1999; Astier et al. 2006), the Cosmic Microwave Back-
ground (CMB) anisotropies, observed mainly by WMAP
(Wilkinson Microwave Anisotropy Probe) (Bennett et al.
2003; Spergel et al. 2003), the Large Scale Structure (LSS)
(Tegmark et al. 2004; Abazajian et al. 2004, 2005) and X-ray
(Allen et al. 2004) experiments.

In the framework of standard Freidmann-Robertson-
Walker (FRW) cosmology, a missing energy component
with negative pressure (called Dark Energy (DE)) is the
source of this expansion. Careful analysis of cosmological
observations, in particular of WMAP data (Spergel et al.
2003; Bennett et al. 2003; Peiris et al. 2003) indicates that
the two-thirds of the total energy of the universe is been oc-
cupied by the DE whereas DM occupies almost the rest (the
baryonic matter representing only a few percent of the total).

The nature of DE is still unknown, and scientists have
proposed many candidates in order to describe it (see Pad-
manabhan 2003; Peebles and Ratra 2003; Copeland et al.
2006 and references therein for good reviews).
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The time-independent cosmological constant, �, as vac-
uum energy density, with equation of state (EoS) parameter
ω = −1 is the earliest, most famous and simplest theoretical
candidate for DE.

Cosmologists know that the cosmological constant suf-
fers from two well-known difficulties: the fine-tuning and
the cosmic coincidence problems (Copeland et al. 2006).
The former asks why the vacuum energy density is so small
(an order of 10−123 smaller than what we observe) (Wein-
berg 1989) and the latter says why vacuum energy and DM
are nearly equal today (which is an incredible coincidence if
there are no internal connections between them).

The alternative candidates for DE problem are the dy-
namical DE scenarios with no longer constant but time-
varying EoS, ω. According to some analysis on the SNe Ia
observational data, it has been shown that the time-varying
DE models give a better fit compared with a cosmologi-
cal constant. There are two different categories for dynam-
ical DE scenarios: (i) scalar fields, including quintessence
(Wetterich 1988; Ratra and Peebles 1988), K-essence (Chiba
et al. 2000; Armendariz-Picon et al. 2000, 2001), phan-
toms (Caldwell 2002; Nojiri and Odintsov 2003a, 2003b),
tachyon (Sen 2002b; Padmanabhan 2002; Padmanabhan and
Choudhury 2002), dilaton (Gasperini et al. 2002; Piazza
and Tsujikawa 2004; Arkani-Hamed et al. 2004), quintom
(Elizalde et al. 2004; Nojiri et al. 2005; Anisimov 2005) and
so forth, and (ii) interacting DE models, including Chap-
lygin gas models (Kamenshchik et al. 2001; Setare 2007a;
Bento et al. 2002), braneworld models (Deffayet et al. 2002;
Sahni and Shtanov 2003), holographic DE (HDE) (Cohen
et al. 1999; Hořava and Minic 2000; Setare 2006, 2007b,
2007c, 2007d, 2007e, 2007f) and agegraphic DE (ADE)
models (Cai 2007; Wei and Cai 2008). For a good review
about the problem of DE, including a survey of some theo-
retical models, see Li et al. (2011).

An important advance in the studies of black hole the-
ory and string theory is the suggestion of the so called
holographic principle. According to the holographic prin-
ciple, the number of degrees of freedom of a physical sys-
tem should be finite and should scale with its bounding area
rather than with its volume (’t Hooft 1993) and it should be
constrained by an infrared cut-off (Cohen et al. 1999). The
holographic DE (HDE), based on the holographic principle
proposed by Fischler and Susskind (1998), is one of the most
interesting DE candidates and it has been widely studied in
literature (Huang and Li 2004; Hsu 2004; Wang et al. 2005b;
Guberina et al. 2005, 2006; Gong 2004; Jamil and Fa-
rooq 2010a; Jamil et al. 2009a, 2009b, 2010, 2011; Sadjadi
and Jamil 2011; Sheykhi and Jamil 2011a, 2011b, Sheykhi
2009, 2010; Elizalde et al. 2005; Setare 2006, 2007a, 2007c,
2007d; Setare and Jamil 2010b, 2010c, 2011; Karami et
al. 2010, 2011; Farooq et al. 2010b; Sheykhi et al. 2010;
Setare and Shafei 2006; Setare and Vagenas 2008; Zhang

and Wu 2007, 2005; Zhang 2006; Enqvist et al. 2005;
Shen et al. 2005). HDE models have also been constrained
and tested by various astronomical observations (Zhang and
Wu 2005, 2007; Huang and Li 2004; Enqvist et al. 2005;
Wang and Xu 2010; Micheletti 2010; Zhang 2009; Feng et
al. 2005; Kao et al. 2005; Shen et al. 2005) as well as by the
anthropic principle (Huang and Li 2005).

Applying the holographic principle to cosmology, the up-
per bound of the entropy contained in the universe can be
obtained (Fischler and Susskind 1998). Following this line
(Li 2004) suggested the following constraint on its energy
density:

ρ� ≤ 3c2M2
pL−2, (1)

where c is a numerical constant, L denotes the IR cut-off
radius, Mp = (8πG)−1/2 is the reduced Planck mass (G
represents the gravitational constant) and the equality sign
holds only when the holographic bound is saturated. Ob-
viously, in the derivation of HDE, the black hole entropy
SBH plays an important role. As it is well known, SBH =
A/(4G), where A ≈ L2 is the area of horizon and G is the
gravitational constant. However, in literature, this entropy-
area relation can be modified to (Banerjee and Majhi 2008;
Banerjee and Ranjan Majhi 2008; Banerjee and Modak
2009; Majhi 2009; Jamil and Farooq 2010b; Wei et al. 2010;
Easson et al. 2010; Mohseni Sadjadi and Jamil 2010; Jamil
and Sheykhi 2011):

SBH = A

4G
+ α̃ log

(
A

4G

)
+ β̃, (2)

where α̃ and β̃ are dimensionless constants of order of unity.
These corrections can appear in the black hole entropy in
Loop Quantum Gravity (LQG). They can also be due to ther-
mal equilibrium fluctuation, quantum fluctuation, or mass
and charge fluctuations. The quantum corrections provided
to the entropy-area relationship leads to the curvature cor-
rection in the Einstein-Hilbert action and vice versa (Zhu
and Ren 2009; Cai et al. 2009; Nojiri and Odintsov 2001).
Using the corrected entropy-area relation (2), the energy
density of the entropy-corrected HDE (ECHDE) can be writ-
ten as (Wei 2009):

ρ� = 3αM2
pL−2 + γ1L

−4 log
(
M2

pL2) + γ2L
−4, (3)

where γ1 and γ2 are dimensionless constants of order unity.
In the limiting case γ1 = γ2 = 0, (3) yields the well-known
HDE density.

The first term on (3) corresponds to the usual holographic
energy density. The second and the third terms are due to
entropy corrections: since they can be comparable to the first
term only when L is very small, the corrections given by
them make sense only at the early evolutionary stage of the
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universe. When the universe becomes large, (3) reduce to
that of the ordinary HDE.

Inspired by the HDE models, in this paper we propose to
consider another possibility: the IR cut-off radius L is given
by the average radius of Ricci scalar curvature, R−1/2, so
that we have the DE density ρ� ∝ R. We remember that the
Ricci scalar can be written as:

R = 6

(
Ḣ + 2H 2 + k

a(t)2

)
, (4)

where H = ȧ(t)/a(t) is the Hubble parameter, Ḣ is the
derivative of the Hubble parameter with respect to the cos-
mic time t , a(t) is a dimensionless scale factor and k is the
curvature parameter which can assume the values −1, 0, +1
which yield, respectively, an open, a flat or a closed FRW
universe.

Substituting L with R−1/2, we can write the energy den-
sity of Ricci ECHDE (R-ECHDE) as:

ρ� = 3αM2
pR + γ1R

2 log
(
M2

p/R
) + γ2R

2, (5)

where α, γ1 and γ2 are three constants, Mp = (8πG)−1/2

is the modified Planck mass (G is the gravitational con-
stant). Many authors applied the entropy correction terms in
an interacting/non-interacting and flat/non-flat universe with
modified IR-cutoff (for example see Khodam-Mohammadi
and Malekjani 2011a, 2011b; Khodam-Mohammadi 2011).

This paper is organized as follows. In Sect. 2, we describe
the physical contest we are working in and we derive the
EoS parameter ω�, the deceleration parameter q and �′

D

for our model in a non-flat universe. In Sect. 3, we establish
a correspondence between our model and the tachyon, K-
essence, dilaton and quintessence fields. In Sect. 4 we write
the Conclusions of this paper.

2 Interacting model in a non-flat universe

Observational evidence suggest that our universe is not
perfectly flat but it has a small positive curvature, which
implies a closed universe. The tendency of a closed uni-
verse is shown in cosmological (in particular CMB) ex-
periments (Bennett et al. 2003; Spergel et al. 2003, 2007;
Tegmark et al. 2004; Seljak et al. 2006; Sievers et al.
2003; Netterfield et al. 2002; Benoît et al. 2003a, 2003b).
Moreover, the measurements of the cubic correction to the
luminosity-distance relation of Supernova measurements re-
veal a closed universe (Caldwell and Kamionkowski 2004;
Wang et al. 2005a). For the above reasons, we prefer to con-
sider a non-flat universe.

Within the framework of the standard Friedmann-
Robertson-Walker (FRW) cosmology, the line element for

non-flat universe is given by:

ds2 = −dt2 + a2(t)

×
(

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)). (6)

The corresponding Friedmann equation takes the form:

H 2 + k

a2
= 1

3M2
p

(ρ� + ρm), (7)

where ρ� and ρm are the energy densities of DE and DM,
respectively.

We also define the fractional energy densities for matter,
curvature and DE, respectively, as:

�m = ρm

ρcr

= ρm

3M2
pH 2

, (8)

�k = ρk

ρcr

= k

H 2a2
, (9)

�� = ρ�

ρcr

= ρ�

3M2
pH 2

, (10)

where ρcr = 3M2
pH 2 represents the critical density. The pa-

rameter �k represents the contribution to the total density
from the spatial curvature. Recent observations support a
closed universe with a small positive curvature �k

∼= 0.02
(Spergel et al. 2007).

Using (8), (9) and (10) it is possible to write the Fried-
mann (7) in the following form:

�m + �� = 1 + �k. (11)

In order to preserve the Bianchi identity or local energy-
momentum conservation law, i.e. ∇μT μν = 0, the total en-
ergy density ρtot = ρ� + ρm must satisfy the following
equation:

ρ̇tot + 3H(1 + ω)ρtot = 0, (12)

where ω = ptot /ρtot is the total EoS. By assuming an in-
teraction between DE and DM, the two energy densities ρ�

and ρm are conserved separately and the conservation equa-
tions take the following form:

ρ̇� + 3Hρ�(1 + w�) = −Q, (13)

ρ̇m + 3Hρm = Q. (14)

Q represents the interaction term which can be, in general,
an arbitrary function of cosmological parameters, like the
Hubble parameter H and energy densities ρm and ρ�, i.e.
Q(Hρm,Hρ�). The simplest choice for Q is:

Q = 3b2H(ρm + ρ�), (15)
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with b2 a coupling parameter between DM and DE (Amen-
dola and Tocchini-Valetini 2001, 2002; Setare and Jamil
2010a, 2010b; Sheykhi and Jamil 2011b; Farooq et al.
2010a; Jamil and Farooq 2010a; Jamil and Saridakis 2010;
Zimdahl et al. 2001, 2003) although more general interac-
tion terms can be used (Jamil and Rashid 2008b). However,
since the nature of DM and DE remains unknown, differ-
ent Lagrangians have been proposed to generate this interac-
tion term. Positive values of b2 indicate transition from DE
to matter and vice versa for negative values of b2. Some-
times b2 is taken in the range [0,1] (Zhang and Zhu 2006).
The case with b2 = 0 represents the non-interacting FRW
model while b2 = 1 yields the complete transfer of energy
from DE to matter. Recently, it is reported that this interac-
tion is observed in the Abell cluster A586 showing a transi-
tion of DE into DM and vice versa (Bertolami et al. 2007;
Jamil and Rashid 2008a). However the strength of this inter-
action is not clearly identified (Feng et al. 2007).

Observations of the CMB and of galactic clusters show
that the coupling parameter b2 < 0.025, i.e. a small but pos-
itive constant of order of the unity (Ichiki and Keum 2008;
Amendola et al. 2007). A negative coupling parameter is
avoided due to violation of thermodynamical laws.

We now want to derive the expression for the EoS param-
eter ω� for our model.

Using (7), the Ricci scalar can be written as:

R = 6

(
Ḣ + H 2 + ρm + ρ�

3M2
p

)
. (16)

From the Friedmann (7) we obtain that:

Ḣ = k

a2
− 1

2M2
p

(
ρm + ρ�(1 + ω�)

)
. (17)

Adding (7) and (17), we obtain:

Ḣ + H 2 = ρm + ρ�

3M2
p

− 1

2M2
p

(
ρm + ρ�(1 + ω�)

)
. (18)

Therefore, the Ricci scalar can be written as:

R = ρm + ρ�

M2
p

− 3ρ�ω�

M2
p

. (19)

From (19) we can easily derive the expression of the EoS
parameter ω�:

ω� = −RM2
p

3ρ�

+ ρ� + ρm

3ρ�

= −RM2
p

3ρ�

+ �� + �m

3��

. (20)

Substituting the expression of the energy density given in
(5) and using (11) we obtain:

ω� = − M2
p/3

3αM2
p + γ1R log(M2

p/R) + γ2R
+ (1 + �k)

3��

.

(21)

We now want to derive the expression for the evolution of
energy density parameter ��.

From (13), it is possible to obtain the following expres-
sion for the EoS parameter ω�:

ω� = −1 − ρ̇�

3Hρ�

− Q

3Hρ�

. (22)

Using the expression of Q given in (15), the derivative of
the DE density ρ� can be written as:

ρ̇� = 3H

[
−ρ� − (ρm + ρ�)

(
b2 + 1

3

)
+ RM2

p

3

]
. (23)

Dividing by the critical density ρc = 3H 2M2
p , (23) can be

written as:

ρ̇�

ρc

= �̇� + 2��

Ḣ

H

= 3H

[
−�� − (1 + �k)

(
b2 + 1

3

)
+ R

9H 2

]
. (24)

From (4), we can see that the term R

9H 2 is equivalent to:

R

9H 2
= 2

3

(
Ḣ

H 2
+ 2 + �k

)
. (25)

From (24) and substituting (25), it is possible to obtain the
derivative of �� with respect to the cosmic time t :

�̇� = 2
Ḣ

H
(1 − ��)

+ 3H

[
−�� − (1 + �k)

(
b2 − 1

3

)
+ 2

3

]
. (26)

Since �′
� = d��

dx
= 1

H
�̇� (where x = lna), we derive:

H�′
� = 2H ′(1 − ��)

+ 3H

[
−�� − (1 + �k)

(
b2 − 1

3

)
+ 2

3

]
, (27)

which yields to:

�′
� = 2

H
(1 − ��)

+ 3

[
−�� − (1 + �k)

(
b2 − 1

3

)
+ 2

3

]
. (28)

In the above Equation we used the fact that:

H ′ = a′

a
= 1. (29)

For completeness, we also derive the deceleration parame-
ter q:

q = − äa

ȧ2
= −1 − Ḣ

H 2
. (30)
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q , combined with the Hubble parameter H and the dimen-
sionless density parameters, form a set of very useful param-
eters for the description of the astrophysical observations.
Taking the derivative respect to the cosmic time t of the
Friedmann (7) and using (11), (13) and (14), it is possible
to write (30) as:

q = 1

2
[1 + �k + 3��ω�]. (31)

Substituting the expression of the EoS parameter ω� given
in (21), we obtain that:

q = 1 − 1

2

M2
p��

3αM2
p + γ1R log(M2

p/R) + γ2R
+ �k. (32)

We can derive the important quantities of the R-ECHDE
model in the limiting case, for a flat dark dominated uni-
verse in HDE model, i.e. when γ1 = γ2 = 0, �� = 1 and
�k = 0.

The energy density given in (5) reduces to:

ρ� = 3αM2
pR. (33)

From FRW (7) we find:

H = 6α

12α − 1

(
1

t

)
, (34)

R = 36α

(12α − 1)2

(
1

t2

)
. (35)

At last, the EoS parameter ω� and deceleration parameter q

reduce to:

ω� = 1

3
− 1

9α
, (36)

q = 1 − 1

6α
. (37)

From (36), we see that in the limiting case, the EoS param-
eter of DE becomes a constant value in which for α < 1/12,
ω� < −1, where the phantom divide can be crossed. Since
the Ricci scalar diverges at α = 1/12, this value of α can
not be taken into account. From (37), the acceleration is
started at α ≤ 1/6 where the quintessence regime is started
(ω� ≤ −1/3).

This case is very similar to power-law expansion of scale
factor of Granda and Oliveros (2008), in which a(t) =
t6α/(12α−1).

3 Correspondence between R-ECHDE and scalar fields

In this section we establish a correspondence between the in-
teracting Ricci scale model and the tachyon, K-essence, dila-
ton and quintessence scalar field models. The importance of

this correspondence is that the scalar field models are an ef-
fective description of an underlying theory of DE. There-
fore, it is worthwhile to reconstruct the potential and the dy-
namics of scalar fields according the evolutionary form of
Ricci scalar model. For this purpose, first we compare the
energy density of Ricci scale model (i.e. (5)) with the en-
ergy density of corresponding scalar field model. Then, we
equate the equations of state of scalar field models with the
EoS parameter of Ricci scalar model (i.e. (21)).

3.1 Interacting tachyon model

Recently, huge interest has been devoted to the study of the
inflationary model with the help of the tachyon field, since it
is believed the tachyon can be assumed as a possible source
of DE (Bagla et al. 2003; Shao et al. 2007; Calcagni and
Liddle 2006; Copeland et al. 2005).

The tachyon is an unstable field which can be used in
string theory through its role in the Dirac-Born-Infeld (DBI)
action to describe the D-bran action (Sen 2002a, 1999;
Bergshoeff et al. 2000; Klusoň 2000; Kutasov and Niarchos
2003). Tachyon might be responsible for cosmological in-
flation in the early evolutionary stage of the universe, due to
tachyon condensation near the top of the effective scalar po-
tential. A rolling tachyon has an interesting EoS whose pa-
rameter smoothly interpolates between −1 and 0. This dis-
covery motivated to take DE as a dynamical quantity, i.e.
a variable cosmological constant and model inflation using
tachyons. The effective Lagrangian for the tachyon field is
given by:

L = −V (φ)
√

1 − gμν∂μφ∂νφ, (38)

where V (φ) represents the potential of tachyon and gμν is
the metric tensor. The energy density ρφ and pressure pφ for
the tachyon field are given, respectively, by:

ρφ = V (φ)√
1 − φ̇2

, (39)

pφ = −V (φ)

√
1 − φ̇2. (40)

Instead, the EoS parameter of tachyon scalar field is given
by:

wφ = pφ

ρφ

= φ̇2 − 1. (41)

In order to have a real energy density for tachyon field, it is
required that −1 < φ̇ < 1. Consequently, from (41), the EoS
parameter of tachyon is constrained to −1 < ωφ < 0. Hence,
the tachyon field can interpret the accelerated expansion of
the universe, but it can not enter the phantom regime, i.e.
ω� < −1.
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Comparing (5) and (39), we obtain an expression for the
potential V (φ) of the tachyon:

V (φ) = ρ�

√
1 − φ̇2. (42)

Instead, equating (21) and (41), we obtain an expression for
the kinetic energy term φ̇2:

φ̇2 = 1 + ω�

= 1 − M2
p/3

3αM2
p + γ1R log(M2

p/R) + γ2R

+ (1 + �k)

3��

. (43)

Using (42) and (43), it is possible to write the potential of
the tachyon as:

V (φ) = ρ�

√−ω�

= ρ�

√
M2

p/3

3αM2
p + γ1R log(M2

p/R) + γ2R
− (1 + �k)

3��

.

(44)

We can derive from (43) and (44) that the kinetic energy φ̇2

and the potential V (φ) may exist if it is satisfied the condi-
tion:

−1 ≤ ω� ≤ 0, (45)

which implies that the phantom divide can not be crossed in
a universe with an accelerated expansion.

Using φ̇ = φ′H and (43), we get:

φ′ = 1

H

×
√

1 − M2
p/3

3αM2
p + γ1R log(M2

p/R) + γ2R
+ (1 + �k)

3��

.

(46)

Then, from (46), it is possible to obtain the evolutionary
form of the tachyon scalar field as:

φ(a) − φ(a0)

=
∫ a

a0

da

aH

×
√

1 − M2
p/3

3αM2
p + γ1R log(M2

p/R) + γ2R
+ (1 + �k)

3��

,

(47)

where a0 is the present value of the scale factor. Here,
we have established an interacting entropy-corrected holo-
graphic tachyon DE model and reconstructed the potential
and the dynamics of the tachyon field.

In the limiting case for flat dark dominated universe for
γ1 = γ2 = 0, �� = 1 and �k = 0, the scalar field and poten-
tial of the tachyon are, respectively:

φ(t) =
√

12α − 1

9α
t, (48)

V (φ) = 4M2
p

(12α − 1)

√
α(1 − 3α)

1

φ2
, (49)

which are a result of the power-law expansion. In this cor-
respondence, the scalar field exist provided that α > 1/12,
which shows that the phantom divide can not be achieved.

3.2 Interacting K-essence model

A model in which the kinetic term of the scalar field ap-
pears in the Lagrangian in a non-canonical way is called K-
essence model. The idea of the K-essence scalar field was
motivated from the Born-Infeld action of string theory and
it is used to explain the late time acceleration of the universe
(Sen 2002c; Lambert and Sachs 2003). The general scalar
field action for the K-essence model as a function of φ and
χ = φ̇/2 is given by Chiba et al. (2000), Armendariz-Picon
et al. (2000, 2001):

S =
∫

d4x
√−g p(φ,χ), (50)

where the Lagrangian density p(φ,χ) corresponds to a
pressure density. According to this Lagrangian, the pressure
p(φ,χ) and the energy density of the field φ can be written,
respectively, as:

p(φ,χ) = f (φ)
(−χ + χ2), (51)

ρ(φ,χ) = f (φ)
(−χ + 3χ2). (52)

Hence, the EoS parameter of K-essence scalar field is given
by:

ωK = p(φ,χ)

ρ(φ,χ)
= χ − 1

3χ − 1
. (53)

From (53), one can see the phantom behavior of K-essence
scalar field (wK < −1) when the parameter χ lies in the
interval 1/3 < χ < 1/2.

In order to consider the K-essence field as a description
of the interacting R-ECHDE density, we establish the corre-
spondence between the K-essence EoS parameter, ωK , and
the interacting R-ECHDE EoS parameter, ω�.
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The expression for χ can be found equating (21) and
(53), obtaining:

χ = w� − 1

3w� − 1

=
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

. (54)

Moreover, equating (5) and (52), we obtain:

f (φ) = ρ�

χ(3χ − 1)
. (55)

Using φ̇2 = 2χ and φ̇ = φ′H , we derive:

φ′ =
√

2

H

√√√√√√
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

. (56)

Integrating (56), we find the evolutionary form of the K-
essence scalar field:

φ(a) − φ(a0) = √
2
∫ a

a0

da

aH

×

√√√√√√
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

, (57)

where a0 is the present value of the scale factor.
In the limiting case of γ1 = γ2 = 0, �� = 1 and �k = 0,

in a flat dark dominated universe, the scalar field and poten-
tial of K-essence field reduce to:

φ(t) =
√

2(1 + 6α)

3
t, (58)

f (φ) = 36αM2
p

(12α − 1)2

1

φ2
, (59)

which are a result of power-law expansion. Moreover, we
see that our universe may behave in all accelerated regimes
(phantom and quintessence), since all values of α are per-
mitted.

3.3 Interacting dilaton model

A dilaton scalar field, originated from the lower-energy limit
of string theory (Piazza and Tsujikawa 2004), can also be
assumed as a source of DE.

The process of compactification of the string theory from
higher to four dimensions introduces the scalar dilaton field

which is coupled to curvature invariants. The coefficient of
the kinematic term of the dilaton can be negative in the
Einstein frame, which means that the dilaton behaves as a
phantom-like scalar field. The pressure (Lagrangian) density
and the energy density of the dilaton DE model are given, re-
spectively, by Gasperini et al. (2002), Arkani-Hamed et al.
(2004), Elizalde et al. (2008):

pD = −χ + ceλφχ2, (60)

ρD = −χ + 3ceλφχ2, (61)

where c and λ are positive constants and 2χ = φ̇2. The neg-
ative coefficient of the kinematic term of the dilaton field in
Einstein frame makes a phantom-like behavior for dilaton
field. The EoS parameter for the dilaton scalar field is given
by:

ωD = pD

ρD

= −1 + ceλφχ

−1 + 3ceλφχ
. (62)

In order to consider the dilaton field as a description of the
interacting R-ECHDE density, we establish the correspon-
dence between the dilaton EoS parameter, wD , and the EoS
parameter ω� of the R-ECHDE model. By equating (21)
and (62), it is possible to find:

ceλφχ7 = ω� − 1

3ω� − 1

=
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

. (63)

Using φ̇2 = 2χ , we can rewrite (63) as:

eλφ/2φ̇ =
√

2

c

×

√√√√√√
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

.

(64)

Integrating (64) with respect to a, we obtain:

e
λφ(a)

2 = e
λφ(a0)

2 + λ√
2c

∫ a

a0

da

aH

×

√√√√√√
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

.

(65)



206 Astrophys Space Sci (2012) 340:199–208

The evolutionary form of the dilaton scalar field is written
as:

φ(a) = 2

λ
ln

[
e

λφ(a0)

2 +] + λ√
2c

∫ a

a0

da

aH

×

√√√√√√
−1 − M2

p/3

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

3��

−1 − M2
p

3αM2
p+γ1R log(M2

p/R)+γ2R
+ (1+�k)

��

. (66)

In the limiting case of γ1 = γ2 = 0, �� = 1 and �k = 0, in a
flat dark dominated universe, the scalar field of dilaton field
reduces to the following form:

φ(t) = 2

λ
ln

[
λt

√
1 + 6α

6c

]
. (67)

We see that all values of α are permitted and, therefore, by
this correspondence, the universe may behave in phantom
and quintessence regime.

3.4 Quintessence

Quintessence is described by an ordinary time-dependent
and homogeneous scalar field φ which is minimally coupled
to gravity, but with a particular potential V (φ) that leads
to the accelerating universe. The action for quintessence is
given by Copeland et al. (2006):

S =
∫

d4x
√−g

[
−1

2
gμν∂μφ∂νφ − V (φ)

]
. (68)

The energy momentum tensor Tμν of the field is derived by
varying the action given in (68) with respect to the metric
tensor gμν :

Tμν = 2√−g

δS

δgμν
, (69)

which yields to:

Tμν = ∂μφ∂νφ − gμν

[
1

2
gαβ∂αφ∂βφ + V (φ)

]
. (70)

The energy density ρQ and pressure pQ of the quintessence
scalar field φ are given, respectively, by:

ρQ = −T 0
0 = 1

2
φ̇2 + V (φ), (71)

pQ = T i
i = 1

2
φ̇2 − V (φ). (72)

The EoS parameter for the quintessence scalar field is given
by:

ωQ = pQ

ρQ

= φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (73)

We find from (73) that, when ωQ < −1/3, the universe ac-
celerates for φ̇2 < V (φ).

Here we establish the correspondence between the inter-
acting scenario and the quintessence DE model: equating
(73) with the EoS parameter given in (21), i.e. ωQ = ω�,
and equating (71) and (5), i.e. ρQ = ρ�, we obtain:

φ̇2 = (1 + ω�)ρ�, (74)

V (φ) = 1

2
(1 − ω�)ρ�. (75)

Substituting (22) into (74) and (75), the kinetic energy term
φ̇2 and the quintessence potential energy V (φ) can be easily
found as follow:

φ̇2 = ρ�

(
1 − M2

p/3

3αM2
p + γ1R log(M2

p/R) + γ2R

+ (1 + �k)

3��

)
, (76)

V (φ) = ρ�

2

(
1 + M2

p/3

3αM2
p + γ1R log(M2

p/R) + γ2R

− (1 + �k)

3��

)
. (77)

From (76), using φ̇ = φ′H , it is possible to obtain the evo-
lutionary form of the quintessence scalar field as:

φ(a) − φ(a0) =
∫ a

a0

da

a

{√
3M2

p��

×
(

1 − M2
p/3

3αM2
p + γ1R log (M2

p/R) + γ2R

+ (1 + �k)

3��

)1/2}
, (78)

where a0 is the present value of the scale factor. In the lim-
iting case of γ1 = γ2 = 0, �� = 1 and �k = 0, in a flat
dark dominated universe, the scalar field and potential of
quintessence reduce to:

φ(t) = 6αMp√
3α(12α − 1)

ln (t), (79)

V (φ) = 6α(6α + 1)

(12α − 1)2
M2

p exp

[−√
3α(12α − 1)

3αMp

φ

]
. (80)

The potential exists for all values of α > 1/12 (quintessence
regime). The potential has also been obtained by power-law
expansion of scale factor.

4 Conclusions

In this paper, we considered the entropy-corrected version
of the HDE model which is in interaction with DM in the
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non-flat FRW universe (and with IR cut-off equivalent to
the Ricci scalar R). The HDE model is an attempt to probe
the nature of DE within the framework of quantum grav-
ity. We considered the logarithmic correction term to the
energy density of HDE model. The addition of correction
terms to the energy density of HDE is motivated from the
Loop Quantum Gravity (LQG), which is one of the most
promising theories of quantum gravity. Using the expression
of this modified energy density, we obtained the EoS param-
eter, deceleration parameter and evolution of energy density
parameter for the interacting R-ECHDE model. We found
that for the appropriate model parameters (even in limit-
ing case,γ1 = γ2 = �k = 0, �� = 1), the phantom divide
may be crossed, ω� < −1, and the present acceleration ex-
pansion (q < 0) is achieved where the quintessence regime
is started. Moreover, we established a correspondence be-
tween the interacting R-ECHDE model and the tachyon, K-
essence, dilaton and quintessence scalar field models in the
hypothesis of non-flat FRW universe.

These correspondences are important to understand how
various candidates of DE are mutually related to each other.
The limiting case of flat dark dominated universe without
entropy correction were studied in each scalar field and we
see that the EoS parameter is constant in this case and we
calculate the scalar field and its potential which can be ob-
tained by idea of power-law expansion of scalar field.

In order to make a comparison between our model and
another works in LECHDE-scalar field model, we concen-
trate our attention in a recent article (Amani et al. 2012). The
authors considered a scalar-tensor cosmological model with
the non-minimal kinetic coupling terms and discussed its
cosmological implications with respect to the entropy cor-
rected holographic dark energy. Our results differ from their
results in that their analysis involves two coupling parame-
ters and a cosmological event horizon while ours deal with
a Ricci scale and no couplings. Such scalar field models
have interesting property of explaining the phantom cross-
ing while the reconstructed scalar potential has interesting
physical implications in cosmology.
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