
Astrophys Space Sci (2012) 340:27–41
DOI 10.1007/s10509-012-1029-2

O R I G I NA L A RT I C L E

Equilibrium points and stability in the restricted three-body
problem with oblateness and variable masses

Jagadish Singh · Oni Leke

Received: 29 October 2011 / Accepted: 14 February 2012 / Published online: 2 March 2012
© Springer Science+Business Media B.V. 2012

Abstract The existence and stability of a test particle
around the equilibrium points in the restricted three-body
problem is generalized to include the effect of variations
in oblateness of the first primary, small perturbations ε and
ε′ given in the Coriolis and centrifugal forces α and β re-
spectively, and radiation pressure of the second primary; in
the case when the primaries vary their masses with time in
accordance with the combined Meshcherskii law. For the
autonomized system, we use a numerical evidence to com-
pute the positions of the collinear points L2κ , which exist
for 0 < κ < ∞, where κ is a constant of a particular integral
of the Gylden-Meshcherskii problem; oblateness of the first
primary; radiation pressure of the second primary; the mass
parameter ν and small perturbation in the centrifugal force.
Real out of plane equilibrium points exist only for κ > 1,
provided the abscissae ξ <

ν(κ−1)
β

. In the case of the trian-
gular points, it is seen that these points exist for ε′ < κ < ∞
and are affected by the oblateness term, radiation pressure
and the mass parameter. The linear stability of these equilib-
rium points is examined. It is seen that the collinear points
L2κ are stable for very small κ and the involved parameters,
while the out of plane equilibrium points are unstable. The
conditional stability of the triangular points depends on all
the system parameters. Further, it is seen in the case of the
triangular points, that the stabilizing or destabilizing behav-
ior of the oblateness coefficient is controlled by κ , while
those of the small perturbations depends on κ and whether
these perturbations are positive or negative. However, the
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destabilizing behavior of the radiation pressure remains un-
altered but grows weak or strong with increase or decrease
in κ . This study reveals that oblateness coefficient can ex-
hibit a stabilizing tendency in a certain range of κ , as against
the findings of the RTBP with constant masses. Interestingly,
in the region of stable motion, these parameters are void for
κ = 4

3 . The decrease, increase or non existence in the region
of stability of the triangular points depends on κ , oblateness
of the first primary, small perturbations and the radiation
pressure of the second body, as it is seen that the increasing
region of stability becomes decreasing, while the decreasing
region becomes increasing due to the inclusion of oblateness
of the first primary.

Keywords Celestial mechanics · Gylden-Meshcherskii
problem · Oblateness

1 Introduction

Mass variable systems have been significant since the foun-
dation of classical mechanics, and have been relevant in
modern physics (Lopez et al. 2004). Among these types
of systems, we refer to the motion of rockets (Sommerfeld
1964) and black holes formation (Helhl et al. 1998). A satel-
lite moving around a radiating star surrounded by a cloud
varies its mass due to particles of this cloud. Comets loose
part of their mass as a result of roaming around the Sun
(or other stars) due to their interaction with the solar wind
which blows off particles from their surfaces (Nuth et al.
2000). The Gylden-Meshcherskii problem, for short GMP
(Gylden 1884; Meshcherskii 1902) gives a better insight of
a double-star evolution at the secular mass loss owing to
photon and corpuscular activity. It is also used as a math-
ematical model for different cases of a variable mass body
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motion, when their Newtonian gravitational force exceeds
the reactive forces (Meshcherskii 1902). Solutions and dif-
ferent characterization of the Gylden-Meshcherskii problem
have been examined by Bekov (1988), Luk’yanov (1989)
and Singh and Leke (2010).

The restricted three-body problem with radiation pres-
sure describes the motion of a small particle with negligi-
ble mass in the neighborhood of radiating primaries under
the influence of both gravitational and light radiation forces.
An example of this is the motion of a dust grain near a
binary star system in which one or both stars are radiat-
ing. Such a model has been used by several scientists in in-
vestigating the location and stability of equilibrium points.
The restricted three-body problem with perturbations in the
Coriolis and centrifugal forces, with or without radiation
and oblateness, has received attention especially in the two-
dimensional case and with respect to its five equilibrium
points, i.e. the collinear points L1,L2,L3 and the two tri-
angular points L4,L5. Several studies of this kind of motion
have been performed up to from Szebehely (1967b) to Singh
et al. (2010).

The bodies in the classical CRTBP have been consid-
ered as strictly spherical in shape, but in actual situations
it is found that several celestial bodies, such as Saturn
and Jupiter are sufficiently oblate. Neutron stars and black
dwarfs which is a result of the cooling of white dwarfs are
also oblate due to their rapid spinning after formation. The
lack of sphericity of the planets causes large perturbations
from a two-body orbit. The motions of artificial Earth satel-
lites are examples of this. Several studies involving oblate-
ness of one primary or both have been presented form Sub-
baRao and Sharma (1975) till date.

The aim of the present effort is to investigate the motion
and stability of equilibrium points of a test particle in the
frame of the restricted three-body problem by giving small
perturbations in the Coriolis and centrifugal forces when the
first primary is an oblate spheroid, whose oblate nature is
also varying with time; the second one is a radiating spheri-
cal body and their masses vary in accordance with the com-
bined Meshcherskii (1952) law.

This paper is organized in six sections; Sect. 2 describes
the equations of motion. The next one deal with the positions
of the equilibrium points, while their stability is discussed in
Sects. 4 and 5, respectively. The discussions and conclusions
are drawn in Sect. 6.

2 Equations of motion

For the system with constant coefficients, we use α1 for the
oblateness coefficients of the first primary:

α1 = ρ2
E − ρ2

P

5ρ2
12

, (1)

where ρE and ρP are respectively the equatorial and polar
radii of the first primary. The potential energy of a test parti-
cle of infinitesimal mass m, when the masses and oblateness
vary with time is:

V = −f m

[
m1

r1

(
1 + A1(t)

2r2
1

)
+ m2q2

r2

]
(2)

where

r2
i = (x − xi)

2 + y2 + z2 (i = 1,2)

m1 and m2 are the time dependent masses of the first and
second primary, respectively; r1 and r2 are time dependent
distances of the infinitesimal mass from these primaries po-
sitioned at (x1,0,0) and (x2,0,0), respectively; q2 is the ra-
diation factor of the second primary; A1(t) is the oblateness
of the first primary and is also a function of time, while f is
gravitational constant.

The angular velocity for the time-dependent dynamical
system is given by

ω2(t) = C2

r4

[
1 + 3

2

A1

r2

]
(3)

where μ(t) = f m1(t) + f m2(t), κ is an arbitrary dimen-
sionless constant of a particular integral

rμ = κC2 (Gelf’gat 1973) (4)

of the Gylden-Meshcherskii problem (1952); C = r2ω is a
constant of the area integral.

Equation (3) with the help of (4) takes the form:

ω2(t) = μ(t)

κr3(t)

[
1 + 3

2

A1

r2(t)

]
(5)

The equations of motion of the test particle in the grav-
itational field of the primaries, in a barycentric coordinate
system OXYZ rotating with an angular velocity ω(t) about
the z-axis perpendicular to the plane of motion of the pri-
maries, while the x-axis always passes through these points,
have the form:

ẍ − 2ωẏ = ω2x + ω̇y − μ1(x − x1)

r3
1

− μ2q2(x − x2)

r3
2

− 3μ1A1(x − x1)

2r5
1

ÿ + 2ωẋ = ω2y − ω̇x − μ1y

r3
1

− μ2q2y

r3
2

− 3μ1A1y

2r5
1

z̈ = −μ1
z

r3
1

− μ2
q2z

r3
2

− 3μ1A1z

2r5
1

(6)

where μ1 and μ2 are the product of the masses of the pri-
maries and gravitational constant f , and they connect the
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barycentric coordinates x1 and x2 with the distance r(t) be-
tween the primaries:

μ1 = x2(t)
μ(t)

r(t)
, μ2 = −x1(t)

μ(t)

r(t)

the over-dot denotes differentiation with respect to time t .
We now assume that small perturbations ε and ε′ are

given in the Coriolis and centrifugal forces with the help of
the parameters α and β , respectively, so that now (6) adopt
the form:

ẍ − 2ωẏα − ω̇αy

= ω2xβ − μ1(x − x1)

r3
1

− μ2q2(x − x2)

r3
2

− 3μ1A1(x − x1)

2r5
1

ÿ + 2ωẋα + ω̇αx

= ω2yβ − μ1y

r3
1

− μ2q2y

r3
2

− 3μ1A1y

2r5
1

z̈ = −μ1
z

r3
1

− μ2
q2z

r3
2

− 3μ1A1z

2r5
1

(7)

where α = 1 + ε, |ε| � 1 and β = 1 + ε′, |ε′| � 1.
Now, using the Meshcherskii’s (1952) transformation:

x = ξ(τ )R(t), y = η(τ)R(t)

z = ζ(τ )R(t),
dt

dτ
= R(t), ri = ρiR(t)

(8)

the particular solutions of the Gylden (1884) and Meshcher-
skii (1952) problem:

x1 = ξ1R(t), x2 = ξ2R(t), C = ρ2
12ω0

r = ρ12R(t), ω2(t) = ω2
0

R4(t)

(9)

and the unified Meshcherskii (1952) law:

μ(t) = μ0

R(t)
, μ1(t) = μ10

R(t)

μ2(t) = μ0

R(t)
, μ(t) = μ1(t) + μ2(t)

(10)

R(t) = √
φt2 + 2ϕt + γ , where μ0, μ10, μ20, φ, ϕ, γ are

constants and t is time.
In view of the variable oblateness of the first primary, we

introduce a transformation

A1(t) = α1R
2(t) (11)

where α1 is given in (1) as the oblateness coefficient of the
first primary at initial time.

We transform (7) to the autonomized form:

ξ ′′ − 2αω0η
′ = ∂�

∂ξ
, η′′ + 2αω0ξ

′ = ∂�

∂η

ζ ′′ = ∂�

∂ζ

(12)

� = ω2
0β

2

(
ξ2 + η2) + �(ξ2 + η2 + ζ 2)

2
+ μ10

ρ1

+ q2
μ10

ρ1
+ q2

μ20

ρ2
+ α1

μ10

2ρ3
1

where

ω2
0 = μ0

κρ3
12(1 + 3

2
α1
ρ2

12
)

ρ2
1 = (ξ − ξ1)

2 + η2 + ζ 2

ρ2
2 = (ξ − ξ2)

2 + η2 + ζ 2

� = ϕ2 − φγ ;

(13)

the prime denotes differentiation with respect to the new in-
dependent time τ .

Now, we choose units so that in the coordinates
(ξ, η, ζ, τ ), for the mass and distance at initial time t0 such
that μ0 = κ , ρ12 = 1 respectively. Consequently,

ω2
0 = 1 + 3

2
α1 (14)

When the first primary is not an oblate spheroid i.e. α1 = 0,
we get ω2

0 = 1. Hence, we assume α1 � 1 in (14). Now,
we introduce the mass parameter ν expressed (Luk’yanov
1989a):

μ10

μ0
= 1 − ν,

μ20

μ0
= ν : 0 < ν ≤ 1

2

Therefore the equations of motion (12) with constant coeffi-
cients have the forms:

ξ ′′ − 2αω0η
′ = ∂�

∂ξ
, η′′ + 2αω0ξ

′ = ∂�

∂η

ζ ′′ = ∂�

∂ζ

(15)

where

� = ω2
0(β + κ − 1)

2

(
ξ2 + η2) + ω2

0(κ − 1)ζ 2

2

+ κ(1 − ν)

ρ1
+ q2

κν

ρ2
+ α1

κ(1 − ν)

2ρ3
1

ρ2
1 = (ξ + ν)2 + η2 + ζ 2

ρ2
2 = (ξ + ν − 1)2 + η2 + ζ 2

(16)
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3 Equilibrium points

The equilibrium points of the autonomized system are de-
fined by the system of the equations

∂�

∂ξ
= ∂�

∂η
= ∂�

∂ζ
= 0

That is,

ω2
0(β + κ − 1)ξ − κ(1 − ν)(ξ + ν)

ρ3
1

− q2νκ(ξ + ν − 1)

ρ3
2

− 3

2

α1κ(1 − ν)(ξ + ν)

ρ5
1

= 0

η

[
ω2

0(β + κ − 1) − κ(1 − ν)

ρ2
1

− q2κν

ρ3
2

− 3

2

α1κ(1 − ν)

ρ5
1

]
= 0

ζ

[
ω2

0(κ − 1) − κ(1 − ν)

ρ3
1

− q2κν

ρ3
2

− 3

2

α1κ(1 − ν)

ρ5
1

]
= 0

(17)

3.1 Collinear points

The positions of the collinear equilibrium points Li (i =
1,2,3) are obtained by solving equations of system (17)
with η = ζ = 0, that is

ω2
0(β + κ − 1)ξ

κ
− (1 − ν)(ξ + ν)

ρ3
1

− q2ν(ξ + ν − 1)

ρ3
2

− 3

2

α1(1 − ν)(ξ + ν)

ρ5
1

= 0

(18)

Each of these points lie in the interval (ν − 1, ν), (ν,0) and
(1 − ν,2 − ν) respectively; and they depend on the radia-
tion pressure force, oblateness, a small perturbation given
in the centrifugal force and the arbitrary constant of the
GMP. These points lie on the line joining the primaries (ξ -
axis). Their respective abscissae are

ξ1 = −ν − ε1, ξ2 = 1 − ν − ε2, ξ3 = 1 − ν + ε3,

(19)

where ε1 > 0 (i = 1,2,3) are the roots of the equation:

�(ξ) = ω2
0(β + κ − 1)ξ

κ
− (1 − ν)(ξ + ν)

ρ3
1

+ q2ν(1 − ν − ξ)

ρ3
2

− 3

2

α1(1 − ν)(ξ + ν)

ρ5
1

= 0 (20)

with ρ1 = |ξ + ν|, ρ2 = |ξ + ν − 1|.
Now, � ′(ξ) > 0 for ξ > 1 − ν, so that �(ξ) is strictly

monotonically increasing in the open intervals (−∞,−ν),
(−ν,0) and (1 − ν,∞). As ξ → −∞, �(ξ) → −∞ and as
ξ → 1 − ν, �(ξ) → +∞; implying �(ξ) is zero only once
in each of the open intervals.

Here, we compute the exact positions of the collinear
points L2, by substituting ξ = ξ2 in (19) and simplifying
to get

ν2 = [ω2
0(β + κ − 1)(1 − ε2)

5 − κ(1 − ε2)
2 − 3

2κα1]ε2
2

[ω2
0(β + κ − 1)ε3

2 − q2κ](1 − ε2)4

(21)

where ν2 = ν
1−ν

. Substituting β = 1 + ε′ in the above and
simplifying it, we get an algebraic equation of seventh de-
gree in ε2:

ε7
2 −a1ε

6
2 +a2ε

5
2 −a3ε

4
2 +a4ε

3
2 −a5ε

2
2 +a6ε2 −a7 = 0 (22)

here

a1 = (5 + 4ν2)

1 + ν2
, a2 = 2(5 + 3ν2)

(1 + ν2)

a3 = 2(2ν2 + 5)

(1 + ν2)
+ κ(1 + q2ν2)

ω2
0(κ + ε′)(1 + ν2)

a4 = (ν2 + 5)

(1 + ν2)
+ 2κ(1 + 2q2ν2)

ω2
0(κ + ε′)(1 + ν2)

a5 = 1

(1 + ν2)
+ κ(2 + 12q2ν2 + 3α1)

2ω2
0(κ + ε′)(1 + ν2)

a6 = 4κq2ν2

ω2
0(κ + ε′)(1 + ν2)

, a7 = q2κν2

ω2
0(1 + ν2)(κ + ε′)

Those for the collinear points L1 and L3 are also of sev-
enth degree and can be analogously determined as the case
above.

To compute these points numerically, we consider Cen
X-4, which is a low mass X-ray binary consisting of a neu-
tron star with a mass of 1.4M�, an equatorial radius of
Req = 10 km with a dwarf secondary of mass 0.2M�. Then,
ν = 0.125. We choose α1 = 0.02, q2 = 0.9985 and ε′ =
0.002 for 0 < κ < ∞. Using the software package Mathe-
matica, we compute the positions of the collinear point L2κ

given by (18) for different κ in Table 1.
Hence, there can only be finite numbers of points at

which this equilibrium point may lie for 0 < κ < ∞.

3.2 Triangular points

The triangular points of the autonomized system, which lie
in the orbital plane ξη, denoted by L4 and L5 are the solu-
tions of system (17) with, η �= 0, ζ = 0. Solving these, we
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Table 1 Numerical
computations of the collinear
point L2

κ L2κ L2κ (α1 = 0) L2κ (α1 = 0, q2 = 1)

κ = 0.001 −0.76272 −0.75367 −0.75367

κ = 0.01 −0.99687 −0.99442 −0.99443

κ = 0.1 −1.04684 −1.04553 −1.04554

κ = 0.5 −1.05185 −1.05065 −1.05067

κ = 0.9 −1.05242 −1.05123 −1.05125

κ = 1 −1.05249 −1.0513 −1.05132

κ = 2 −1.05281 −1.05163 −1.05164

κ = 10 −1.052306 −1.05189 −1.0519

κ = 20 −1.052309 −1.05192 −1.05194

33 ≤ κ ≤ 65 −1.052311 −1.05193 to −1.05194 −1.05195 to −1.05196

66 ≤ κ < ∞ −1.052312 −1.05194 to −1.05195 −1.05196 to −1.05197

κ + ε′ < 0, ε′ = 0.002 1.261243 1.266452 1.266662

obtain

β + κ − 1

κ
− 1

ρ3
1

− 3

2

α1

ρ5
1

= 0,
β + κ − 1

κ
− q2

ρ3
2

= 0

(23)

The exact coordinate of triangular points corresponding to
L4 and L5 are

ξ = ρ2
1 − ρ2

2

2
− ν + 1

2

η = ±
{

ρ2
1 + ρ2

2

2
−

(
ρ2

1 − ρ2
2

2

)2

− 1

4

} 1
4

(24)

From (24), when the first primary is not an oblate spheroid
and the second non luminous, we get

ρi =
(

κ

β + κ − 1

) 1
3

(25)

Therefore the solutions in the presence of the oblateness of
the first primary and radiating behavior of the second pri-
mary can be assumed to be:

ρi =
(

κ

β + κ − 1

) 1
3 + χi (26)

where χi � 1 (i = 1,2) are very small.
Restricting ourselves to only linear terms in α1 and 1−q2

where α1 � 1 and (1 − q2) � 1, we obtain

χ1 = α1κ
1
3

2(β + κ − 1)
1
3

[
(β + κ − 1)

2
3

κ
2
3

− 1

]

χ2 = − κ
1
3

3(β + κ − 1)
1
3

[
3

2
α1 + (1 − q2)

] (27)

Using system (27) in (26) yields

ρ1 = κ
1
3

(β + κ − 1)
1
3

[
1 − 1

2
α1 + 1

2
α1

(β + κ − 1)
2
3

κ
2
3

]

ρ2 = κ
1
3

(β + κ − 1)
1
3

[
1 − 1

2
α1 − (1 − q2)

3

] (28)

Substituting (28) in (24), we get

ξ = 1

2
− ν + κ

2
3

(β + κ − 1)
2
3

×
[

1

3
(1 − q2) + 1

2
α1

(β + κ − 1)
2
3

κ
2
3

]

η = ±
√

4κ
2
3 − (β + κ − 1)

2
3

2(β + κ − 1)
1
3

×
{

1 − 2κ
2
3

4κ
2
3 − (β + κ − 1)

2
3

×
[

1

3
(1 − q2) + α1

(
1 − (β + κ − 1)

2
3

2κ
2
3

)]}

(29)

where (β − 1) � 1.
The positions of the triangular points exist only when β −

1 < κ < ∞, that is for 0 < κ ±ε′ < ∞ and are influenced by
small perturbation ε′ in the centrifugal force, oblateness of
the first primary, radiation factor of the second one and the
arbitrary constant κ . When there is no perturbation in the
centrifugal force i.e., β = 1, then these points exist for 0 <

κ < ∞ and are affected only by the radiation pressure, and
oblateness coefficient. The small perturbation ε′ given here
to the centrifugal force is very important, as this admits the
existence of the parameter kappa; so there can be different
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solutions for different κ . When α1 = 0, (29) are same with
those of Singh et al. (2010).

3.3 Out-of-plane points

In the case of the positions of the out-of-plane points, we
solve (17) with, η = 0, ξ �= 0. That is,

ω2
0(β + κ − 1)ξ − κ(1 − ν)(ξ + ν)

ρ3
1

− q2νκ(ξ + ν − 1)

ρ3
2

− 3

2

α1κ(1 − ν)(ξ + ν)

ρ5
1

= 0

ω2
0(κ − 1) − κ(1 − ν)

ρ3
1

− q2κν

ρ3
2

− 3

2

α1κ(1 − ν)

ρ5
1

= 0

(30)

Expressing the first equation of (30) in terms q2 and α1

respectively and substituting in the second, we get

κ(1 − ν)

(
1

ρ3
1

+ 3

2

α1

ρ5
1

)
= ω2

0

[
βξ + (1 − ν)(κ − 1)

]
(31)

and

q2κν

ρ3
2

= ω2
0

[−βξ + ν(κ − 1)
]

From (31), when the first primary is not an oblate
spheroid and the second not radiating, we get

ρ3
1 = κ(1 − ν)

βξ + (1 − ν)(κ − 1)
, ρ3

2 = κν

−βξ + ν(κ − 1)

(32)

So, we can assume the solutions of (31) using perturba-
tion method to be

ρ1 =
[

κ(1 − ν)

βξ + (1 − ν)(κ − 1)

] 1
3 + σ ∗

1

ρ2 =
[

κν

−βξ + ν(κ − 1)

] 1
3 + σ ∗

2 , σ ∗
i � 1 (i = 1,2)

(33)

Solving for σ ∗
i � 1 using perturbation method, restricting

ourselves to only linear terms in α1 and 1 − q2, as they are
very small, we obtain

ρ1 =
[

κ(1 − ν)

βξ + (1 − ν)(κ − 1)

] 1
3
[

1 − 1

2
α1

× {κ(1 − ν)} 2
3 − {βξ + (1 − ν)(κ − 1)} 2

3

{κ(1 − ν)} 2
3

]

ρ2 =
[

κν

−βξ + ν(κ − 1)

] 1
3
[

1 − (1 − q2)

3
− 1

2
α1

]
(34)

Fig. 1 Graph of f (ξ): zeros of the function gives the abscissae ξ of
the out of plane point L6,7

Subtracting the (16) , substituting (34) and denoting LHS by
f (ξ), we get

f (ξ) = 0 (35)

where

f (ξ) = 2(ξ + ν) − 1 −
[

κ(1 − ν)

βξ + (1 − ν)(κ − 1)

] 2
3

×
[

1 − α1
{κ(1 − ν)} 2

3 − {βξ + (1 − ν)(κ − 1)} 2
3

{κ(1 − ν)} 2
3

]

+
[

κν

−βξ + ν(κ − 1)

] 2
3
[

1 − (1 − q2)

3
− α1

]

Figure 1, represents the zeros of the function given
by (35).

In this case, the first and second derivatives respectively
are.

f ′(ξ) = 2 + 2β

3

{ [(1 − ν)κ] 2
3

[βξ + (1 − ν)(κ − 1)] 5
3

}

+ 2β

3

{
(κν)

2
3

[−βξ + ν(κ − 1)] 5
3

}[
1 − 2(1 − q2)

3

]

f ′′(ξ) = −2β2

9

{
5[(1 − ν)κ] 2

3

[βξ + (1 − ν)(κ − 1)] 8
3

}

+ 2β2

9

{
5(νκ)

2
3

[−βξ + ν(κ − 1)] 8
3

}[
1 − 2(1 − q2)

3

]

(36)

An investigation of (35) reveals that βξ + (1 − ν)(κ −
1) > 0 and so we require that ν(κ − 1) > βξ , then (36)
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Fig. 2 Out of plane points L6,7

show that in the interval −(1 − ν)(κ − 1) < βξ < ν(κ − 1),
the function f (ξ) increases monotonically, so that for any
ν, 0 < (κ − 1) < ∞, q2 and α1, there exists a single root
of (35), which gives the abscissae of the out-of-plane points.
The exact abscissa ξ is obtained by using the Newton-
Raphson’s method. Hence, the disturbed out-of-plane points
with coordinates (ξ,0,±ζ ) are

ξ = 1

2
ν(1 − ν)(κ − 1)

×
[

3(κ − 1)
2
3 (1 + α1 − 2ν) + 2κ

2
3 (1 − q2)

3ν(1 − ν)(κ − 1)
5
3 + βκ

2
3 [1 − α1 − 2

3 (1 − q2)(1 − ν)]

]

ζ =
[{

κν

−βξ + ν(κ − 1)

} 2
3

×
{

1 − 2

3
(1 − q2)

}
− (ξ + ν − 1)2

] 1
2

(37)

Real out of plane equilibrium points exist only for κ > 1 pro-
vided the βξ < ν(κ − 1). Previous results of Bekov (1988),
Bekov et al. (2005), Luk’yanov (1989) can be deduced when
α1 = 0, q2 = 1 and β = 1. The positions of L6,7 is shown in
Fig. 2 as a function of κ > 1, ν = 0.125 and β = 1.002 us-
ing (37); for, q2 = 0.9988, α1 = 0.02

The solutions Li (i = 1,2, . . . ,7) of the system of (7) are
sought using the Meshcherskii’s (1952) transformation (8)
in the form (Luk’yanov 1990):

x(i) = ξ (i)R(t), y(i) = η(i)R(t), z(i) = ζ (i)R(t)

(38)

where, ξ (i)(τ ), η(i)(τ ) (i = 1,2, . . . ,7) are the equilibrium
points of system (15). All the particular solutions in this case
are function of time t , so that the positions of the equilibrium

points of equations of motion with variable coefficients al-
ways change with time.

4 Stability of the autonomized system

In order to study the linear stability of any of the equilibrium
points located at (ξ0, η0, ζ0), we displace it to the position
(ξ, η, ζ ) by means of

ξ = ξ0 + u, η = η0 + v, ζ = ζ0 + w (39)

where u, v, w are small displacements; and then lin-
earize (12) to obtain the equations:

u′′ − 2αω0v
′ = (

�0
ξξ

)
u + (

�0
ξη

)
v + (

�0
ξζ

)
w

v′′ + 2αω0u
′ = (

�0
ξη

)
u + (

�0
ηη

)
v + (

�0
ηζ

)
w

ww′′ = (
�0

ξζ

)
u + (

�0
ηζ

)
v + (

�0
ζ ζ

)
w

(40)

where the partial derivatives are evaluated at the equilibrium
points.

4.1 Collinear points

In order to study the stability of the collinear points, we first
compute the partial derivatives of (40) at the collinear equi-
librium points Li (i = 1,2,3).

We consider the point corresponding to L2κ with coordi-
nate (1 − ν − ε2κ ) using

ρ1 = ε2κ − 1 < 1 and ρ2 = ε2κ > 1 (41)

we get

�0
ξξ = β − 1 + κ(1 + 2f2κ)

�0
ηη = β − 1 + κ(1 − f2κ), �0

ηξ = �ηξ = 0
(42)

where

f2κ = (1 − ν)

(ε2κ − 1)3
+ ν

ε3
2κ

+ ν(1 − q2)

ε3
2κ

+ 3α1(1 − ν)

(ε2κ − 1)5

Now, ε2κ > 0, 0 < ν ≤ 1
2 , f2κ > 0; consequently, for

any 0 < κ < ∞, (β − 1) � 1 and α1 � 1, we always have
�0

ξξ > 0 while �0
ηη can be positive or negative, depending

solely on the value of the arbitrary constant κ (κ � 1) and
the small perturbation in the centrifugal force.

The substitution of (42) and ζ = 0 in (40) yields the char-
acteristic equation corresponding to the collinear equilib-
rium points in the form:

λ4 + P2λ
2 + Q2 = 0 (43)
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where

P2 = 4 − 8ε − 2(β − 1) − κ(2 + f2κ) + 6α1

Q2 = κ
[
(β − 1)(2 + f2κ) + κ

(
1 + f2κ − 2f 2

2κ

)]
An investigation of the above reveals that the values of P2

and Q2 could be positive or negative depending mainly on
the choice of κ which in turns depends on the small per-
turbations in the Coriolis and centrifugal forces, radiation
pressure and oblateness of the first and second primary re-
spectively and whether ε <=> 0, (β − 1) <=> 0.

Case 1. A condition for pure imaginary roots of (43) is
that simultaneously, P2 > 0, Q2 > 0, and P2 >

√
D2; where

D2 = P + 22 − 4Q2. Consequently, D2 > 0 and the roots
of (43) in this case can be represented as

λ1,2 = ±iσ1, λ3,4 = ±iσ2 (44)

where

σ1,2 =
(−P2

2
±

√
D2

2

) 1
2

provided

− (2 + f2κ)(β − 1)

(1 + f2κ − 2f 2
2κ)

< κ <
4 − 8ε − 2(β − 1) + 6α1

(2 + f2κ)

The general solutions for pure imaginary roots are given
(Szebehely 1967a, 1967b)

u = S1 cosσ1τ + C1 sinσ1τ + S2 cosσ2τ

+ C2 sinσ2τ

v = S̄1 cosσ1τ + C̄1 sinσ1τ + S̄2 cosσ2τ

+ C̄2 sinσ2τ

(45)

where Si , S̄i , Ci and C̄i (i = 1,2) are constants.
Hence, the collinear point L2κ is stable in this case.
The coefficients of S1,C1, S̄1 and C̄1 of the frequency σ1

are called the long period terms, while the terms S2,C2, S̄2

and C̄2 associated with the frequency σ2 are the short terms;
where the frequencies are given by

σ1 =
√

(2 − √
2)

[
1 − ε − ε′

4
− δ

8
+ 3

4
α1

]
,

σ2 =
√

(2 + √
2)

[
1 − ε − ε′

4
− δ

8
+ 3

4
α1

] (46)

where δ = κ(1 + 2f2κ) � 1.
Now, finding first and second derivatives of (46), substi-

tuting them in the first two equations of (40); separating and
equating the coefficients and solving simultaneously, we get

S̄i = �i

(
2ω0ασiCi − �0

ξηSi

)

C̄i = −�i

(
2ω0ασiSi + U∗0

ξηCi

)

where

�i = σ 2
1 + �0

ξξ

4ω2
0α

2σ 2
1 + (�0

ξη)
2

(i = 1,2)

Substituting (14), α2 = 1 + 2ε, β = 1 + ε′ and the partial
derivatives (42) in the above, yields

C̄i = −2�i

(
1 + ε + 3

4
α1

)
σiSi

S̄i = 2�i

(
1 + ε + 3

4
α1

)
σiSi

(47)

where

�i = σ 2
i + ε′ + δ

4(1 + 2ε + 3
2α1)σ

2
i

Setting the short periodic terms equal to zero and substi-
tuting τ = 0, with initial conditions in (45), we get

S1 = u0, S̄1 = v0 (48)

Numerically, we properly select initial conditions just to the
right, and a little below the collinear points L2κ , when ε′ = 0
and ε′ = 0.003 respectively:

u0 = −1.05312, v0 = −0.703542 (49)

Using the first equation of (46), (48) and (49) in (47) for
i = 1, yields

C̄1 = (−1.05312)

2
√

(2 − √
2)

[
(2 − √

2)

×
(

1 − 3ε − ε′

2
− δ

4
+ 3

4
α1

)
+ δ + ε′

]

C1 = (−1.407084)√
(2 − √

2)

[{
1 + 2ε +

(
1

4
− 1

(2 − √
2)

)
ε′

+
(

1

8
− 1

(2 − √
2)

)
δ

}]

(50)
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Similarly, the coefficients of the short period terms are:

S2 = u0, S̄2 = v0

C̄2 = (−1.05312)

2
√

(2 + √
2)

[
(2 + √

2)

×
(

1 − 3ε − ε′

2
− δ

4
+ 3

4
α1

)
+ δ + ε′

]

C2 = (−1.407084)√
(2 + √

2)

[{
1 + 2ε +

(
1

4
− 1

(2 + √
2)

)
ε′

+
(

1

8
− 1

(2 + √
2)

)
δ

}]

(51)

Equations (49) and (50) give the value for the coefficients
of the long period terms, while the coefficients of the short
period terms are given by system (51). These give the values
of the long and short period terms at which the collinear
points L2κ is stable.

Any case, different from case 1 above, results in a solu-
tion of the type

u = A1e
σ1τ + A2e

−σ1τ + A3e
iσ2τ + A4e

−iσ2τ

v = B1e
σ1τ + B2e

−σ1τ + B3e
iσ2τ + B4e

−iσ2τ

Here, Aj ′s and Bj ′s (j = 1,2,3,4) are constants and all λi ,
i = 1,2,3,4 are real.

In this case, the collinear point L2κ is unstable due to the
presence of exponential functions and a positive root. There-
fore, the collinear point is stable or unstable due to κ , a con-
stant of the Gylden-Meshcherskii problem, small perturba-
tions given in the Coriolis and centrifugal forces, radiation
pressure, oblateness term and the mass parameter. The same
stability analysis may be followed in case of L1 and L3.

4.2 Triangular points

The characteristic equation in the case of triangular point is
obtained by putting ζ = 0 in the variational (40), to get

λ4 − (
�0

ξξ + �0
ηη − 4α2ω2

0

)
λ2 + �0

ξξ�
0
ηη − (

�0
ξη

)2 = 0

(52)

In this case, we have:

�0
ξξ = 3(β + κ − 1)

5
3

4κ
2
3

{
1 + 9α1

2
− 4α1ν + 4κ

2
3 (1 − q2)

3(β + κ − 1)
2
3

+ 2ν(1 − q2)

3

[
(β + κ − 1)

2
3 − 4κ

2
3

(β + κ − 1)
2
3

]}

�0
ηη = 3(β + κ − 1)

2
3

4κ
2
3

{ [4κ
2
3 − (β + κ − 1)

2
3 ]

(β + κ − 1)
2
3

+ [12κ
2
3 − (β + κ − 1)

2
3 ]α1

2(β + κ − 1)
2
3

− 4κ
2
3 (1 − q2)

3

+ 2ν(1 − q2)

3

[4κ
2
3 − (β + κ − 1)

2
3 ]

(β + κ − 1)
2
3

}

�0
ξη = 3

√
N(β + κ − 1)

4
3

8κ
2
3

{
2 + [24κ

2
3 − 5(β + κ − 1)

2
3 ]

N
α1

+ 8κ
2
3 [2κ

2
3 − (β + κ − 1)

2
3 ]

3N(β + κ − 1)
2
3

(1 − q2)

− ν

[
4 + 32κ

2
3 − 6(β + κ − 1)

2
3

N
α1

+ 4(β + κ − 1)
2
3

3N
(1 − q2)

]}

here N = 4κ
2
3 −(β+κ−1)

2
3 .

In the computation of the above derivatives, we have ne-
glected second and higher order terms of α1, 1−q2 and their
product as they are considered very small. Factorizing and
ignoring product of β − 1, with α1 and 1 − q2 in the above
partial derivatives yield:

�0
ξξ = 3

4
κ

{
1 + 9

2
α1 − 4να1 + 5(β − 1)

3κ

+ 4

3
(1 − q2) − 2ν(1 − q2)

}

�0
ηη = 3κ

4

[
3 + 7(β − 1)

3κ
+ 11

2
α1

− 4

3
(1 − q2) + 2ν(1 − q2)

]

�0
ξη = 3κ

√
3

8

[
2 + 19

3
α1 + 8

9
(1 − q2) + 22(β − 1)

9κ

− ν

{
4 + 26

3
α1 + 4

9
(1 − q2) + 44(β − 1)

9κ

}]

(53)

The characteristic equation in the case of triangular point is
obtained by putting ζ = 0 in the variational equation (40),
with the substitution of (53) and (14), and ignoring product
and higher order terms of very small quantities, to get

λ4 + Pλ2 + Q = 0, (54)

where

λ2
1,2 = −P ± √

D

2

are the roots of (54), and D = P 2 − 4Q,

P = 4 − 3κ

[
1 + 5

2
α1 − να1

]
+ 6α1 − 3(β − 1)
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Fig. 3 Graph of κ and the critical mass parameters νCκ

+ 8(α − 1)

Q = 3κ

4

[
9κ + 22(β − 1) + 39κα1 + 2κ(1 − q2)

]
× ν(1 − ν) > 0

The discriminant D of (54) is given by,

D = 3κ
[
9κ + 22(β − 1) + 39κα1 + 2κ(1 − q2)

]
ν2

− 3κ
[
9κ + 22(β − 1) + 39κα1 + 2κ(1 − q2)

+ 2α1(3κ − 2)
]
ν

+ 9κ2(1 + 5α1) + 6κ
[
3(β − 1) − 8(α − 1)

− 16α1 − 4
] + 8

[
8(α − 1) − 3(β − 1) + 2 + 6α1

]

Now, D is a monotonous function of ν in the interval
(0, 1

2 ) and has values of opposite signs at endpoints for some
range of κ . So there are different values of ν, say νCκ in this
range at which the discriminant vanishes and are:

νCκ = ν0κ + νRκ + νrκ + νp1κ
+ νp2κ

+ νA1κ
+ νA2κ

(55)

where

ν0κ = 1

2
− M

18κ

νrκ = 2(24κ − 9κ2 − 16)

27κM
(1 − q2)

νp1κ
= 16(4 − 3κ)

3κM
(α − 1)

νp2κ
= 4(78κ − 9κ2 − 88)

27κ2M
(β − 1)

να1κ
= 1

9κ

[
(3κ − 4) + 60κ − 9κ2 − 64

M

]
α1

M =
√

3
(
96κ − 9κ2 − 64

)

νCκ are the critical mass parameter which exist for different
values of κ (see Fig. 3), and describes the joint effect of the
involved parameters. Though, κ can take values above β − 1
and below infinity. However, we consider only values in the
range 0.71459 < κ ≤ 9.952135, for values of κ outside this
interval do not result to physically meaningful critical mass
parameters as they turn out to be either negative or indeter-
minate quantities.

The critical mass values νCκ , for values of kappa in this
interval are:

νC0.7145319 = 0.498958 − 26.6567δ2 + 1033.87ε

− 798.074ε′ − 111.6959α1

νC0.7146 = 0.489815 − 2.72606δ2 + 105.741ε

− 81.6156ε′ − 11.5585α1 (56)

νC1 = 0.03852 − 0.008917δ2 + 0.642058ε

− 0.338864ε′ − 0.258249α1

νC 4
3

= 0 (57)

νC1.34 = 0.0000082 − 0.0000018δ2 − 0.00660061ε

+ 0.00246018ε′ + 0.00594573α1

νC2 = 0.038520 − 0.00891747δ2 − 0.321029ε

+ 0.0713398ε′ + 0.818978α1

νC5 = 0.234029 − 0.0748866δ2 − 0.490167ε

+ 0.0190621ε′ + 11.9829α1

νC6 = 0.280105 − 0.10189δ2 − 0.524006ε

+ 0.00970381ε′ + 19.5514α1

νC7 = 0.322357 − 0.13663δ2 − 0.578677ε

+ 0.0022963ε′ + 30.3533α1

νC8 = 0.363917 − 0.189004δ2 − 0.680414ε

− 0.0047251ε′ + 46.8088α1

νC9.9521 = 0.499475 − 52.892δ2 − 147.284ε

− 3.22966ε′ + 11533.5α1 (58)

νC9.952135 = 0.499938 − 451.572δ2 − 1257.45ε

− 27.5738ε′ + 98253.6α1

Table 2 gives the numerical computations of νCκ and ν0κ

for κ in the interval [0.7145311,9.952136] for, q2 = 0.9985,
α1 = 0.02, α = 1.001, β = 1.002.

We observe that for 0.7145311 ≤ κ < 0.71459 and κ >

9.952135 with the allowance for oblateness of the first pri-
mary, νCκ is either complex or negative; therefore the physi-
cally possible range of κ is 0.71459 ≤ κ ≤ 9.952135. How-
ever, in the absence of oblateness, i.e., α1 = 0, the range
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Table 2 Numerical computations of the critical mass parameter νCκ

κ ν0 δ2 = 0.0015 ε = 0.0012 ε′ = 0.0013 α1 = 0.02 νCκ

0.7145311 Complex Imaginary Imaginary Imaginary Complex Complex

0.7145312 0.499826 −0.238848 7.41089 −6.1974 −15.9952 −14.5207

0.7145319 0.498958 −0.0399851 1.24065 −1.0375 −2.68068 −2.01856

0.71459 0.490583 −0.00442324 0.137256 −0.114771 −0.29977 0.208875

0.71460 0.489815 −0.00408909 0.126889 −0.1061 −0.277404 0.229111

0.72 0.409910 −0.000447 0.014008 −0.0116159 −0.0342749 0.37758

0.75 0.280104 −0.000153 0.005030 −0.003986 −0.0155849 0.26541

0.99999 0.038524 −0.000013 0.000770 −0.000440 −0.0061982 0.0326428

1.0000 0.038520 −0.0000133 0.000770 −0.000440 −0.0061979 0.0326388

4/3 0 0 0 0 0 0

2 0.038520 −0.000013 −0.000385 0.00009274 0.0196555 0.0578702

3 0.116438 −0.000045 −0.0005149 0.00006715 0.0728307 0.188776

4 0.180858 −0.0000774 −0.0005571 0.00004191 0.159606 0.339871

5 0.234029 −0.00011233 −0.0005882 0.00002478 0.28759 0.520943

6 0.280105 −0.0001529 −0.0062881 0.00001261 0.469235 0.742912

7 0.322357 −0.0002049 −0.0006944 0.00000298 0.728478 1.04994

8 0.363917 −0.0002835 −0.0008165 −0.0000061 1.12341 1.48622

9 0.409910 −0.0004474 −0.0011206 −0.0000187 1.87578 2.2841

9.5 0.439437 −0.0006779 −0.0015937 −0.0000328 2.80819 3.24532

9.94 0.490283 −0.0042863 −0.0095619 0.00022637 15.5721 16.0581

9.95 0.495926 −0.0102258 −0.0227855 −0.0005409 36.262 36.7244

9.9521 0.499475 −0.079338 −0.176741 −0.0041986 276.803 277.042

9.952135 0.499938 −0.677358 −1.50894 −0.0358459 2358.09 2356.37

9.952136 Imaginary Imaginary Imaginary Imaginary Complex Complex

becomes 0.7145311 < κ ≤ 9.9521. For example when κ =
0.7145312, we get νCκ = −14.5207 which is unrealistic;
however when the first primary is spherical, the critical
mass parameter becomes νCκ = 1.28339. Below is a graph-
ical representation of νCκ as a function of κ in the inter-
val 0.71459 ≤ κ < 9.952136 for, q2 = 0.9985, α1 = 0.02,
α = 1.001, β = 1.002.

Now, since the nature of the characteristic roots (54)
depend on the nature of the discriminant, small perturba-
tions, mass ratio, oblateness and the constant κ , we con-
sider the three regions of the discriminant D coupled with
the changes in P , which is due to κ , ν, α1 and whether
8ε − 3ε′ <=> 0.

1. A condition for pure imaginary roots of (54) is that si-
multaneously 0 < ν < νCκ , D > 0 and P > 0, and are
represented as:

λ1,2,3,4 = ±i�n (n = 1,2)

where

�1,2 =
√

1

2
(−P ± √

D)

In this case the triangular point is stable.

The general solution can be written (Szebehely 1967a,

1967b) as

u = S1 cos�1τ + C1 sin�1τ + S2 cos�2τ

+ C2 sin�2τ

v = S̄1 cos�1τ + C̄1 sin�1τ + S̄1 cos�2τ

+ C̄2 sin�2τ

(59)

where, Si , S̄i , Ci and C̄i (i = 1,2) are constants.

2. For 0 < ν < νCκ , D > 0 and P < 0. In this case the roots

are real and distinct and can be written as

λ1,2 = ±U1, λ3,4 = ±U2, where

U1,2 =
√

1

2
(P ± √

D)
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The general solution for real roots with the condition
P < 0 is represented as

u = J1e
U1τ + J2e

−U1τ + J3e
U2τ + J4e

−U2τ

v = C1J1e
U1τ + C1J2e

−U1τ + C2J3e
U2τ + C2J4e

−U2τ

(60)

where C1, C2, J1 and J2 are constants. A positive root
induces instability at the triangular point.

3. When νCκ < ν ≤ 1
2 , D < 0 and P < 0, 0 < P < 2

√
Q.

The real parts of two of the values of λ are positive and
equal. Therefore, the triangular point is unstable.

4. When ν = νCκ , D = 0. The following cases are possible.
(i) If P < 0, two roots are real and equal, while the

other two are negative and also equal. In this case,
the triangular point is unstable.

(ii) If P = 0, here all the roots are zero, and the triangu-
lar point is unstable.

(iii) If P > 0, all four roots are imaginary, in which two
are positive and equal and the other two are neg-
ative and equal. In this case we have the resonance
case of second order. Here, since the frequencies are
equal and of same sign, the equilibrium point is sta-
ble (Gozdziewski 2003).

Hence, we conclude that the triangular point of the au-
tonomized system is stable or unstable for 0 < ν ≤ νCκ

and unstable for νCκ < ν ≤ 1
2 , depending on the choice

of the arbitrary constant κ , the mass ratio, oblateness co-
efficients and whether the points (ε, ε′) lies in one or the
other of the two regions in which the (ε, ε′) plane is di-
vided by the line 8ε − 3ε′ = 0.

4.3 Out of plane points

We consider the stability of the out of plane point L6, that of
L7 can be analogously obtained. The characteristic equation
corresponding to the variational equation (40), in the case of
the out of plane points is:

λ6 − λ4(�0
ξξ + �0

ηη + �0
ζ ζ − 4α2ω2

0

)
+ λ2[�0

ηη�
0
ζ ζ + �0

ξξ�
0
ζ ζ + �0

ξξ�
0
ηη

− 4α2ω2
0�

0
ζ ζ

(
�0

ξη

)2 − (
�0

ξζ

)2 − (
�0

ηζ

)2]

− �0
ξξ�

0
ηη�

0
ζ ζ − 2�0

ξη�
0
ηζ �

0
ξζ + �0

ξξ

(
�0

ηζ

)2

+ �0
ζ ζ

(
�0

ξη

)2 + �0
ηη

(
�0

ξζ

)2 = 0 (61)

where

�0
ξξ = β

(
1 + 3

2
α1

)

+ 3(ξ + ν)2 {βξ + (1 − ν)(κ − 1)} 5
3

{κ(1 − ν)} 2
3

(
1 + 5

2
α1

)

+ 3(ξ + ν − 1)2 {−βξ + ν(κ − 1)} 5
3

(κν)
2
3

×
[

1 + 2

3
(1 − q2) + 5

2
α1

]
(62)

�0
ηη = β

(
1 + 3

2
α1

)
(63)

�0
ξη = �0

ηζ = 0 (64)

�0
ξζ = 3ζ

{ {βξ + (1 − ν)(κ − 1)} 5
3 (ξ + ν)

{κ(1 − ν)} 2
3

(
1 + 5

2
α1

)

+ {−βξ + ν(κ − 1)} 5
3 (ξ + ν − 1)

(κν)
2
3

×
[

1 + 2

3
(1 − q2) + 5

2
α1

]}
(65)

�0
ζ ζ = 3ζ 2

{ {βξ + (1 − ν)(κ − 1)} 5
3

{κ(1 − ν)} 2
3

(
1 + 5

2
α1

)

+ {−βξ + ν(κ − 1)} 5
3

(κν)
2
3

[
1 + 2

3
(1 − q2) + 5

2
α1

]}

(66)

These derivatives have been evaluated at the out-of-plane
equilibrium points and we have neglected second and higher
order terms and product of α1 with 1 − q2 and β − 1 = ε′.

Now, substituting (62)–(66) and (14) in (61), results in

λ6 − pλ4 + qλ2 + r = 0 (67)

where

p = 3QY
5
3

A
2
3

[
(ξ + ν)2 + ζ 2]

+ 3RZ
5
3

B
2
3

[
(ξ + ν − 1)2 + ζ 2] − 2 − 8ε + 2ε′

q = 1 + 9α1

2

[
Y

5
3

A
2
3

(ξ + ν)2 + Z
5
3

B
2
3

(ξ + ν − 1)2

+ 2

3
− 3ζ 2

(
Y

5
3

A
2
3

+ Z
5
3

B
2
3

)]

+ ε′
[

2 + 3Y
5
3

A
2
3

{
(ξ + ν)2 + ζ 2}

+ 3Z
5
3

B
2
3

{
(ξ + ν − 1)2 + ζ 2}] − 24ε

(
Y

5
3

A
2
3

+ Z
5
3

B
2
3

)
ζ 2
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− 3ζ 2
[

3QY
5
3

A
2
3

+ 3RZ
5
3

B
2
3

+ 6V (YZ)
5
3 (ξ + ν)(ξ + ν − 1)

(AB)
2
3

− Y
5
3 S

A
2
3

− Z
5
3 T

B
2
3

− 3V (YZ)
5
3

(AB)
2
3

{
(ξ + ν)2 + (ξ + ν − 1)2}]

r = 3ζ 2
(

1 + 3

2
α1 + ε′

)[
3

{
Y

10
3 (ξ + ν)2U

A
4
3

+ 2V (ξ + ν)(ξ + ν − 1)(YZ)
5
3

(AB)
2
3

+ Z
10
3 W(ξ+ν−1)2

B
4
3

}

−
{

Y
5
3 S

A
2
3

+ Z
5
3 T

B
2
3

+ 3(ξ + ν)2Y
10
3 U

A
4
3

+ 3(ξ + ν)2(YZ)
5
3 V

(AB)
2
3

+ 3(ξ + ν − 1)2(YZ)
5
3 V

(AB)
2
3

+ 3(ξ + ν − 1)2Z
10
3 W

B
4
3

}]

with

Y = βξ + (1 − ν)(κ − 1), Z = −βξ + ν(κ − 1)

Q = 1 + 5

2
α1, R = 1 + 2

3
(1 − q2) + 5

2
α1

S = 1 + 4α1 + ε′, T = 1 + 2

3
(1 − q2) + 4α1 + ε′

U = 1 + 5α1, V = 1 + 4

3
(1 − q2) + 5α1

w = 1 + 2

3
(1 − q2) + 5α1

(68)

The stability of the out of plane points L6 is determined
by the roots of the characteristic equation (67). We perform
a numerical exploration to compute the out of plane points,
the partial derivatives and values of the quantities p, q and
r using the software package Mathematica (Wolfram 2003)
for values of κ > 1, q2 = 0.9855, α = 1.001, β = 1.002,
α1 = 0.02 and found that the signs of the quantities p, q and
r could be negative or positive depending on the interval
where κ lies. The following cases have been considered:

(i) p < 0, q > 0 and r < 0, there is one change in sign,
which implies there is exactly one positive root accord-
ing to the Descartes rule of sign.

(ii) p > 0, q < 0 and r < 0, there is also one change in
sign.

(iii) p > 0, q < 0 and r > 0, there are two changes in
sign indicating there two positive, two negative and two
imaginary roots

The stability of the out of plane points would have been
achieved if a fourth case, that is p < 0, q > 0 and r > 0.
However, since this case does not arise, as there is at least
a positive root in each of the cases above, we conclude that
the out of plane points of the autonomized dynamical sys-
tem are in general an unstable equilibrium points only due
to the positive roots.

5 Stability of equilibrium points of the non-autonomous
system

The analysis of the stability of the particular solutions Li

(i = 1,2, . . . ,7) would depend on the methods applied,
since these equilibrium points are themselves time depen-
dent. For example, using the definition of a Lyapunov sta-
ble solution (Krasnov et al. 1983), we have in the triangular
case:

lim
t→∞x(4,5)(t) = ξ (4,5) lim

t→∞R(t) = ∞ (69)

Equation (69) proves the instability of the solutions x(t) and
similarly for y(t), according to the Lyapunov’s theorem, and
is same as the result of Luk’yanov (1990).

The relationship between the old and new independent
variables t and τ are given (Poincare 1911; Singh and Leke
2010) as

0 < lim
t→∞ τ < ∞ (70)

and

ω2
0 lim

t→∞
τ

t
= � < S∗ (71)

where

S∗ = 4(πκ)2, and finite

Equation (70) implies that as t is approaching ∞, τ is
also always approaching a finite value, while (71) indicates
that limt→∞ τ

t
always tends to a positive finite value �.

However, this finite values decreases due to oblateness of
the first primary.

The system (15) of equations with constant coefficients
and the reducible system are regular. The system (7) with
variable coefficients is reducible due to the Meshcherskii
transformation (8). Therefore, we apply Lyapunov’s theo-
rem, using the Lyapunov Characteristic Numbers (LCN) on
the stability of the motion around the equilibrium solutions
of the system (7). The calculations of the Lyapunov char-
acteristic numbers here are limited to finding the maximum
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LCN, which gives a computed value that we use as a metric
to give a qualitative indication of how stability vary over the
solutions. Following Singh and Leke (2010), the LCN of the
triangular solutions varying with time with the consideration
that as t → ∞, τ is approaching a finite value, is:

L4,5
[
x(t)

] = − lim
t→∞

1

t
ln

∣∣ξR(t)
∣∣ = 0

similarly,

L4,5
[
y(t)

] = 0 (72)

Thus, the Lyapunov characteristic number is zero for trian-
gular solutions, therefore the stability or instability of the
perturbed motion cannot be determined directly from the tri-
angular solutions.

Using (39), the particular solutions of the system of equa-
tions with variable coefficients (7) can be represented (Singh
and Leke 2010), with given solutions (59) and transforma-
tion (8) as:

x1 = S1 cos�1τR(t), x2 = C1 sin�1τR(t)

x4 = C2 sin�2τR(t), x5 = ξ0R(t)

y1 = S̄1 cos�1τR(t), y2 = C̄1 sin�1τR(t)

y3 = S̄2 cos�2τR(t), y4 = C̄2 sin�2τR(t)

y5 = η0R(t)

(73)

where ξ0, η0 are coordinates of the test particle.
These solutions correspond to the region where 0 < ν <

νCκ , P > 0. Numerically, this holds when 0.002 < κ <

1.31169451; when there are no small perturbations in the
Coriolis and centrifugal forces, we have 0 < κ < 1.311. Fur-
ther, if the first primary is not an oblate spheroid, then we
have 0 < κ < 4

3 , and agree with Singh and Leke (2010).
Similarly, the particular solutions with conditions 0 <

ν < νCκ , P < 0 using (39), solutions (60) and transforma-
tion (8) can be represented as:

x6 = e±U1τR(t), x7 = e±U2τR(t)

x8 = ξ0R(t), y6 = c1e
±U1τR(t)

y7 = c2e
±U2τR(t), y8 = η0R(t)

(74)

The solutions (74) correspond to the region where, P < 0.
This region is determined by the parameter κ , oblateness of
the first primary and whether 8ε − 3ε′ <=> 0; since in both
cases 0 < ν < νCκ (D > 0).

For the solutions (66), their LCN’s are (Singh and Leke
2010)

L(xi) = L(yi) = 0 (i = 1,2, . . . ,5) (75)

In view of the particular solutions (74) and using (71); their
LCN’s are:

L(x6) = ∓U1�, L(x7) = ∓U2�, L(x8) = 0

Similarly

L(y6) = ∓U1�, L(y7) = ∓U2�, L(y8) = 0 (76)

Therefore, the LCN are negative for solutions with pos-
itive exponents, positive for solutions with negative expo-
nents, and, zero for solutions with imaginary exponents and
constant solutions. Hence, when the roots of characteristic
equation of the autonomized equations are positive, then the
LCN of the solutions varying with time is negative, and con-
sequently the solutions are unstable according to the Lya-
punov theorem. If these roots are pure imaginary quantities,
then the LCN of corresponding solution varying with time is
zero; in this case the stability or instability of the solutions
cannot be determined. Finally, when the roots are negative,
the LCN of corresponding time-dependent solutions is pos-
itive and consequently stable.

The same stability analysis can be done in the case of the
collinear and out-of-plane solutions of the non-autonomous
system.

6 Discussions and conclusions

The system (7) of equations of motion is unlike those ob-
tained by Luk’yanov (1990) due to the presence of radiation
of the second primary, oblateness coefficient of the first pri-
mary and small perturbations in the Coriolis and centrifu-
gal forces. We observe that the perturbation given in the
centrifugal force which is considered so small permits the
appearance of κ in the collinear and triangular equilibrium
points. The positions of these points are different from those
of Singh and Leke (2010) and Singh et al. (2010).

The characteristic equation (43) of the collinear equilib-
rium points is different from those of Singh and Leke (2010)
due to the oblateness of the first primary. It is seen that the
coefficients can take either positive or negative values be-
cause of the presence of the arbitrary constant which takes
values between zero and infinity, and the other parameter
involved. Consequently, a stable collinear point is possible
under some conditions.

Equation (55) represents the combined actions of the
involved parameters on the critical mass ratio. If in (55),
we annul the effect of the small perturbations and radia-
tion pressure and oblateness of the first primary (i.e. ε =
ε′ = 0, q2 = 1, α1 = 0) and κ = 1,2; then νC1,2 = ν01,2 =
0.038520, this fully coincide with the Routhian value (Sze-
behely 1967a, 1967b). We observe from system (56) that,
for 0.7145312 ≤ κ < 4

3 the Coriolis force has a stabilizing
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tendency while the centrifugal force, radiations pressure and
oblateness of the first primary have destabilizing behaviors
in this range of κ . When κ = 4

3 , all these parameters are an-
nulled and have no effect (see (57)). For 4

3 < κ ≤ 9.952135
the Coriolis force and the radiation pressure of the sec-
ond primary remains all through a destabilizing parame-
ter, while here, the oblateness of the first primary assumes
the role of a stabilizing parameter. The small perturbation
in the centrifugal force plays a stabilizing role only when
4
3 < κ ≤ 7 and is destabilizing outside this range of kappa;
while for 4

3 < κ ≤ 5 oblateness of the second primary has
a destabilizing tendencies which afterwards becomes stabi-
lizing for 6 ≤ κ ≤ 9.952135. Hence the stabilizing or desta-
bilizing behaviors of the Coriolis & centrifugal forces and
oblateness is controlled by kappa. It is seen that (except for
the case when κ = 4

3 ), the radiation pressure always has a
destabilizing tendency. This behavior gets weaker with in-
crease in kappa in the interval 0.7145312 ≤ κ < 4

3 ; and has
no effect for κ = 4

3 and interestingly grows stronger for
4
3 < κ ≤ 9.952135. Our numerical computation reveals that
for any |ε| � 1, |ε′| � 1, 1 − q2 � 1 and 0.71460 ≤ κ < 4

3 ,
every νCκ < ν0κ ; consequently the region of stability is de-
creasing. This is so because of the inclusion of oblateness
of the first primary. If this is ignored i.e., the first primary
is spherical, we’ll have νCκ > ν0κ which implies that the re-
gion of stability is increasing. When κ = 4

3 , it coincides and
equal zero; while for 4

3 < κ ≤ 9.952135, due to oblateness
every νCκ > ν0κ , which implies that the region of stability
of the triangular point is increasing. If α1 = 0, the reverse
is the case as in Singh et al. (2010). The results of Szebe-
hely (1967b), SubbaRao and Sharma (1975), Bhatnagar and
Hallan (1978), Bekov (1988) and Singh et al. (2010) can be
confirmed here from our results.

Our results show that a condition for stable triangular
points is when the mass ratio is in the region 0 < ν <

νCκ and P > 0. Numerically we must have 0.002 < κ <

1.31169451. If 8ε − 3ε′ = 0, α1 = 0 then 0 < κ < 4
3 and

agrees with Singh and Leke (2010).
We conclude that the stability behavior of the collinear

of the restricted three body problem with constant masses
which always remain unstable changes here to a stable equi-
librium point due to κ . However, the behavior of the out-
of-plane equilibrium points remain unstable despites the in-

troduction of a small perturbation in the centrifugal force,
radiation pressure, oblateness of the first primary and κ .

The triangular points are stable under some conditions;
in this case, the decrease, increase or non existence of the
region of stability of the triangular points depends on the
arbitrary constant κ and oblateness α1 of the first primary
and the signs of the small perturbations. The overall effect
of these parameters is that the region of the stable motion
increases.

For the stability of the equilibrium points varying with
time, we conclude that, the introduction of oblateness of the
first primary does not change the stability analysis of any
of the equilibrium solutions of system (7). Hence, they re-
mained unstable.
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